Parameter design method of supporting coal pillar for end-slope mining under non-uniform load condition
-
摘要:
应用端帮采煤机开采工艺回收端帮滞留煤资源过程中,合理地设计支撑煤柱参数,是端帮开采安全、高效进行的前提。基于尖点突变理论,确立了端帮开采支撑煤柱失稳充要条件;建立了采硐顶板-煤柱力学分析模型,基于弹性地基梁理论,研究了煤柱局部失稳后顶板应力、变形空间演化规律,提出了采硐顶板垮落失稳判据,以此作为非均布载荷条件下支撑煤柱失效判据;研究了不同煤柱留设宽度下顶板极限垮落距与煤柱失稳区段长度变化规律,提出了非均布载荷下支撑煤柱参数设计方法。研究结果表明:煤柱失稳的充要条件为分叉集Δ<0;采硐顶板的失稳判据为最大拉应力σtmax大于抗拉强度σtl;煤柱的失效判据为煤柱失稳区段长度lmax大于采硐顶板极限垮落距l2max;设计了山西某露天煤矿端帮开采煤柱宽度最终为3.0 m。
Abstract:In the process of applying the mining technology of the end-wall shearer to recover the coal resources retained in the end-wall, the reasonable design of the parameters of the supporting coal pillar is the premise of the safe and efficient end-wall mining. Based on the cusp catastrophe theory, the necessary and sufficient conditions for the instability of the supporting coal pillar in the end slope mining are established. The mechanical analysis model of mining roof-coal pillar was established. Based on the elastic foundation beam theory, the spatial evolution law of roof stress and deformation after local instability of coal pillar was studied, and the instability criterion of mining roof collapse was proposed, which was used as the failure criterion of supporting coal pillar under non-uniform load. The variation law of the limit caving distance of the roof and the length of the coal pillar instability section under different coal pillar widths was studied, and the design method of the supporting coal pillar parameters under non-uniform load was proposed. The results show that the necessary and sufficient condition of coal pillar instability is the bifurcation set Δ < 0, the instability criterion of the roof is that the maximum tensile stress σtmax is greater than the tensile strength σtl , the failure criterion of the coal pillar is that the length lmax of the instability section of the coal pillar is greater than the limit caving distance l2max of the roof of the mining cave , the width of the coal pillar in the end-wall mining of an open-pit coal mine in Shanxi is designed to be 3.0 meters.
-
0. 引 言
我国大型露天煤矿主要分布在内蒙古、山西、新疆等地区,受开采工艺、剥采比、边坡稳定性等因素限制,露天开采过程中端帮下方会压覆大量的滞留煤。滞留煤无法回收带来重大资源与经济损失,同时还可能导致煤自燃、滑坡等安全及环境隐患[1-3]。由于端帮开采技术具有很高的经济效益,近些年得到了推广应用[4],越来越多的露天煤矿开始采用端帮采煤机对滞留煤进行开采回收,目前已经形成了比较成熟的端帮开采技术和管理体系[5]。端帮开采时,使用端帮采煤机对露头煤层打硐开采,形成多个独立采硐,各采硐之间通过留设支撑煤柱支承上覆岩层[6-7]。
端帮开采过程中,采硐空间的稳定性依靠留设的支撑煤柱保证,针对此问题,国内外学者进行了大量的研究。王瑞等[8]基于断裂力学Ⅰ-Ⅱ复合型裂纹模型,运用Hoek-Brown与Mohr-Coulomb破坏准则,分析了支撑煤柱边缘的应力分布规律,建立了支撑煤柱边缘破坏区的边界方程,进而得到了不同破坏准则下支撑煤柱破坏宽度的表达式;陈彦龙等[9]基于端帮开采中支撑煤柱的承载模型,结合尖点突变理论,同时考虑煤柱安全系数的要求,建立了支撑煤柱保持稳定的判据公式;刘文岗等[10]利用经验公式对临时支撑煤柱及永久隔离煤柱进行计算,为煤柱的合理留设宽度提供了依据。支撑煤柱发生失稳后,采硐顶板与下方未失稳煤柱仍然可以形成简支梁结构保证采硐整体空间的稳定与安全。保守的设计固然可以保证安全性,但会造成煤炭资源的浪费。
基于此,笔者在尖点突变理论设计全稳定煤柱尺寸的基础上,应用Winkler弹性地基梁理论分析采硐顶板的变形和受力特征,确立了支撑煤柱整体失效判据,使支撑煤柱在局部失稳的情况下,利用采硐顶板与未失稳煤柱形成的单跨简支梁结构保证煤柱整体的有效支承作用。在保证安全的前提下,尽可能的缩小煤柱尺寸以回收更多的煤炭资源。
1. 端帮开采下支撑煤柱稳定性分析
1.1 支撑煤柱应力分析
端帮开采下的支撑煤柱形态为条带状[11],承受的载荷主要来自上覆岩层。上覆岩层厚度h(x),随着采硐深度x的增加而增加,支撑煤柱承受的荷载也不断增加,其荷载分布如图1所示。支撑煤柱随采硐深度增加所承受的载荷为
$$ {q_1}\left( x \right) = \gamma {h_1} + {\gamma _1}x\tan \;\alpha $$ (1) 式中:q1(x)为在采深x m处支撑煤柱单位宽度的上覆岩层载荷,kPa;γ为煤层容重,kN/m³;h1为采硐顶板厚度,m;γ1为上覆岩层平均容重,kN/m³;α为端帮边坡角,(°);x为采硐深度,m。
上覆岩层平均容重可以根据实际情况进行分析,若采硐顶板上覆岩层分布相对简单,且各层倾角近水平分布,则根据各岩层厚度进行加权平均计算;若上覆岩层岩性复杂,且起伏较大,可以借助软件分别计算各层岩性体积,根据体积进行加权平均计算。
在煤柱宽度方向上,根据有效区域理论[12],端帮开采下支撑煤柱承受的载荷为煤柱宽度及相邻采硐宽度一半范围内上覆岩层载荷之和,如图2所示,则支撑煤柱实际承受的载荷为
$$ q\left( x \right) = \frac{{{W_{\text{m}}} + {W_{{{\mathrm{n}}}}}}}{{{W_{{{\mathrm{n}}}}}}}{q_{1}}\left( x \right) $$ (2) 式中:q(x)为非均布载荷下考虑有效区域理论的支撑上覆岩层载荷,kPa;Wm为端帮开采中采硐宽度,m;Wn为支撑煤柱宽度,m。
根据A.H.Wilson提出的两区约束理论[13],支撑煤柱在承受载荷时,沿垂直于采深方向可以分为塑性屈服区和弹性核区,其中塑性屈服区将弹性核区包裹并为其提供围压。随着支撑煤柱承受的载荷增加,煤柱两边逐渐出现塑性屈服区,并且其宽度逐渐增加,中部的弹性核区宽度逐渐缩小,应力最大位置位于屈服区与弹性核区交界处[14]。支撑煤柱在上覆岩层载荷的作用下产生两边大中间小的形似“马鞍形”应力分布规律[15]。基于支撑煤柱应力分布的对称性,支撑煤柱弹—塑性区域分布如图3所示。设煤柱承受的垂直应力为σ1,煤柱屈服区宽度为xp。基于Mohr-Coulomb强度理论[16],煤柱承受的最大垂直应力σzmax为
$$ {\sigma _{{\textit{z}}\max }} = \frac{{1 + \sin \;\varphi }}{{1 - \sin \;\varphi }}\lambda q\left( x \right) + \frac{{2c\cos \;\varphi }}{{1 - \sin \;\varphi }} $$ (3) 式中:σzmax为支撑煤柱承受的最大垂直应力,kPa;φ为支撑煤柱的内摩擦角,(°);λ为侧压力系数;c为支撑煤柱的黏聚力,kPa。
侧压力系数λ,其与泊松比μ的关系[17]为
$$ \lambda = \mu \left( {1 - \mu } \right) $$ (4) 1.2 支撑煤柱稳定性研究
随着采硐加深,支撑煤柱承受的荷载增加,煤柱塑性屈服区宽度扩大,弹性核区宽度减小。当弹性核区宽度减小到一定值时,煤柱发生失稳破坏。这一过程是典型的突变过程,尖点型突变模型作为经典突变模型之一,与煤柱失稳的演化过程接近,它具有2个控制变量和一个状态变量[18]。其势函数的标准形式[19]为
$$ {V_{\left( {\textit{z}} \right)}} = {Z^4} + X{Z^2} + YZ $$ (5) 式中:Z为系统的状态变量;X,Y为系统的控制变量。
该函数在三维空间中的图形称为突变流形,这是一个有褶皱的曲面,由上叶、中叶、下叶三部分构成,上叶和下叶部分对应的平衡点是稳定的,中叶部分对应的平衡点是不稳定的。将势能公式进行一阶求导得到平衡曲面的方程,进行二阶求导得到系统的奇点值方程,将2次求导结果联立求得系统分叉集方程[20],其形式为
$$ \varDelta = 4{X^3} + 27{Y^2} = 0 $$ (6) 它在几何体系中表示:系统的分叉集为控制变量X,Y确定的平面C的投影。只有在Δ<0时,才有跨越分叉集的可能,故系统发生突变的必要条件为Δ<0。当X,Y均满足式(6)时,系统将处于临界平衡状态,得出系统突变的临界条件[19]。
塑性屈服区载荷PS、弹性屈服区载荷Pe与变形u的关系可分别表示为
$$ \left\{ \begin{gathered} {P_{\text{s}}} = \frac{{2{x_{\text{p}}}Eu}}{{{h_2}}}\exp \left( { - \frac{u}{{{u_0}}}} \right) \\ {P_{\text{e}}} = \frac{{Eu}}{{{h_2}}}\left( {{W_{{n}}} - 2{x_{\text{p}}}} \right) \\ \end{gathered} \right. $$ (7) 式中:xp为塑性屈服宽度,m;E为煤柱的弹性模量;u0为煤柱在峰值载荷下的变形量,m。
则支撑煤柱与上覆岩层组成的系统的总势能函数为
