Research progress on degradative solvent extraction of low-rank coals
-
摘要:
低阶煤的热溶萃取提质是利用溶剂在温和条件下对低阶煤进行热萃取,通过对原煤的脱水与多级分离,可得到无水、无灰、高热值与良好热塑性的萃取产物与低水分的萃余煤。同时萃取产物在配煤炼焦、高级燃料及炭材料制备等多个领域均具有实际应用优势,拥有较高的附加值,并且该技术中溶剂具备可循环利用的优势。因此,热萃取提质是实现低阶煤分级分质转化利用的有效途径之一。本综述首先介绍了现有各类低阶煤提质处理方式;然后梳理了热溶萃取提质发展脉络,重点综述了低阶煤热溶萃取提质的各类影响因素、反应机理、现有工艺以及产物的利用途径;最后利用“Web of Science核心合集”作为数据源,使用CiteSpace科学计量软件刻画了煤溶剂萃取的知识图谱,通过对研究主题进行分析,总结研究方向并预测研究热点,为低阶煤热溶萃取提质研究提供一定的参考价值。综合分析表明:新型低成本绿色溶剂的选取、萃取产物结构表征及高值利用等领域具有较高的研究趋势,同时需要对萃取机理及萃取物特性定向调控开展深入研究,进一步推动工艺规模化生产进程。
Abstract:The degradative solvent extraction of low rank coal is the use of solvents to extract low rank coal under mild conditions, through the dehydration and multi-stage separation of the raw coal: the extraction products with no water content, no ash content, high calorific value properties and excellent thermoplastic properties, and low moisture of the extractive residual coal can be obtained. At the same time, the products have practical application advantages in many fields such as coal coking, advanced fuel and carbon material preparation, which have high added value, and the solvent in this technology has the advantage of being recyclable. Therefore, degradative solvent extraction is one of the effective ways to realize the graded fractionated conversion and utilization of low-rank coal. This review firstly introduces the existing low rank coal upgrading methods, and then reviews the development of degradative solvent extraction, focusing on the various influencing factors, reaction mechanisms, existing processes and product utilization of low rank coal upgrading by degradative solvent extraction. Finally, using the "Web of Science core collection" as the data source, the knowledge graph of coal solvent extraction was carved using CiteSpace scientometric software, and the research themes were analyzed to summarize the research directions and predict the research hotspots, providing some reference value for the research of degradative solution extraction of low-rank coal. The comprehensive analysis shows that: the selection of new low-cost green solvents, structural characterization and high-value utilization of extraction products have high research trends, while in-depth research on extraction mechanism and targeted regulation of extractant properties is needed to further promote the process of large-scale production.