$$\begin{gathered} Q = \frac{{2E{x_{\text{p}}}}}{{{h_2}}}\int_0^u u \left( { - \frac{u}{{{u_0}}}} \right){\text{d}}u + \frac{{2E\left( {{W_{{{\mathrm{n}}}}} - 2{x_{\text{p}}}} \right)}}{{{h_2}}}\times \\ \int_0^u {u{\text{d}}u} - \gamma H\left( {{W_{{{\mathrm{n}}}}} + {W_{\text{m}}}} \right)u \end{gathered}$$ (8) 对势能函数Q进行一阶求导并令其为零,即Q'=0可得平衡曲面方程。根据平衡曲面的光滑性质可得尖点关系式,其关系为Q''=0。根据平衡曲面方程和尖点关系式建立分叉集,基于陈彦龙等[9]推导的分叉集经改进后可得非均布载荷条件下支撑煤柱突变失稳判据[21]为
$$\begin{gathered} \varDelta = 2{\left[ {\frac{{\left( {{W_{{{\mathrm{n}}}}} - 2{x_{\text{p}}}} \right){{\text{e}}^2}}}{{2{x_{\text{p}}}}} - 1} \right]^3} + \\ 9{\left[ {\frac{{\left( {{W_{{{\mathrm{n}}}}} - 2{x_{\text{p}}}} \right){{\text{e}}^2}}}{{2{x_{\text{p}}}}} - \frac{{{{\text{e}}^2}}}{{4{x_{\text{p}}}{\sigma _{{\text{zl}}}}}}q\left( x \right){W_{{{\mathrm{n}}}}} + 1} \right]^2} = 0 \end{gathered}$$ (9) 式中:σzl为支撑煤柱极限抗压强度,kPa。
根据侯朝炯等[22]推导的煤柱一侧塑性屈服区宽度为
$$ {x_{\text{p}}} = \frac{{\lambda {h_2}}}{{2\tan \;\varphi }}\ln \left( {\frac{{{\sigma _{{\text{zmax}}}} + c\cot \;\varphi }}{{c\cot \;\varphi }}} \right) $$ (10) 2. 非均布载荷下支撑煤柱失效判据
煤柱达到临界失稳状态后,若继续增加采硐深度,煤柱将会发生破坏。然而破坏区域范围的上覆岩层的荷载可以由采硐顶板进行支撑。因此存在部分失稳区段依然可以保证采硐空间的安全和稳定,使采煤工作正常进行。
2.1 采硐顶板应力变形分析
考虑到支撑煤柱顶板在上覆岩层载荷作用下发生竖向弯曲变形,破坏类型为受拉破坏,与梁结构在承受载荷时发生的变形方式和破坏类型相似,因此可以将煤柱顶板简化为梁结构[23]。基于Winkler弹性地基梁理论[24],建立支撑煤柱和顶板组成的弹性地基梁模型,如图4所示。
采硐顶板在上覆岩层载荷P(x)的作用下,梁和地基产生的竖向位移为y(x)。对弹性地基梁进行分析,其挠曲基本微分方程[25]为
$$ EI\frac{{{{\text{d}}^4}y}}{{{\text{d}}{x^4}}} + ky\left( x \right) = P\left( x \right) $$ (11) 式中:I为惯性矩,采硐顶板截面惯性矩为$ \dfrac{{\left( {{W_{\text{m}}} + {W_{{{\mathrm{n}}}}}} \right)h_1^3}}{{12}} $;k为地基系数,kPa/m;P(x)为采硐顶板承受的上覆岩层荷载,kPa。
顶板梁宽度为Wm+Wn,根据有效区域原理[26],上覆岩层对采硐顶板的载荷为
$$ P\left( x \right) = \frac{{{\gamma _1}\left( {{W_{\text{m}}} + {W_{{{\mathrm{n}}}}}} \right)x\tan \;\alpha }}{{{W_{{{\mathrm{n}}}}}}} $$ (12) 为简化计算,引入特征系数$\beta = \sqrt[\displaystyle 4]{{\dfrac{k}{{4EI}}}}$,将特征系数代入式(11)可得
$$ \frac{{{{\text{d}}^4}y}}{{{\text{d}}{x^4}}} + 4{\beta ^4}y = \frac{{P\left( x \right)}}{{EI}} $$ (13) 式(13)对应的齐次方程通解为
$$\begin{gathered} y(x)=A \cosh (\beta x) \cos (\beta x)+B \cosh (\beta x) \sin (\beta x)+\\ C \sinh (\beta x) \cos (\beta x)+D \sinh (\beta x) \sin (\beta x) \end{gathered}$$ (14) 式中:A、B、C、D为常数项。
梁任意截面的转角θ、弯矩M、剪力V、荷载P与挠度的关系有
$$ \left\{ \begin{gathered} \theta \left( x \right) = \frac{{{\mathrm{d}}y}}{{{\mathrm{d}}x}} \\ M\left( x \right) = - EI\frac{{{{\mathrm{d}}^2}y}}{{{\mathrm{d}}{x^2}}} \\ V\left( x \right) = - EI\frac{{{{\mathrm{d}}^3}y}}{{{\mathrm{d}}{x^3}}} \\ P\left( x \right) = - EI\frac{{{{\mathrm{d}}^4}y}}{{{\mathrm{d}}{x^4}}} \\ \end{gathered} \right. $$ (15) 为化简求解,引入双曲三角函数[27],令
$$\left\{\begin{array}{l} \xi_1(x)=\cosh (\beta x) \cos (\beta x) \\ \xi_2(x)=\cosh (\beta x) \sin (\beta x)+\sinh (\beta x) \cos (\beta x) \\ \xi_3(x)=\sinh (\beta x) \sin (\beta x) \\ \xi_4(x)=\cosh (\beta x) \sin (\beta x)-\sinh (\beta x) \cos (\beta x) \end{array}\right.$$ (16) 将齐次方程通解式(14)代入关系式(15)并用双曲三角函数式(16)进行化简,得在通解的情况下梁在任意截面的变形和应力方程:
$${ \left\{ \begin{gathered} y\left( x \right) = A{\xi _1}\left( x \right) + B\frac{{{\xi _2}\left( x \right) + {\xi _4}\left( x \right)}}{2} + C\frac{{{\xi _2}\left( x \right) - {\xi _4}\left( x \right)}}{2} + D{\xi _3}\left( x \right) \\ \theta \left( x \right) = - 2A{\xi _4}\left( x \right) + B\left[ {{\xi _1}\left( x \right) + {\xi _3}\left( x \right)} \right] + C\left[ {{\xi _1}\left( x \right) - {\xi _3}\left( x \right)} \right] + D{\xi _2}\left( x \right) \\ M\left( x \right) = 2EI{\beta ^2}\left[ {A{\xi _3}\left( x \right) - B\frac{{{\xi _2}\left( x \right) - {\xi _4}\left( x \right)}}{2} + C\frac{{{\xi _2}\left( x \right) + {\xi _4}\left( x \right)}}{2} - D{\xi _1}\left( x \right)} \right] \\ V\left( x \right) = 2EI{\beta ^2}\left\{ {A{\xi _2}\left( x \right) - B\left[ {{\xi _1}\left( x \right) - {\xi _3}\left( x \right)} \right] + C\left[ {{\xi _1}\left( x \right) + {\xi _3}\left( x \right)} \right] + D{x_4}\left( x \right)} \right\} \\ \end{gathered} \right.} $$ (17) 为使积分常数具有明确的物理意义,根据边界条件来寻求化简计算的途径。
当x=0时,cosh(0)=cos(0)=1,sinh(0)=sin(0)=0,将其代入式(17)可得边界条件与常数项的关系:
$$ \left\{ \begin{gathered} {y_0} = A \\ {\theta _0} = \beta \left( {B + C} \right) \\ {M_0} = - 2E{\beta ^2}D \\ {V_0} = 2EI{\beta ^3}\left( {C - B} \right) \\ \end{gathered} \right. $$ (18) 整理式(18),利用边界条件表示常数项A、B、C、D:
$$ \left\{ \begin{gathered} A = {y_0} \\ B = \frac{1}{{2\beta }}{\theta _0} - \frac{1}{{4{\beta ^3}EI}}{V_0} \\ C = \frac{1}{{2\alpha }}{\theta _0} + \frac{1}{{4{\beta ^3}EI}}{V_0} \\ D = - \frac{1}{{2{\beta ^3}EI}}{M_0} \\ \end{gathered} \right. $$ (19) 再将式(19)代入式(17)中,可以用初始边界条件表示梁截面在通解情况下的变形和应力方程:
$${ \left\{ \begin{gathered} y\left( x \right) = {y_0}{\xi _1}\left( x \right) + {\theta _0}\frac{1}{{2\beta }}{\xi _2}\left( x \right) - {M_0}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( x \right) - {V_0}\frac{\beta }{k}{\xi _4}\left( x \right) \\ \theta \left( x \right) = - {y_0}\beta {\xi _4}\left( x \right) + {\theta _0}{\xi _1}\left( x \right) - {M_0}\frac{{2{\beta ^3}}}{k}{\xi _2}\left( x \right) - {V_0}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( x \right) \\ M\left( x \right) = {y_0}\frac{k}{{2{\beta ^2}}}{\xi _3}\left( x \right) + {\theta _0}\frac{k}{{4{\beta ^3}}}{\xi _4}\left( x \right) + {M_0}{\xi _1}\left( x \right) + {V_0}\frac{1}{{2\beta }}{\xi _2}\left( x \right) \\ V\left( x \right) = {y_0}\frac{k}{{2\beta }}{\xi _2}\left( x \right) + {\theta _0}\frac{k}{{4{\beta ^2}}}{\xi _3}\left( x \right) - {M_0}\beta {\xi _4}\left( x \right) + {V_0}{\xi _1}\left( x \right) \\ \end{gathered} \right.} $$ (20) 当煤柱顶板承受上覆岩层载荷时,需要根据不同的载荷类型引入附加项。采硐深度增加引起支撑煤柱局部区段失稳时如图5所示。设支撑煤柱失稳区段起始位置为m、终止位置为n、最终开采深度为L。根据上覆岩层荷载以及顶板梁类型可将煤柱顶板简化为三段梁,原点至m点为弹性地基梁Ⅰ段;m点至n点为单跨简支梁Ⅱ段;n点至最终开采深度L处为弹性地基梁Ⅲ段,分别对三段梁结构进行分析。
2.1.1 弹性地基梁Ⅰ段变形受力分析
该段梁承受荷载分为2个部分,分别来自其正上方上覆岩层作用下的三角形载荷和支撑煤柱失稳区段上方岩层载荷作用至煤柱顶板,再由顶板分摊至该段地基梁右端的等效集中力Fm,2种载荷对梁段产生的作用效果都可视为自由端,对2个部分载荷分别计算后进行叠加,其计算模型如图6所示,图中Pm为采硐深度为m时对应的载荷大小。
1) 三角形载荷部分
当Winkler弹性地基梁上覆岩层载荷呈三角形分布时,式(20)的附加项[28]为
$$ \left\{ \begin{gathered} {y_1}\left( x \right) = \frac{{\Delta {P_1}\left( x \right)}}{{km}}\left[ {x - \frac{1}{{2\beta }}{\xi _4}\left( x \right)} \right] \\ {\theta _1}\left( x \right) = \frac{{\Delta {P_1}\left( x \right)}}{{km}}\left[ {1 - {\xi _1}\left( x \right)} \right] \\ {M_1}\left( x \right) = - \frac{{\Delta {P_1}\left( x \right)}}{{4{\beta ^3}m}}{\xi _4}\left( x \right) \\ {V_1}\left( x \right) = - \frac{{\Delta {P_1}\left( x \right)}}{{2{\beta ^2}m}}{\xi _3}\left( x \right) \\ \end{gathered} \right. $$ (21) 其中:
$$ \Delta {P_1}\left( x \right) = \frac{{{P_{{m}}} - {P_0}}}{m}x $$ (22) 式中:P0为最左端载荷大小,kN/m。
将三角形荷载附加项式(21)与齐次方程通解式(20)叠加求得弹性地基梁在三角形荷载作用下的位移、转角、弯矩、剪力方程分别为
$${ \left\{ \begin{gathered} y\left( x \right) = {y_0}{\xi _1}\left( x \right) + {\theta _0}\frac{1}{{2\beta }}{\xi _2}\left( x \right) - {M_0}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( x \right) - {V_0}\frac{\beta }{k}{\xi _4}\left( x \right) + {y_1}\left( x \right) \\ \theta \left( x \right) = - {y_0}\beta {\xi _4}\left( x \right) + {\theta _0}{\xi _1}\left( x \right) - {M_0}\frac{{2{\beta ^3}}}{k}{\xi _2}\left( x \right) - {V_0}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( x \right) + {\theta _1}\left( x \right) \\ M\left( x \right) = {y_0}\frac{k}{{2{\beta ^2}}}{\xi _3}\left( x \right) + {\theta _0}\frac{k}{{4{\beta ^3}}}{\xi _4}\left( x \right) + {M_0}{\xi _1}\left( x \right) + {V_0}\frac{1}{{2\beta }}{\xi _2}\left( x \right) + {M_1}\left( x \right) \\ V\left( x \right) = {y_0}\frac{k}{{2{\beta ^2}}}{\xi _2}\left( x \right) + {\theta _0}\frac{k}{{4{\beta ^3}}}{\xi _3}\left( x \right) + {M_0}\beta {\xi _4}\left( x \right) + {V_0}{\xi _1}\left( x \right) + {V_1}\left( x \right) \\ \end{gathered} \right.} $$ (23) 由于弹性地基梁Ⅰ段承受三角形荷载分布时两端均可视为自由端[24],则其边界条件为
$$ \left\{\begin{array} { l } { M _ { 0 } = 0 } \\ { V _ { 0 } = 0 } \end{array} \quad \left\{\begin{array}{l} M_m=0 \\ V_m=0 \end{array}\right.\right. $$ (24) 将边界条件式(24)代入式(23)可以求得初始边界条件为
$$ \left\{ \begin{gathered} {y_{{\text{t}}0}} = \frac{{{\xi _3}\left( m \right){\xi _4}\left( m \right)\left( {{P_0} - {P_m}} \right)}}{{2km\beta \left[ {\xi _3^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}} \\ {\theta _{{\text{t}}0}} = - \frac{{\left( {{P_0} - {P_m}} \right)\left[ {2\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}}{{km\left[ {\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}} \\ {M_{{\text{t}}0}} = 0 \\ {V_{{\text{t}}0}} = 0 \\ \end{gathered} \right. $$ (25) 将初始边界条件式(25)代入式(23)得Winkler弹性地基梁Ⅰ段在三角形载荷作用下的位移、转角、弯矩、剪力方程分别为
$$ \left\{ \begin{gathered} {y_{{{{\mathrm{t}}m}}}}\left( x \right) = \frac{{\Delta {P_{{m}}}}}{{2km\beta }}\left\{ {\frac{{\left[ {2m{\xi _2}\left( x \right) + 2{x^2}\beta - x{\xi _4}\left( x \right)} \right]}}{m} - \frac{{{\xi _4}\left( m \right)\left[ {{\xi _2}\left( m \right){\xi _2}\left( x \right) - {\xi _3}\left( m \right){\xi _1}\left( x \right)} \right]}}{{{\xi _3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)}}} \right\} \\ {\theta _{{{{\mathrm{t}}m}}}}\left( x \right) = \frac{{\Delta {P_{{m}}}}}{{km}}\left\{ {\frac{{\left[ {x + {\xi _1}\left( x \right)\left( {2m - x} \right)} \right]}}{m} - \frac{{{\xi _4}\left( m \right)\left[ {{\xi _3}\left( m \right){\xi _4}\left( x \right) - 2{\xi _2}\left( m \right){\xi _1}\left( x \right)} \right]}}{{2\left[ {{\xi _3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}}} \right\} \\ {M_{{{{\mathrm{t}}m}}}}\left( x \right) = \frac{{\Delta {P_{{m}}}}}{{4m{\beta ^3}}}\left\{ {\frac{{\left( {2m - x} \right){\xi _4}\left( x \right)}}{m} + \frac{{{\xi _4}\left( m \right)\left[ {{\xi _2}\left( m \right){\xi _4}\left( x \right) - {\xi _3}\left( m \right){\xi _3}\left( x \right)} \right]}}{{\left[ {{\xi _3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}}} \right\} \\ {V_{{{{\mathrm{t}}m}}}}\left( x \right) = \frac{{\Delta {P_{{m}}}}}{{3m{\beta ^2}}}\left\{ {\frac{{\left( {m - x} \right){\xi _3}\left( x \right)}}{m} + \frac{{{\xi _4}\left( m \right)\left[ {{\xi _2}\left( m \right){\xi _3}\left( x \right) - {\xi _2}\left( x \right){\xi _3}\left( m \right)} \right]}}{{2\left[ {{\xi _3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}}} \right\} \\ \end{gathered} \right. $$ (26) 2) 等效集中力部分
弹性地基梁右端受到集中力时,无须引入附加项,可以用齐次解式(20)直接进行求解[28]。其右端受到等效集中力的情况下,两端都是自由端,因此其边界条件为
$$ \left\{\begin{array} { l } { M _ { 0 } = 0 } \\ { V _ { 0 } = 0 } \end{array} \quad \left\{\begin{array}{l} M_{{m}}=0 \\ V_{{m}}=-F_{{m}} \end{array}\right.\right. $$ (27) 将式(27)代入式(20)可以求得初始边界条件:
$$ \left\{ \begin{gathered} {y_{{\text{j0}}}} = \frac{{2\beta {\xi _4}\left( m \right){F_{{m}}}}}{{k\left[ {\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}} \\ {\theta _{{\text{j0}}}} = \frac{{4{\beta ^2}{\xi _3}\left( m \right){F_{{m}}}}}{{k\left[ {{\xi _2}\left( m \right){\xi _4}\left( m \right) - \xi _{3}^2\left( m \right)} \right]}} \\ {M_{{\text{j0}}}} = 0 \\ {V_{{\text{j0}}}} = 0 \\ \end{gathered} \right. $$ (28) 将初始边界条件式(28)代入齐次方程通解式(20)可以求得Winkler弹性地基梁Ⅰ段在右端等效集中力作用下的其位移、转角、弯矩、剪力方程为