-
Keywords:
- low-rank coal /
- degradative solvent extraction /
- extracts application /
- CiteSpace /
- knowledge graph
-
0. 引 言
露天煤矿适用于开采范围广、煤层厚度大的煤田。为了提高煤炭资源开发效率,通常把煤田分成若干独立的露天煤矿[1-2]。然而受开采技术、设备规格、产量规模、煤层赋存条件以及经济效益等各种因素影响,且为避免大型露天煤矿整体开采时运输距离大、运费高、工作线长度大、开采成本高、初期投资时间长、投资费用大等缺点,在满足技术经济条件下,对露天煤矿进行合理的采区划分[3-5]。采区过大,则过长的工作线和过大的运距导致露天煤矿开采过程中经济效益降低;而采区过小,频繁的采区接续增大生产管理难度影响生产效率。因此,划分合理的采区关系是提高露天煤矿生产效率和经济效益的基础。刘宪权等[6]基于近水平露天煤矿采区划分提出了坑底纵向搭桥及转向期反向内排开采程序;白润才等[7-8]基于熵值法与Topsis法构建了采区划分方案评价模型;张瑞新[9-10]等优化了露天煤矿开采程序设计相关计算机模型,对哈尔乌素露天煤矿的开采程序提出了多方案动态综合优化方法,并对安太堡和安家岭的开采程序提出了递阶优化方法;叶义成[11]采用双基点法对开采程序进行多目标综合排序,并确定了敏感指标;刘桐等[12]采用Delphi-Topsis法构建了霍林河露天煤矿采区划分方案优选模型。以新疆准东某露天煤矿扩能目标为研究背景,提出多种采区划分方案,结合该露天煤矿具体开采条件确定采区划分方案评价指标,并构建综合评价模型,确定最佳的采区划分方案,以满足扩能至50 Mt/a的生产能力要求。
1. 研究区概况
以新疆准东某露天煤矿为研究对象,矿区南北最大长达40.78 km,东西最大宽达37.69 km,面积1 127.32 km2。矿田主要可采煤层为B5、B3、B2三层煤层,且均为巨厚煤层,可采煤层平均厚度为44.2 m。其中剥离工艺采用单斗−卡车间断工艺;采煤工艺采用单斗−卡车−半移动式破碎站−带式输送机半连续开采工艺[13-15]。该露天煤矿年产原煤量19.85 Mt,为进一步做好露天煤矿生产经营长远规划,该生产能力拟核增至50 Mt/a。
如以当前工作线长度1 500 m继续向前推进,每年的推进度将达到600 m/a左右,超出《煤炭工业露天矿设计规范》规定的小于400 m/a要求。将造成外排运距过大且破碎站的移设频繁。因此,应以适应产能需求的工作线长度对采区进行优化,提高生产效率及经济效益。
2. 工作线长度优化
2.1 技术可行的工作线长度
由年产量、容重、含煤率、采出率、煤厚及推进度,确定技术可行工作线长度,应满足[16]:
$$ {L_{\text{k}}} = \frac{Q}{{{v_{\text{t}}}{h_{\text{m}}}\gamma \eta }} $$ (1) 式中:Q为年产量,t/a;$ L_{{\rm{k}}} $为技术可行原煤工作线长度,m;vt为推进度,m/a;$ h_{\mathrm{m}} $为煤层平均厚度,m;γ为原煤容重,t/m3;η为煤层采出率。
根据该矿产能核增要求,以目前1500 m工作线长度,分别计算露天矿产能20 Mt/a与计划产量增至为50 Mt/a时推进度为
$$ {v_{{\rm{t1}}}}{\text{ = }}\frac{{2 \times {{10}^7}}}{{44.2 \times 1\;500 \times 1.32 \times 0.98 \times 0.966\;6}} = 241\;{{\text{m}} / {\text{a}}} $$ (2) $$ {v_{{\rm{t2}}}}{\text{ = }}\frac{{5 \times {{10}^7}}}{{44.2 \times 1\;500 \times 1.32 \times 0.98 \times 0.966\;6}} = 603\;{{\text{m}} / {\text{a}}} $$ (3) 由此可见,产能核增后,以当前工作线长度生产将导致推进度过大,应合理增大工作线长度以降低高产能条件下的推进度。结合《煤炭工业露天矿设计规范》要求,设计生产能力为50 Mt/a时的推进度宜控制在241~400 m/a,进而确定产能核增后技术可行工作线长度为2261.7~3 753.9 m,如图1所示。