$$ \left\{ \begin{gathered} {y_{{{{\mathrm{j}}m}}}}\left( x \right) = \frac{{2{F_{{m}}}\beta \left[ {{\xi _1}\left( x \right){\xi _4}\left( m \right) - {\xi _2}\left( x \right){\xi _3}\left( m \right)} \right]}}{{k\left[ {\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}} \\ {\theta _{{{{\mathrm{j}}m}}}}\left( x \right) = \frac{{2{F_{{m}}}{\beta ^2}\left[ {2{\xi _1}\left( x \right){\xi _3}\left( m \right) + {\xi _4}\left( m \right){\xi _4}\left( x \right)} \right]}}{{k\left[ {{\xi _2}\left( m \right){\xi _4}\left( m \right) - \xi _{_3}^2\left( m \right)} \right]}} \\ {M_{{{{\mathrm{j}}m}}}}\left( x \right) = \frac{{{F_{{m}}}\left[ {{\xi _3}\left( x \right){\xi _4}\left( m \right) - {\xi _3}\left( m \right){\xi _4}\left( x \right)} \right]}}{{\beta \left[ {\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)} \right]}} \\ {V_{{{{\mathrm{j}}m}}}}\left( x \right) = \frac{{{F_{{m}}}\left[ {{\xi _2}\left( x \right){\xi _4}\left( m \right) - {\xi _3}\left( m \right){\xi _3}\left( x \right)} \right]}}{{\xi _{3}^2\left( m \right) - {\xi _2}\left( m \right){\xi _4}\left( m \right)}} \\ \end{gathered} \right. $$ (29) 将式(26)与式(29)叠加得到Winkler弹性地基梁Ⅰ段在三角形荷载和等效集中力联合作用下该段梁任意截面的位移、转角、弯矩、剪力方程:
$$ \left\{\begin{array}{l}{y}_{\mathrm{I}}\left(x\right)={y}_{{{\mathrm{t}}m}}\left(x\right)+{y}_{{{\mathrm{j}}m}}\left(x\right)\\ {\theta }_{{\rm I}}\left(x\right)={\theta }_{{{\mathrm{t}}m}}\left(x\right)+{\theta }_{{{\mathrm{j}}m}}\left(x\right)\\ {M}_{{\rm I}}\left(x\right)={M}_{{{\mathrm{t}}m}}\left(x\right)+{M}_{{{\mathrm{j}}m}}\left(x\right)\\ {V}_{{\rm I}}\left(x\right)={V}_{{{\mathrm{t}}m}}\left(x\right)+{V}_{{{\mathrm{j}}m}}\left(x\right)\end{array}\right. $$ (30) 2.1.2 单跨简支梁Ⅱ段变形受力分析
该区段顶板下支撑煤柱处于失稳状态,上方岩层载荷全部由顶板承担。煤柱顶板将上覆岩层荷载向下分摊,传递至与失稳区段煤柱相邻的具有承载能力的支撑煤柱或实体煤层上。煤柱顶板与两端具有支承能力构件构成了单跨简支梁结构,其力学计算模型如图7所示。
令l2=n−m,l为简支梁跨度,其最大跨度l2max即顶板垮落距。
根据上覆岩层荷载分布形态可以求得单跨简支梁承受的等效集中力F:
$$ F = \frac{{{l_2}\left( {{P_{{n}}} + {P_{{m}}}} \right)}}{2} $$ (31) 等效集中力的作用位置位于载荷分布面积的形心位置,支座n至形心距离:
$$ d = \frac{{{l_2}\left( {2{P_{{m}}} + {P_{{n}}}} \right)}}{{3\left( {{P_{{m}}} + {P_{{n}}}} \right)}} $$ (32) 分别计算点m、支座n处的力矩方程,根据力矩平衡原理,任意一点和力矩为零,即
$$ \left\{ \begin{gathered} \Sigma {{M_{{m}}}} = {F_{{n}}}{l_2} + F\left( {l - d} \right) = 0 \\ \Sigma {{M_{{n}}}} = {F_{{m}}}{l_2} + Fd = 0 \\ \end{gathered} \right. $$ (33) 式中:ΣMm和ΣMn分别表示位于点m和支座n处的和力矩,kN·m。
将等效集中力式(31)、形心距式(32)代入力矩平衡方程组式(33)根据极限状态下力矩平衡可以求得单跨简支梁Ⅱ段两端的支座反力Fm、Fn:
$$ \left\{ \begin{gathered} {F_{{m}}} = \frac{{FL}}{{{l_2}}} = \frac{{{l_2}\left( {2{P_{{m}}} + {P_{{n}}}} \right)}}{6} \\ {F_{{n}}} = \frac{{F\left( {{l_2} - L} \right)}}{{{l_2}}} = \frac{{{l_2}\left( {{P_{{m}}} + 2{P_{{n}}}} \right)}}{6} \\ \end{gathered} \right. $$ (34) 选取该段单跨简支梁任意截面的左半段为自由体,则可以求得该段自由体在上覆岩层作用下的等效集中力F(x):
$$ F\left( x \right) = \frac{{\left[ {{P_{{m}}} + P\left( x \right)} \right]\left( {x - m} \right)}}{2} $$ (35) 等效集中力F(x)作用位置距上述任意截面的距离为
$$ \varDelta \left( x \right) = \frac{{\left( {x - m} \right)\left[ {2{P_{{m}}} + P\left( x \right)} \right]}}{{3\left[ {{P_{{m}}} + P\left( x \right)} \right]}} $$ (36) 联立式(35)、式(36)可以求得单跨简支梁Ⅱ段上任意弯矩为
$$ M\left( x \right) = F\left( x \right){{d}}\left( x \right) + {F_{{m}}}\left( {x - m} \right) $$ (37) 单跨简支梁Ⅱ段两端实际为弹性支座[29],因此在上覆岩层载荷的作用下整体将会产生竖向位移,梁位移经过二次求导变换后得到弯矩公式,因此经过二次求导后上覆岩层载荷对单跨简支梁Ⅱ段两端弹性支座处产生的位移作用不影响梁的弯矩。
2.1.3 弹性地基梁Ⅲ段变形受力分析
弹性地基梁Ⅲ段所受荷载与Ⅰ段相似,分为2个部分,分别为来自其正上方上覆岩层作用下的梯形载荷和支撑煤柱失稳区段上方上覆岩层载荷经采硐顶板分摊至该段梁左端的等效集中力Fn。该段梁左端置于弹性地基上视为自由端,右端嵌固在煤层中视为固定端。其力学计算模型如图8所示,图中PL为采硐最大深度为L时对应的荷载大小,对2个部分载荷分别进行分析,然后进行叠加计算。
1) 梯形载荷部分
当弹性地基梁Ⅲ段上覆岩层载荷呈梯形分布时,式(20)的附加项[28]为
$$ {\left\{ \begin{gathered} {y_3}\left( x \right) = \frac{{{P_{{n}}}}}{k}\left[ {1 - {\xi _1}\left( {x - n} \right)} \right] + \frac{{\Delta {P_3}\left( x \right)}}{{k\left( {L - n} \right)}}\left[ {x - \frac{1}{{2\beta }}{\xi _4}\left( {x - n} \right) - n} \right] \\ {\theta _3}\left( x \right) = \frac{{{P_{{n}}}\beta }}{k}{\xi _4}\left( {x - n} \right) + \frac{{\Delta {P_3}\left( x \right)}}{{k\left( {L - n} \right)}}\left[ {1 - {\xi _1}\left( {x - n} \right)} \right] \\ {M_3}\left( x \right) = - \frac{{{P_{{n}}}}}{{2{\beta ^2}}}{\xi _3}\left( {x - n} \right) - \frac{{\Delta {P_3}\left( {x - n} \right)}}{{4{\beta ^3}\left( {L - n} \right)}}{\xi _4}\left( {x - n} \right) \\ {V_3}\left( x \right) = - \frac{{{P_{{n}}}}}{{2\beta }}{\xi _2}\left( {x - n} \right) - \frac{{\Delta {P_3}\left( x \right)}}{{2{\beta ^2}\left( {L - n} \right)}}{\xi _3}\left( {x - n} \right) \\ \end{gathered} \right.} $$ (38) 其中:
$$ {\text{\Delta }}{P_3} = \frac{{\left( {{P_{{L}}} - {P_{{n}}}} \right)\left( {x - n} \right)}}{{L - n}} $$ (39) 将梯形荷载附加项式(38)与齐次方程通解式(20)叠加求得弹性地基梁Ⅲ段在梯形荷载作用下的位移、转角、弯矩、剪力方程分别为
$$ \left\{ \begin{gathered} y\left( x \right) = {y_{{n}}}{\xi _1}\left( {x - n} \right) + {\theta _{{n}}}\frac{1}{{2\beta }}{\xi _2}\left( {x - n} \right) {M_{{n}}}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( {x - n} \right) - {V_{{n}}}\frac{\beta }{k}{\xi _4}\left( {x - n} \right) + {y_3}\left( x \right) \\ \theta \left( x \right) = - {y_{{n}}}\beta {\xi _4}\left( {x - n} \right) + {\theta _{{n}}}{\xi _1}\left( {x - n} \right) - {M_{{n}}}\frac{{2{\beta ^3}}}{k}{\xi _2}\left( {x - n} \right) - {V_{{n}}}\frac{{2{\beta ^2}}}{k}{\xi _{{n}}}\left( {x - n} \right) + {\theta _3}\left( x \right) \\ M\left( x \right) = {y_{{n}}}\frac{k}{{2{\beta ^2}}}{\xi _3}\left( {x - n} \right) + {\theta _{{n}}}\frac{k}{{4{\beta ^3}}}{\xi _4}\left( {x - n} \right) + {M_{{n}}}{\xi _1}\left( {x - n} \right) + {V_{{n}}}\frac{1}{{2\beta }}{\xi _2}\left( {x - n} \right) + {M_3}\left( x \right) \\ V\left( x \right) = {y_{{n}}}\frac{k}{{2{\beta ^2}}}{\xi _2}\left( {x - n} \right) + {\theta _{{n}}}\frac{k}{{4{\beta ^3}}}{\xi _3}\left( {x - n} \right) + {M_{{n}}}\beta {\xi _4}\left( {x - n} \right) + {V_{{n}}}{\xi _1}\left( {x - n} \right) + {V_3}\left( x \right) \\ \end{gathered} \right. $$ (40) 弹性地基梁Ⅱ段承受梯形载荷时,该段梁左端为自由段,右端为固定端,边界条件[24]为
$$ \left\{ \begin{gathered} {M_{{n}}} = 0 \\ {V_{{n}}} = 0 \\ \end{gathered} \right.{\text{ }}\left\{ \begin{gathered} {y_{{L}}} = 0 \\ {\theta _{{L}}} = 0 \\ \end{gathered} \right. $$ (41) 令弹性地基梁Ⅲ段跨度l3=L−n,将边界条件式(41)代入式(40)可以得到弹性地基梁Ⅲ段在梯形荷载作用下初始边界条件分别为
$$ {\left\{ \begin{gathered} {y_{{{{\mathrm{t}}n}}}} = \frac{{{P_{{n}}}}}{k} + \frac{{\Delta {P_{{L}}}\left\{ {{\xi _2}\left( {{l_3}} \right) - {\xi _1}\left( {{l_3}} \right)\left[ {{\xi _2}\left( {{l_3}} \right) - {\xi _4}\left( {{l_3}} \right)} \right]} \right\} - 2{P_{{L}}}{l_3}\beta {\xi _1}\left( {{l_3}} \right)}}{{k{l_3}\beta \left[ {2\xi _{_1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ {\theta _{{{{\mathrm{t}}n}}}} = \frac{{\Delta {P_{{L}}}\left\{ {2{\xi _1}\left( {{l_3}} \right)\left[ {{\xi _1}\left( {{l_3}} \right) - 1} \right] + \xi _{_4}^2\left( {{l_3}} \right)} \right\} - 2{l_3}{P_{{L}}}\beta {\xi _4}\left( {{l_3}} \right)}}{{k{l_3}\left[ {2\xi _{_1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ {M_{{{{\mathrm{t}}n}}}} = 0 \\ {V_{{{{\mathrm{t}}n}}}} = 0 \\ \end{gathered} \right. }$$ (42) 将式(42)代入式(40)得Winkler弹性地基梁Ⅲ段在梯形载荷作用下的位移、转角、弯矩、剪力式分别为
$$ {\left\{ \begin{gathered} {y_{{{{\mathrm{t}}n}}}}\left( x \right) = A\left( x \right) + B\left( x \right) + \frac{{\Delta {P_{{L}}}\left( {n - x} \right)\left[ {2\beta \left( {n - x} \right) + {\xi _4}\left( {x - n} \right)} \right]}}{{2k\beta {l_3}^2}} - \frac{{{P_n}\left[ {2{\xi _1}\left( {x - n} \right) - 1} \right]}}{{2k}} \\ {\theta _{{{{\mathrm{t}}n}}}}\left( x \right) = C\left( x \right) + D\left( x \right) + \frac{{\Delta {P_{{L}}}\left[ {\left( {L - x} \right){\xi _1}\left( {x - n} \right) + x - n} \right]}}{{k{l_3}^2}} \\ {M_{{{{\mathrm{t}}n}}}}\left( x \right) = E\left( x \right) + F\left( x \right) + \frac{{\Delta {P_{{L}}}{\xi _1}\left( {{l_3}} \right){\xi _4}(x - n)\left[ {\left( {L - x} \right){\xi _1}\left( {{l_3}} \right) - {l_3}} \right]}}{{2{\beta ^3}{l_3}^2\left[ {2\xi _{_1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ {V_{{{{\mathrm{t}}n}}}}\left( x \right) = G\left( x \right) + H\left( x \right) + \frac{{\Delta {P_{{L}}}\left( {n - x} \right){\xi _3}\left( {x - n} \right)}}{{2{\beta ^2}{l_3}^2}} \\ \end{gathered} \right.} $$ (43) 其中:
$$ \left\{ \begin{gathered} A\left( x \right) = \frac{{{\xi _2}(x - n)\left\{ {{\xi _4}\left( {{l_3}} \right)\left[ {\Delta {P_{{L}}} - 2\beta {P_{{L}}}{l_3}} \right] + 2\Delta {P_{{L}}}{\xi _1}\left( {{l_3}} \right)\left[ {{\xi _1}\left( {{l_3}} \right) - 1} \right]} \right\}}}{{2k\beta {l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ B\left( x \right) = \frac{{{\xi _1}(x - n)\left\{ {{\xi _1}\left( {{l_3}} \right)\left[ {\Delta {P_{{L}}}{\xi _4}\left( {{l_3}} \right) - 2\beta {P_{{L}}}{l_3}} \right] + \Delta {P_{{L}}}{\xi _2}\left( {{l_3}} \right)\left[ {1 - {\xi _1}\left( {{l_3}} \right)} \right]} \right\}}}{{k\beta {l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ C\left( x \right) = \frac{{{\xi _1}\left( {x - n} \right)\left\{ {\Delta {P_{{L}}}{l_3}\left[ {\xi _{4}^2\left( {{l_3}} \right) - 2{\xi _1}\left( {{l_3}} \right)} \right] - {\xi _4}\left( {{l_3}} \right)\left[ {\Delta {P_{{L}}}{\xi _2}\left( {{l_3}} \right) + 2\beta {P_{{L}}}{l_3}^2} \right]} \right\}}}{{k{l_3}^2\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ D\left( x \right) = \frac{{{\xi _4}(x - n)\left\{ {{\xi _1}\left( {{l_3}} \right)\left[ {2\beta {P_{{L}}}{l_3} - \Delta {P_{{L}}}{\xi _4}\left( {{l_3}} \right)} \right] + \Delta {P_{{L}}}{\xi _2}\left( {{l_3}} \right)\left[ {{\xi _1}\left( {{l_3}} \right) - 1} \right]} \right\}}}{{k{l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ E\left( x \right) = \frac{{{\xi _3}\left( {x - n} \right)\left\{ {\Delta {P_{{L}}}{\xi _2}\left( {{l_3}} \right)\left[ {1 - {\xi _1}\left( {{l_3}} \right)} \right] - {\xi _1}\left( {{l_3}} \right)\left[ {2\beta {P_{{L}}}{l_3} + \Delta {P_{\text{L}}}{\xi _4}\left( {{l_3}} \right)} \right]} \right\}}}{{2{\beta ^3}{l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ F\left( x \right) = \frac{{{\xi _4}\left( {{l_3}} \right){\xi _4}(x - n)\left[ {\Delta {P_{{L}}}\left[ {(n - x){\xi _2}\left( {{l_3}} \right) + {l_3}{\xi _4}\left( {{l_3}} \right)} \right] - 2\beta {P_{{L}}}{l_3}^2} \right]}}{{4{\beta ^3}{l_3}^2\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ G\left( x \right) = \frac{{{\xi _3}\left( {x - n} \right)\left\{ {{\xi _4}\left( {{l_3}} \right)\left[ {\Delta {P_{{L}}}{\xi _4}\left( {{l_3}} \right) - 2\beta {P_{{L}}}{l_3}} \right] + 2\Delta {P_{{L}}}{\xi _1}\left( {{l_3}} \right)\left[ {{\xi _1}\left( {{l_3}} \right) - 1} \right]} \right\}}}{{4{\beta ^2}{l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ H\left( x \right) = \frac{{{\xi _2}\left( {x - n} \right)\left\{ {\Delta {P_{{L}}}{\xi _2}\left( {{l_3}} \right)\left[ {1 - {\xi _1}\left( {{l_3}} \right)} \right] - {\xi _1}\left( {{l_3}} \right)\left[ {2\beta {P_{{L}}}{l_3} - \Delta {P_{{L}}}{\xi _4}\left( {{l_3}} \right)} \right]} \right\}}}{{2{\beta ^2}{l_3}\left[ {2\xi _{1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ \end{gathered} \right. $$ (44) 2) 等效集中力部分