2.2 经济合理的工作线长度
通过该露天煤矿的端帮边坡角、上覆岩层剥离物与煤层厚度、爆破、采装及运输费用、排弃路线系数以及排弃的影响距离,确定经济合理工作线长度[17-18]:
$$ {L_{\text{h}}} = \sqrt {\frac{{(H + {h_{\text{m}}})\cot \;\beta ({c_1} + {c_2}b)}}{{1\;000{c_2}a}}} $$ (4) 式中:Lh为经济合理采煤工作线长度,km;H为剥离层平均厚度,m;β为端帮边坡角,(°);c1为穿孔爆破、采装、排土费,元/m3;c2为运输费,元/(m3·km);a为排弃路线系数,双环内排时取0.5,单环内排时取1;b为排弃影响距离,km。
排弃影响距离可按式计算:
$$ b = \frac{{H + {h_{\text{m}}}}}{{2\;000}}\left( {\cot \;\varphi + \cot \;\theta + \cot \;\beta } \right) + m $$ (5) 式中:θ为内排土场帮坡角,(°);φ为工作帮坡角,(°);m为坑底安全距离,km。
结合煤厚与上覆岩层厚度,确定经济合理工作线长度为2 286.3~2 496.5 m。
2.3 最佳工作线长度
确定产能核增50 Mt/a时,技术可行工作线长度为2 261.7~3 753.9 m,经济合理工作线长度为2 286.3~2 496.5 m。两者取交集为2 286.3~2 496.5取整后确定核增后最佳工作线长度在2 300~2 500 m内取值。
3. 采区划分方案及分析评价
3.1 采区划分方案
3.1.1 采区划分原则
采区划分应满足开采工艺系统及生产能力的需要,结合矿田的几何形状、地质条件、开采工艺和采区接续等因素,以最佳工作线长度为采区宽度划分依据,同时要综合考虑采区长度及服务时间、采区过渡方式及影响,各采区剥采比变化关系等。
3.1.2 采区划分方案的提出
1)方案一:先以矿区南边界往北划分为四采区,再对剩余未开采矿区从东往西以最佳工作线长度划分成3个采区,各采区工作线长度皆基本满足合理工作线长度,如图2所示。
2)方案二:从开采现状逐渐往西南方向推进,西南方向4 000 m左右为首采区;再由此往东至东部边界为二采区;然后剩余未开采矿区东部的南北方向长度均分划分成上下三采区和五采区,最后西部合理工作线长度按开采顺序划分为四采区,如图3所示。
3)方案三:首采区、二采区与方案二首采区、二采区采区划分方案相同;然后剩余未开采矿区划分成3个采区。保证三采区、四采区从东往西划分在最佳的工作线长度范围内,最后剩余未开采部分为五采区,如图4所示。
4)方案四:首采区、二采区与方案二首采区、二采区的采区划分方案相同;然后直接在剩余未开采矿区南北方向上划分成三采区及四采区,如图5所示。
3.2 采区划分方案对比
3.2.1 采区平均工作线长度及剥采比
通过采区划分及剥采比等值线图确定4种方案中各采区的平均工作线长度和剥采比大小见表1。
表 1 各采区平均工作线长度及剥采比Table 1. Average working face length and stripping ratio of each mining area采区 工作线长度/m 剥采比/(m3·t−1) 方案一 方案二 方案三 方案四 方案一 方案二 方案三 方案四 首采区 2099 2147 2147 2147 2.18 1.85 1.85 1.85 二采区 2223 2335 2335 2335 3.28 3.04 3.04 3.04 三采区 2157 2436 2266 2360 3.54 4.02 4.93 3.68 四采区 2226 2193 2142 2226 5.06 4.20 3.97 5.06 五采区 — 2480 1896 — — 5.17 4.38 — 3.2.2 方案对比
结合该矿端帮边坡角34°、内排土场边坡角23°,考虑各采区平均埋深、相邻采区二次剥离长度,基于全压帮内排方式,分析4种采区划分方案的优缺点。
1)方案一:优点:①工作线长度分布较均匀;②各采区形状较规则,便于生产;③采区数量少、过渡次数较少;④容易实现内排;⑤剥采比变化趋势随着采区发展逐渐增大。缺点:①由剥采比等值线图可知各采区剥采比分布不均匀;②采区间接续均需重新拉沟,工程量大耽误组织生产;③外排运距3.1 km,长度过大,降低外排效率。
2)方案二:优点:①首采区剥采比1.8 m3/t,前期剥采比较小减小前期投资,投产快;②较容易实现内排;③外排运距为2.2 km,相对较小;④剥采比变化趋势随着采区往后逐渐增大,趋势较好。缺点:①各采区工作线长度变化较大;②二次剥离量950.7 Mm3,相对较大;③采区数量相对较多继而接续次数多,影响生产。