弹性地基梁左端在等效集中力Fn作用下,其齐次方程的附加项[28]为
$$ \left\{ \begin{gathered} {y_4}\left( x \right) = \frac{\beta }{k}{F_{{n}}}{\xi _4}\left( {x - n} \right){\text{ }} \\ {\theta _4}\left( x \right) = \frac{{2{\beta ^2}}}{k}{F_{{n}}}{\xi _3}\left( {x - n} \right) \\ {M_4}\left( x \right) = - \frac{1}{{2\beta }}{F_{{n}}}{\xi _2}\left( {x - n} \right){\text{ }} \\ {\text{ }}{{\text{V}}_4}\left( x \right) = - {F_{{n}}}{\xi _1}\left( {x - n} \right) \\ \end{gathered} \right. $$ (45) 其中,双曲函数ξ1、ξ2、ξ3、ξ4均有(x−n),表示双曲函数随(x−n)变化。将式(45)与式(20)叠加可得弹性地基梁Ⅲ段在集中力Fn作用下的非齐次解为
$$ \left\{ \begin{gathered} y\left( x \right) = {y_{{n}}}{\xi _1}\left( {x - n} \right) + {\theta _{{n}}}\frac{1}{{2\beta }}{\xi _2}\left( {x - n} \right) - \\ {M_{{n}}}\frac{{2{\beta ^2}}}{k}{\xi _3}\left( {x - n} \right) - {V_{{n}}}\frac{\beta }{k}{\xi _4}\left( {x - n} \right) + {y_4}\left( x \right) \\ \theta \left( x \right) = - {y_{{n}}}\beta {\xi _4}\left( {x - n} \right) + {\theta _{{n}}}{\xi _1}\left( {x - n} \right) - \\ {M_{{n}}}\frac{{2{\beta ^3}}}{k}{\xi _2}\left( {x - n} \right) - {V_{{n}}}\frac{{2{\beta ^2}}}{k}{\xi _{\text{3}}}\left( {x - n} \right) + {\theta _4}\left( x \right) \\ M\left( x \right) = {y_{{n}}}\frac{k}{{2{\beta ^2}}}{\xi _3}\left( {x - n} \right) + {\theta _{{n}}}\frac{k}{{4{\beta ^3}}}{\xi _4}\left( {x - n} \right) + \\ {M_{{n}}}{\xi _1}\left( {x - n} \right) + {V_{{n}}}\frac{1}{{2\beta }}{\xi _2}\left( {x - n} \right) + {M_4}\left( x \right) \\ V\left( x \right) = {y_{{n}}}\frac{k}{{2{\beta ^2}}}{\xi _2}\left( {x - n} \right) + {\theta _{{n}}}\frac{k}{{4{\beta ^3}}}{\xi _3}\left( {x - n} \right) + \\ {M_{{n}}}\beta {\xi _4}\left( {x - n} \right) + {V_{{n}}}{\xi _1}\left( {x - n} \right) + {V_4}\left( x \right) \\ \end{gathered} \right. $$ (46) 弹性地基梁Ⅲ段右端嵌固在煤层中,因此其左端为自由端,右端为固定端,则其边界条件[24]为
$$ \left\{\begin{array} { l } { M _ { { n } } = 0 } \\ { V _ { { n } } = - F _ { n } } \end{array} \quad \left\{\begin{array}{l} y_{{L}}=0 \\ \theta_{{L}}=0 \end{array}\right.\right. $$ (47) 将边界条件式(47)代入式(46)可以得到弹性地基梁Ⅲ段在等效集中力作用下n点的位移、转角、弯矩、剪力方程分别为
$$ \left\{ \begin{gathered} {y_{{{{\mathrm{j}}n}}}} = \frac{{4{F_{{n}}}\beta \left[ {{\xi _2}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) - {\xi _1}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}}{{k\left[ {2\xi _{_1}^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ {\theta _{{{{\mathrm{j}}n}}}} = - \frac{{2{F_{{n}}}{\beta ^2}\left[ {2{\xi _1}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) + {\xi _4}{{\left( {{l_3}} \right)}^2}} \right]}}{{k\left[ {2{\xi _1}{{\left( {{l_3}} \right)}^2} + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ {M_{{{{\mathrm{j}}n}}}} = 0 \\ {V_{{{{\mathrm{j}}n}}}} = - {F_{{n}}} \\ \end{gathered} \right. $$ (48) 将初始边界条件式(47)代入式(48)得Winkler弹性地基梁Ⅲ段任意截面在右端集中力作用下的位移、转角、弯矩、剪力方程分别为
$$ \left\{ \begin{gathered} {y_{{\mathrm{j}}n}}\left( x \right) = \frac{{2{F_n}\beta }}{k}\left[ {{\xi _4}\left( {x - n} \right) + I\left( x \right)} \right] \\ {\theta _{{\mathrm{j}}n}}\left( x \right) = \frac{{4{F_n}{\beta ^2}}}{k}\left[ {{\xi _3}\left( {x - n} \right) + J\left( x \right)} \right] \\ {M_{{\mathrm{j}}n}}\left( x \right) = \frac{{{F_n}}}{\beta }\left[ {K\left( x \right) - {\xi _2}\left( {x - n} \right)} \right] \\ {V_{{\mathrm{j}}n}}\left( x \right) = {F_n}\left[ {L\left( x \right) - 2{\xi _1}\left( {x - n} \right)} \right] \\ \end{gathered} \right. $$ (49) 其中:
$$ \left\{ \begin{gathered} I\left( x \right) = \frac{{2{\xi _1}\left( {x - n} \right)\left[ {{\xi _2}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) - {\xi _1}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right] - {\xi _2}\left( {x - n} \right)\left[ {2{\xi _1}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) + \xi _4^2\left( {{l_3}} \right)} \right]}}{{2\xi _1^2{{\left( {{l_3}} \right)}^2} + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)}} \\ J\left( x \right) = \frac{{{\xi _4}\left( {x - n} \right)\left[ {{\xi _1}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right) - {\xi _2}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right)} \right] - {\xi _1}\left( {x - n} \right)\left[ {2{\xi _1}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) + \xi _4^2\left( {{l_3}} \right)} \right]}}{{2\xi _1^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)}} \\ K\left( x \right) = \frac{{2{\xi _3}\left( {x - n} \right)\left[ {{\xi _2}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) - {\xi _1}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right] - {\xi _4}\left( {x - n} \right)\left[ {\xi _4^2\left( {{l_3}} \right) + 2{\xi _1}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right)} \right]}}{{\left[ {2\xi _1^2{{\left( {{l_3}} \right)}^2} + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right]}} \\ L\left( x \right) = \frac{{2{\xi _2}\left( {x - n} \right)\left[ {{\xi _2}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right) - {\xi _1}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)} \right] - {\xi _3}\left( {x - n} \right)\left[ {\xi _4^2\left( {{l_3}} \right) + 2{\xi _1}\left( {{l_3}} \right){\xi _3}\left( {{l_3}} \right)} \right]}}{{2\xi _1^2\left( {{l_3}} \right) + {\xi _2}\left( {{l_3}} \right){\xi _4}\left( {{l_3}} \right)}} \\ \end{gathered} \right. $$ (50) 将式(43)与式(49)叠加得到Winkler弹性地基梁Ⅲ段在梯形荷载和等效集中力联合作用下该段梁任意截面的受力、变形方程