3)方案三:优点:①首采区剥采比1.85 m3/t,前期剥采比较小减小前期投资,投产快;②较容易实现内排;③外排运距2.2 km,相对较小。缺点:①二次剥离量为1 166.5 Mm3,重复剥离大;②采区数量多,接续复杂,工程量大;③五采区内工作线长度分布不均匀;④各采区工作线长度变化较大;⑤剥采比变化趋势先增后减,趋势较差。
4)方案四:优点:①各采区工作线长度分别分布较均匀;②首采区剥采比1.85 m3/t,前期剥采比较小减小前期投资,投产快;③剥采比变化趋势随着采区往后逐渐增大,趋势较好;④采区数量相对较少,接续简单;⑤外排运距2.2 km,相对较小。缺点:后期采区内剥采比较大。
4. 采区划分方案优选
4.1 采区划分评价指标
通过分析总结多个周边相似露天煤矿采区划分经验,且进一步结合专家评价分析确定下列9个指标作为采区划分影响指标。
1)平均工作线长度。平均工作线长度应结合扩增为50 Mt/a的生产能力确定,工作线长度过长或过短对采运排主要生产环节均有一定影响。
2)二次剥离量。采区边界造成开采过程中上覆岩石的重复剥离,大幅度增加生产成本。
3)前期外排运距。前期外排运距的大小直接影响排弃费用以及外排效率。外排运距过大,则会增加采排费用,降低排卸效率及经济效益。
4)内排难易程度。内排难易程度严重影响对排卸物进行排卸时的效率及经济效益。内排越难,造成的排卸费用就越大。
5)采区接续次数。在露天煤矿生产过程中,频繁的采区接续会浪费大量生产时间及造成复杂的生产管理,严重影响原煤的生产效率。
6)首采区勘探程度。首采区勘探程度不明,在生产推进的过程中,因煤层厚度的骤变或者部分自燃导致生产能力受严重影响。
7)采区接续难易。在采区的过渡接续中,采区接续越难,则对采、运、排等主要生产环节的影响越大,影响生产效率。
8)首采区剥采比。首采区的剥采比大小严重影响露天煤矿开采的前期经济效益。首采区剥采比越小,前期经济效果越好。
9)各采区剥采比变化趋势。随着开采的工作面向前推进,剥采比也应保证随着采区不断过渡接续,不呈大幅度波动变化。
其中,各指标数据见表2。
表 2 采区划分评价指标数据Table 2. Data of division of mining area index方案 平均工作线
长度/m二次剥离
量/Mm3前期外排
运距/km内排难易
程度采区接续
次数首采区勘
探程度采区接续
难易首采区剥采比/
(m3·t−1)各采区剥采比
变化趋势方案一 2176 865.9 3.1 较易 3 一般 较易 2.18 较好 方案二 2318 950.7 2.2 一般 4 较好 一般 1.85 一般 方案三 2157 1166.5 2.2 一般 4 较好 一般 1.85 较差 方案四 2267 878.3 2.2 一般 3 较好 较易 1.85 很好 4.2 指标权重确定
各评价指标对采区划分的影响程度取决于各指标权重,且权重是方案优选的关键性指标。选取集值迭代法确定指标权重,其原理如下[19-20]。
设$ Y = \left\{ {{y_1}} \right.,{y_2}, \cdots ,\left. {{y_q}} \right\} $为有限论域,$ P = \{ {{p_1}},{p_2}, \cdots , {{p_q}}\} $,选初始值$ k\left( {1 \leqslant k \leqslant q} \right) $,然后$ {p_j}\left( {j = 1,2,3, \cdots ,n} \right) $按下完成计算:
①在Y中选pj优选属于A的R1=k个元素,得Y的子集:
$$ Y_1^{\left( j \right)} = \left\{ {y_{{i_1}}^{\left( j \right)}} \right.,y_{{i_2}}^{\left( j \right)}, \cdots ,\left. {y_{{i_k}}^{\left( j \right)}} \right\} \subseteq Y $$ (6) ②在Y中选pj优选属于A的R2=2k个元素,得Y的子集:
$$ Y_2^{\left( j \right)} = \left\{ {y_{{i_1}}^{\left( j \right)}} \right.,y_{{i_2}}^{\left( j \right)}, \cdots ,\left. {y_{{i_2}_k}^{\left( j \right)}} \right\} \supseteq Y_1^{\left( j \right)} $$ (7) ③在Y中选pj优选属于A的Rt=tk个元素,得Y的子集:
$$ Y_t^{\left( j \right)} = \left\{ {y_{{i_1}}^{\left( j \right)}} \right.,y_{{i_2}}^{\left( j \right)}, \cdots ,\left. {y_{{i_t}_k}^{\left( j \right)}} \right\} \supseteq Y_{t - 1}^{\left( j \right)} $$ (8) 假设自然数t满足$ q = tk + c,1 \leqslant c \leqslant k $,则在第t+1步迭代终止。
yj的覆盖频率:
$$ m\left( {{y_i}} \right) = \frac{1}{{n\left( {t + 1} \right)}}\sum\limits_{s = 1}^{t + 1} {\sum\limits_{j = 1}^n {{\chi ^{y_s^{\left( j \right)}\left( {{y_i}} \right)}}} } \left( {i = 1,2, \cdots ,q} \right) $$ (9) 式中:$ {\chi ^{y_s^{\left( j \right)}}} $是集合$ Y_s^{\left( j \right)} $的特征函数,将$ m\left( {{y_i}} \right) $归一化即可得各指标权重。
由5位专家$ P = \left\{ {{p_1}} \right.,{p_2},{p_3},{p_4},\left. {{p_5}} \right\} $对采区划分各项指标进行优先排序,最终得到权重集:W=(w1,w2,w3,w4,w5,w6,w7,w8,w9)=(0.058,0.164,0.076,0.133,0.08,0.04,0.084,0.187,0.178)。
4.3 TOPSIS评价法
TOPSIS原理是在比选方案中选出最优指标和最劣指标,并分别组成理想方案和最劣方案,然后计算出理想方案和各比选方案贴近度,由此给各比选方案进行排序,选出最佳方案[21-25]。
1)评价指标同趋势化。通常把低优指标转化为高优指标,即$ {X'_{ij}} = {1 \mathord{\left/ {\vphantom {1 {{X_{ij}}}}} \right. } {{X_{ij}}}} $。且所有指标按对采区划分的影响程度按小、一般、中等、强烈、极端分别进行1、3、5、7、9定量分析评价。
2)矩阵归一化。
$$ \left\{ \begin{gathered} {a_{ij}} = {{X_{ij}}} / {\sqrt {\sum\limits_{i = 1}^n {X_{ij}^2} } } \\ {a_{ij}} = {{{X'}_{ij}}} / {\sqrt {{{\sum\limits_{i = 1}^n {\left( {{{X'}_{ij}}} \right)} }^2}} } \\ \end{gathered} \right. $$ (10) 式中:aij为评价i在第j指标值;Xij为第i评价对象在第j指标值;$ X_{3} $为经Xij倒数转化后值。
归一化矩阵:
$$ \boldsymbol{A}=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 m} \\ a_{21} & a_{22} & \cdots & a_{2 m} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{m m} \end{array}\right]$$ (11) 3)最优、最劣向量。分别取归一化矩阵每行的最大值、最小值为最优向量A+与最劣向量A−:
$$ \begin{gathered} {{\boldsymbol{A}}^ + } = \left( {a_{i1}^ + ,a_{i2}^ + , \cdots ,a_{im}^ + } \right) \\ {{\boldsymbol{A}}^ - } = \left( {a_{i1}^ - ,a_{i2}^ - , \cdots ,a_{im}^ - } \right) \\ \end{gathered} $$ (12) 4)计算出各评价所有指标与最劣方案及模型理想方案的距离$ D_i^ - $与$ D_i^ + $。
$$ \left\{ \begin{gathered} D_i^ - = \sqrt {\sum\limits_{j = 1}^m {{w_j}{{\left( {a_{ij}^ - - {a_{ij}}} \right)}^2}} } \\ D_i^ + = \sqrt {\sum\limits_{j = 1}^m {{w_j}{{\left( {a_{ij}^ + - {a_{ij}}} \right)}^2}} } \\ \end{gathered} \right. $$ (13) 式中:$ D_i^ - $、$ D_i^ + $为第i个评价对象到最劣方案和模型理想方案的距离;wj为第j指标权重。