$$ \left\{\begin{array}{l}{y}_{\mathrm{III}}\left(x\right)={y}_{{{\mathrm{t}}n}}\left(x\right)+{y}_{{{\mathrm{j}}n}}\left(x\right)\\ {\theta }_{\mathrm{III}}\left(x\right)={\theta }_{{{\mathrm{t}}n}}\left(x\right)+{\theta }_{{{\mathrm{j}}n}}\left(x\right)\\ {M}_{\mathrm{III}}\left(x\right)={M}_{{{\mathrm{t}}n}}\left(x\right)+{M}_{{{\mathrm{j}}n}}\left(x\right)\\ {V}_{\mathrm{III}}\left(x\right)={V}_{{{\mathrm{t}}n}}\left(x\right)+{V}_{{{\mathrm{j}}n}}\left(x\right)\end{array} \right.$$ (51) 2.2 支撑煤柱失效判据
单跨简支梁Ⅱ段下方支撑煤柱为失稳段,在保证单跨简支梁稳定的前提下,单跨简支梁的最大跨度即为支撑煤柱失稳段的极限垮落距。单跨简支梁受压弯曲后,中性轴上部为受压区下部为受拉区,如图9所示。煤柱顶板的抗压强度远大于其抗拉强度[30],因此中性轴下方的受拉区为薄弱区域,两侧拉应力分布分别为σl1、σl1。
单跨简支梁Ⅱ段受到的最大拉应力[25]为
$$ {\sigma _{{\text{t,max}}}} = \frac{{{M_{\max }}{y_{\max }}}}{I} $$ (52) 式中:Mmax为失稳区段顶板承受的最大弯矩;ymax为截面距中性轴的最远距离,对于矩形截面${y_{\max }} = \dfrac{{{h_1}}}{2}$。
为求最大弯矩,将单跨简支梁Ⅱ段任意截面左段等效集中力式(35),等效集中力距该截面距离式(36)代入该简支梁任意截面弯矩式(37)并求其一阶导:
$$ {M'}\left( x \right) = \frac{{\left[ {2{m^2} - mn - {n^2} + 3{W_{{{\mathrm{n}}}}}\left( {{x^2} - {m^2}} \right)} \right]{\gamma _1}\tan \;\alpha }}{{6{W_{{{\mathrm{n}}}}}^2}} $$ (53) 当M'=0时,可以求得弯矩最大的位置:
$$ \left\{ \begin{gathered} {x_1} = - \sqrt {\frac{{mn + {n^2} + {m^2}\left( {3{W_{{{\mathrm{n}}}}} - 2} \right)}}{{3{W_{\mathrm{n}}}}}} \\ {x_2} = \sqrt {\frac{{mn + {n^2} + {m^2}\left( {3{W_{{{\mathrm{n}}}}} - 2} \right)}}{{3{W_{{{\mathrm{n}}{\mathrm{}}}}}}}} \\ \end{gathered} \right. $$ (54) 显然x2为弯矩最大位置,将x2代入式(37)可以求得弹性简支梁Ⅱ段承受的最大弯矩为
$$ {M_{\max }} = \frac{{\left( {3m\sqrt {{W_{{{\mathrm{n}}}}}} - A} \right)\left[ {{m^2}\left( {4 - 3{W_{{n}}}} \right) + m\left( {A\sqrt {{W_{{{\mathrm{n}}}}}} - 2n} \right) - 2n\left( {m + n} \right)} \right]{\gamma _1}\tan \;\alpha }}{{54{W_{{{\mathrm{n}}}}^{\tfrac{5}{2}}}}} $$ (55) 其中:
$$ A = \sqrt {3\left[ {mn + {n^2} + {m^2}\left( {3{W_{{{\mathrm{n}}}}} - 2} \right)} \right]} $$ (56) 将式(55)代入式(52)可以求得弹性简支梁Ⅱ段承受的最大抗拉强度为
$$ {\sigma _{{\text{tmax}}}} = \frac{{6{M_{\max }}}}{{\left( {{W_{\text{m}}} + {W_{{{\mathrm{n}}}}}} \right){h_1}^2}} $$ (57) 综上所述,当支撑煤柱失稳后煤柱顶板要保持有效支撑作用必须的满足条件为
$$ \delta = {\sigma _{{\text{tl}}}} - {\sigma _{{\text{tmax}}}} > 0 $$ (58) 式中:σtl为煤柱的抗拉强度,kPa。
3. 工程实例分析
山西某露天煤矿南帮岩层至上而下为黄土、泥砂岩互层组、4号煤层、砂岩,如图10所示,4号煤层厚度为7.96 m,边坡角为32°。
应用EML340型端帮采煤机回山西某露天煤矿南端帮4号煤层滞留煤,端帮采煤机开采高度为5 m,煤柱顶板厚度为3 m,采硐宽度为3.3 m,采深为150 m,实验室测得煤柱尺寸25 mm×25 mm×25 mm条件下的抗压强度为72 MPa,各岩土层物理力学参数见表1。
表 1 煤岩层物理力学参数Table 1. Physical and mechanical parameters of coal strata岩体 容重/(kN·m−3) 弹性模量/MPa 泊松比 抗压强度/MPa 抗拉强度/MPa 黏聚力/kPa 内摩擦角/(°) 黄土 19.5 267 0.31 1.8 0.012 5 28 22.0 泥砂岩互层 24.6 657 0.28 65.0 3.200 0 870 33.0 4号煤 15.1 649 0.31 72.0 1.320 0 360 36.8 基底砂岩 25.2 759 0.20 80.0 4.620 0 1 100 35.0 图10中上覆岩层分布相对简单,且无明显起伏,因此可以根据岩层各层厚度进行加权平均计算,结算结果为γ1=24.1 kN/m3,则支撑煤柱承受上覆岩层荷载为
$$ q\left( x \right) = \frac{{\left( {{W_{{n}}} + 3.3} \right)\left( {15.{\text{06}}x + 45.3} \right)}}{{{W_{{{\mathrm{n}}}}}}} $$ (59) 由于支撑煤柱承受的上覆岩层载荷随采深增加,因此其最大垂直应力位于最大采深处。当支撑煤柱处于临界失稳状态时,其最大垂直应力与极限抗压强度相等。利用煤柱失稳判据式(9)计算不同煤柱宽度下的Δ,Δ=0对应的煤柱宽度即支撑煤柱的临界失稳宽度,计算结果图11所示。
分析图11可以得到,当支撑煤柱宽度为3.6 m时,处于临界失稳状态。将煤柱初始宽度设为3.6 m逐渐缩小其宽度,并代入支撑煤柱失稳判据式(9)计算不同煤柱宽度下的失稳区段长度lmax,随着采硐深度的增加,支撑煤柱的支承能力会逐渐减弱。当失稳判据Δ=0时,支撑煤柱处于临界失稳状态,此时对应的位置即为支撑煤柱失稳起点,如果继续进行开采,将会出现局部失稳区段,则失稳判据Δ=0对应深度至采硐最深处之间的距离,即为失稳区段长度lmax。再利用支撑煤柱失效判据式(58)计算出不同煤柱宽度对应采硐顶板的极限垮落距l2max,仅考虑顶板的支承作用,顶板可视为悬臂梁结构,越靠近右侧嵌入煤柱端,顶板越稳定;越远离右侧嵌入煤柱端,顶板支承能力越弱。则失效判据δ=0对应深度至采硐最深处之间的距离,即为采硐顶板的极限垮落距l2max。若lmax<l2max,则支撑煤柱整体保持稳定,分析结果如图12所示,将计算结果汇总至表2。
表 2 计算结果汇总Table 2. Summary of calculation results煤柱宽度Wn/m 煤柱失稳区段长度lmax/m 采硐顶板极限垮落距l2,max/m 煤柱状态 3.6 0 — 临界失稳 3.4 5 44 失稳,有效 3.2 25 40 失稳,有效 3.0 31 35 失稳,有效 2.8 50 31 失效 根据表2结果汇总分析可得,当支撑煤柱宽度缩小至3 m时,煤柱存在局部失稳区段,长度为31 m,此时采硐顶板极限垮落距为35 m,煤柱失稳区段长度小于采硐顶板极限垮落距,煤柱处于有效状态,采硐顶板稳定,开采空间安全。
4. 结 论
1) 根据端帮开采过程中支撑煤柱受上覆岩层荷载发生失稳破坏演化特点,基于尖点型突变模型,确立了端帮开采支撑煤柱失稳充要条件,当分叉集方程Δ<0时,煤柱发生失稳破坏。
2) 分析采硐顶板和支撑煤柱的受力特征,基于Winkler弹性地基梁理论,建立了非均布载荷条件下的采硐顶板−煤柱力学分析模型,并基于模型研究了煤柱发生局部失稳后采硐顶板的应力、变形空间演化规律。根据采硐顶板受力特征建立单跨简支梁结构,当顶板所受的最大拉应力σt,max小于其抗拉强度σtl时,顶板处于稳定状态,煤柱有效,开采空间安全。
3) 结合煤柱失稳判据和采硐顶板失稳判据,确立了非均布载荷条件下的支撑煤柱失效判据为煤柱失稳区段长度lmax大于采硐顶板极限垮落距l2,max。提出了支撑煤柱参数设计方法为l2,max>lmax>0对应的煤柱宽度。据此设计了山西某露天煤矿南帮支撑煤柱宽度为3.0 m,对端帮开采工艺的回收应用具有重要意义。
-
表 1 煤岩层物理力学参数
Table 1 Physical and mechanical parameters of coal strata
岩体 容重/(kN·m−3) 弹性模量/MPa 泊松比 抗压强度/MPa 抗拉强度/MPa 黏聚力/kPa 内摩擦角/(°) 黄土 19.5 267 0.31 1.8 0.012 5 28 22.0 泥砂岩互层 24.6 657 0.28 65.0 3.200 0 870 33.0 4号煤 15.1 649 0.31 72.0 1.320 0 360 36.8 基底砂岩 25.2 759 0.20 80.0 4.620 0 1 100 35.0 表 2 计算结果汇总
Table 2 Summary of calculation results
煤柱宽度Wn/m 煤柱失稳区段长度lmax/m 采硐顶板极限垮落距l2,max/m 煤柱状态 3.6 0 — 临界失稳 3.4 5 44 失稳,有效 3.2 25 40 失稳,有效 3.0 31 35 失稳,有效 2.8 50 31 失效 -
[1] HARTCHER P,CASE G. The experience of Addcar in highwall mining operations[C]//University of Wollongong:Naj A,Bob K,2019:103-116.
[2] VERMA C P,PORATHUR J L,THOTE N R,et al. Empirical approaches for design of web pillars in highwall mining:review and analysis[J]. Geotechnical and Geological Engineering,2014,32(2):587−599. doi: 10.1007/s10706-013-9713-8
[3] 郝玉成,胡存虎,罗怀廷. 露天煤矿端帮开采技术的研究与探讨[J]. 露天采矿技术,2012,27(S2):27−30,32. HAO Yucheng,HU Cunhu,LUO Huaiting. Research and Discussion on End Slope Mining Technology in Open-pit Coal Mine[J]. Opencast Mining Technology,2012,27(S2):27−30,32.
[4] 孙进步. SHM端帮采煤机在我国露天煤矿的应用前景[J]. 神华科技,2011,9(4):44−46. doi: 10.3969/j.issn.1674-8492.2011.04.016 SUN Jinbu. The prospect of the application of SHM end-slope mining machine in open-pit coal mine in China[J]. Shenhua Science and Technology,2011,9(4):44−46. doi: 10.3969/j.issn.1674-8492.2011.04.016
[5] 周宇. 端帮开采技术在露天煤矿的应用[J]. 矿业装备,2022(4):60−61. doi: 10.3969/j.issn.2095-1418.2022.04.023 ZHOU Yu. Application of end slope mining technology in open-pit coal mine[J]. Mining Equipment,2022(4):60−61. doi: 10.3969/j.issn.2095-1418.2022.04.023
[6] MATSUI K,SHIMADA H,SASAOKA T,et al. Highwall mining system with backfilling[M]//Mine planning and equipment selection 2000. London:Routledge,2018:333−338.
[7] WANG F T,ZHANG C. Reasonable coal pillar design and remote control mining technology for highwall residual coal resources[J]. Royal Society Open Science,2019,6(4):181817. doi: 10.1098/rsos.181817
[8] 王瑞,闫帅,柏建彪,等. 端帮开采下煤柱破坏宽度计算及失稳机制研究[J]. 岩土力学,2019,40(8):3167−3180. WANG Rui,YAN Shuai,BAI Jianbiao,et al. Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining[J]. Rock and Soil Mechanics,2019,40(8):3167−3180.
[9] 陈彦龙,吴豪帅. 露天矿端帮开采下的支撑煤柱突变失稳机理研究[J]. 中国矿业大学学报,2016,45(5):859−865. CHEN Yanlong,WU Haoshuai. Catastrophe instability mechanism of rib pillar in open-pit highwall mining[J]. Journal of China University of Mining & Technology,2016,45(5):859−865.
[10] 刘文岗,王雷石,富强. SHM端帮开采技术及其应用的关键问题[J]. 煤炭工程,2012,44(6):1−4. doi: 10.3969/j.issn.1671-0959.2012.06.002 LIU Wengang,WANG Leishi,FU Qiang. SHM highwall mining technology and key issues of application[J]. Coal Engineering,2012,44(6):1−4. doi: 10.3969/j.issn.1671-0959.2012.06.002
[11] 谭毅,郭文兵,赵雁海. 条带式Wongawilli开采煤柱系统突变失稳机理及工程稳定性研究[J]. 煤炭学报,2016,41(7):1667−1674. TAN Yi,GUO Wenbing,ZHAO Yanhai. Engineering stability and instability mechanism of strip Wongawilli coal pillar system based on catastrophic theory[J]. Journal of China Coal Society,2016,41(7):1667−1674.
[12] 郭文兵,邓喀中,邹友峰. 条带开采的非线性理论研究及应用[M]. 徐州:中国矿业大学出版社,2005. [13] 王旭春,黄福昌,张怀新,等. AH威尔逊煤柱设计公式探讨及改进[J]. 煤炭学报,2002,27(6):604−608. doi: 10.3321/j.issn:0253-9993.2002.06.010 WANG Xuchun,HUANG Fuchang,ZHANG Huaixin,et al. Discussion and improvement for A. H. Wilsons coal pillar design[J]. Journal of China Coal Society,2002,27(6):604−608. doi: 10.3321/j.issn:0253-9993.2002.06.010
[14] 郭仓,谭志祥,李培现,等. 基于FLAC3D的条带开采煤柱稳定性分析[J]. 现代矿业,2012,28(2):5−9. doi: 10.3969/j.issn.1674-6082.2012.02.002 GUO Cang,TAN Zhixiang,LI Peixian,et al. Stability analysis of strip mining coal pillar based on FLAC3D[J]. Modern Mining,2012,28(2):5−9. doi: 10.3969/j.issn.1674-6082.2012.02.002
[15] JIANG J,ZHANG Z,WANG D,et al. Study on Web Pillar Stability in Open-Pit Highwall Mining[J]. International Journal of Coal Science & Technology,1−18[2024−12−20]. https://doi.org/10.21203/rs.3.rs-847254/v1.
[16] 张国军,张勇. 基于摩尔-库伦准则的岩石材料加(卸)载分区破坏特征[J]. 煤炭学报,2019,44(4):1049−1058. ZHANG Guojun,ZHANG Yong. Partition failure characteristics of rock material loading and unloading based on Mohr-Coulomb criterion[J]. Journal of China Coal Society,2019,44(4):1049−1058.
[17] 何卫刚,连小勇,王小坡. 巷道围岩侧压力系数位移反演及应用[J]. 陕西煤炭,2023,42(3):64−69. doi: 10.3969/j.issn.1671-749X.2023.03.013 HE Weigang,LIAN Xiaoyong,WANG Xiaopo. Displacement inversion of lateral pressure coefficient of roadway surrounding rock and its application[J]. Shaanxi Coal,2023,42(3):64−69. doi: 10.3969/j.issn.1671-749X.2023.03.013
[18] 张明,付冬梅,程学群,等. 基于变量选择的尖点突变模型的两步构建方法[J]. 工程科学学报,2023,45(1):128−136. ZHANG Ming,FU Dongmei,CHENG Xuequn,et al. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering,2023,45(1):128−136.
[19] 穆成林,裴向军,路军富,等. 基于尖点突变模型巷道层状围岩失稳机制及判据研究[J]. 煤炭学报,2017,42(6):1429−1435. MU Chenglin,PEI Xiangjun,LU Junfu,et al. Study on the instability criterion of layered rock mass failure based on the cusp catastrophe theory[J]. Journal of China Coal Society,2017,42(6):1429−1435.
[20] 袁颖,李佳玉. 岩质边坡稳定性评价的尖点突变理论模型[J]. 地质与勘探,2021,57(1):183−189. YUAN Ying,LI Jiayu. A cusp catastrophe theory model for evaluation of rock slope stability[J]. Geology and Exploration,2021,57(1):183−189.
[21] 姜聚宇,路烨,曹兰柱,等. 动-静载作用下端帮开采支撑煤柱参数设计方法[J]. 煤炭科学技术,2023,51(5):53−62. JIANG Juyu,LU Ye,CAO Lanzhu,et al. Parameter design of coal pillar in highwall mining under action of dynamic-static load[J]. Coal Science and Technology,2023,51(5):53−62.
[22] 侯朝炯,马念杰. 煤层巷道两帮煤体应力和极限平衡区的探讨[J]. 煤炭学报,1989,14(4):21−29. doi: 10.3321/j.issn:0253-9993.1989.04.001 HOU Chaojiong,MA Nianjie. Stress in in-seam roadway sides and limit equilibrium zone[J]. Journl of China Coal Society,1989,14(4):21−29. doi: 10.3321/j.issn:0253-9993.1989.04.001
[23] 李利峰. 切顶成巷“短臂梁” 效应及层状顶板运动规律研究[D]. 北京:中国矿业大学(北京),2021. LI Lifeng. The effect of "short arm beam" and the movement rule of layered roof in roadway formed by cutting roof[D]. Beijing:China University of Mining & Technology-Beijing,2021.
[24] 龙驭球. 弹性地基梁的计算[M]. 北京:人民教育出版社,1981. [25] James M. Gere. Mechanics of Materials[M]. Wadsworth Publishing Co Inc,2005
[26] 刘刚. 条带开采煤柱静动态稳定性研究[D]. 西安:西安科技大学,2011. LIU Gang. Static and Dynamic Stability of Coal Pillars in Strip Mining[D]. Xi’an:Xi’an University of Science and Technology,2011.
[27] 李焘. 端帮压煤井工开采下工作面矿压规律及边坡稳定性研究[D]. 徐州:中国矿业大学,2019. LI Tao. Study on the mining pressure rule of the working face and slope stability under the side slope underground mining[D]. Xuzhou:China University of Mining and Technology,2019.
[28] 曹净,宋志刚. 地下空间结构[M]. 北京:中国水利水电出版社,2015. [29] 高岩,杨小军,焦小哲. 平板网架支座约束状态分析[J]. 煤炭工程,2022,54(5):26−31. GAO Yan,YANG Xiaojun,JIAO Xiaozhe. Restraint state analysis of the support of flat space truss[J]. Coal Engineering,2022,54(5):26−31.
[30] 苏承东,唐旭,倪小明. 煤样抗压、拉强度与点荷载指标关系的试验研究[J]. 采矿与安全工程学报,2012,29(4):511−515. SU Chengdong,TANG Xu,NI Xiaoming. Study on correlation among point load strength,compression and tensile strength of coal samples[J]. Journal of Mining & Safety Engineering,2012,29(4):511−515.