5)计算各方案与理想方案的贴近度Ci:
$$ {C_i} = \frac{{D_i^ - }}{{D_i^ - + D_i^ + }} $$ (14) 6)贴近度Ci越大,说明越接近模型理想方案,离最劣方案越远,即所比选最佳方案。
4.4 比选方案贴近度确定
通过上述TOPSIS评价法以及各比选方案评价指标参数,计算确定出各比选方案贴近度见表3。
表 3 比选方案贴近度Table 3. Closeness of the comparison scheme方案 $ D_{i}^{-} $ $ D_{1}^{*} $ $ C_{t} $ 方案一 0.170 0.178 0.489 方案二 0.098 0.161 0.378 方案三 0.062 0.225 0.216 方案四 0.223 0.066 0.772 由表3可知,C4=0.772最大,即方案四最接近理想方案,因此方案四为最佳方案。
5. 结 论
1)依据技术可行与经济合理为原则,分别计算了产能扩增至50 Mt/a时的工作线合理范围,综合确定了工作线长度最佳范围为2300~2500 m。
2)基于确定的最佳工作线长度对采区进行划分,提出4种采区划分方案,计算了个采区平均工作线长度及剥采比,确定4种采区划分方案的二次剥离量、前期外排运距、内排难易程度以及各采区划分方案的优缺点。
3)构建了基于集值迭代法−TOPSIS法的采区划分方案评价模型,计算了各种方案的贴近度,并确定了从开采现状逐渐往西南方向推进4000 m左右为首采区,再由此往东至东部边界为二采区,然后剩余未开采矿区在南北方向长度均分划分成上下三采区和四采区的最佳采区划分方案。
-
煤样 萃取收率(daf)/% 烟煤 Oakycreek 66.7 Gregory 60.8 Illinois No.6 62.4 Upper Freeport 72.5 Enshu 69.2 Guregory 68.8 低阶煤 Warkworth 31.5 Pasir 37.8 Mullia 35.8 Nantun 39.2 Longkou 38.0 Yakut 9 30.2 表 2 酸预处理对热溶萃取率及萃取物灰分的影响[19]
Table 2 The effect of acid pretreatment on degradative solvent extraction yield and the ash content of the extract[19]
溶剂 煤种 萃取收率/% 产物灰含量/% 原煤 酸处理煤 提高量 原煤 酸处理煤 LCO WY 33.5 43.4 9.9 <0.1 <0.1 PA 42.0 43.2 1.2 <0.1 <0.1 AD 37.3 41.5 4.2 <0.1 <0.1 CMNO WY 41.3 60.5 19.2 <0.1 <0.1 PA 60.3 55.1 0.8 0.21 <0.1 AD 47.1 54.0 6.9 0.13 <0.1 注:LCO为轻循环油;CMNO为粗甲基萘油;WY为美国阿尔贡优质煤;PA为巴西煤;AD为印度尼西亚阿达罗煤。 煤样 萃取率/% 1-MN DMN LCO CMNO UF 63.6 74.0 44.0 80.7 EN 57.4 62.3 55.8 78.9 IL 53.7 69.3 55.8 74.6 供电子官能团(代表物质) 受电子官能团(代表物质) 富电性π轨道(吡咯、噻吩环) 缺电性π轨道(芳香环、吡啶环) 含氧官能团(酚、醚、羧基) 含质子官能团(酚—OH、硫醇) 含氮官能团(胺、吡啶环) 含硫官能团(噻吩、硫醇) 表 5 煤的溶剂萃取关键词突现
Table 5 Keyword emergence diagram of solvent extraction of coal
关键词 年份 强度 开始时间 结束时间 CS2-N-methyl-2-pyrrolidinone mixed solvent 1999 10.74 1999 2004 Coal liquefaction 1999 5.65 1999 2008 Supercritical fluid extraction 1999 5.55 1999 2006 Solubility 1999 7.66 2000 2002 Rank 1999 7.01 2000 2006 Room temperature 1999 6.02 2000 2004 Sample 1999 5.5 2000 2002 Conversion 1999 4.92 2005 2007 Hypercoal 1999 5.11 2006 2017 Solvent 1999 5.59 2007 2014 Trace element 1999 5.03 2008 2015 350 ℃ 1999 4.63 2008 2014 Lignite 1999 4.84 2015 2021 Stone coal 1999 7.97 2017 2021 Rare earth element 1999 4.58 2019 2021 -
[1] 谢克昌. 中国煤炭清洁高效可持续开发利用战略研究[M]. 北京: 科学出版社, 2014: 2-3. [2] 赵 鹏,李文博,梁江朋,等. 低阶煤提质技术现状及发展建议[J]. 洁净煤技术,2015,21(1):37−40. doi: 10.13226/j.issn.1006-6772.2015.01.009 ZHAO Peng,LI Wenbo,LIANG Jiangpeng,et al. Status and development suggestion of low rank coal upgrading technologies[J]. Clean Coal Technology,2015,21(1):37−40. doi: 10.13226/j.issn.1006-6772.2015.01.009
[3] POTTER O E,BEEBY C J,FERNANDO W,et al. Drying brown coal in steam-heated, steam-fluidized beds[J]. Drying Technology,2007,2(2):219−234.
[4] SUGITA S, DEGUCHI T, SHIGEHISA T.UBC (Upgraded Brown Coal) process development[J]. Research and Development Kobe Steel Engineering Reports, 2003, 53(2):41−45.
[5] KURUNOV I, BIZHANOV A. Review of alternative applications of stiff extrusion briquetting technology [M]. Stiff Extrusion Briquetting in Metallurgy. Cham; Springer International Publishing. 2018: 161−169.
[6] WHITE L C,FREDERICK J P. ENCOAL mild coal gasification project[J]. Fuel and Energy Abstracts,1997,38(3):153.
[7] 李 超,李广民,夏芝香,等. 50MW循环流化床煤炭分级转化多联产技术开发[J]. 洁净煤技术,2021,27(5):157−163. doi: 10.13226/j.issn.1006-6772.20050701 LI Chao,LI Guangmin,XIA Zhixiang,et al. Development of 50MW CFB coal pyrolysis and combustion multigeneration technology[J]. Clean Coal Technology,2021,27(5):157−163. doi: 10.13226/j.issn.1006-6772.20050701
[8] GE Lichao,ZHANG Yanwei,XU Chang,et al. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Applied Thermal Engineering,2015,90(6):147−181.
[9] DHAWAN H,KUMAR R,UPADHYAYULA S,et al. Fractionation of coal through organo-separative refining for enhancing its potential for the CO2-gasification[J]. International Journal of Coal Science & Technology,2020,3(7):504−515.
[10] 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报,2017,46(5):939−958. doi: 10.13247/j.cnki.jcumt.000730 QIN Zhihong. Theory of coal embedded structure model[J]. Journal of China University of Mining & Technology,2017,46(5):939−958. doi: 10.13247/j.cnki.jcumt.000730
[11] 鲁 浩,杜姣姣,肖 剑,等. 霍州和兴和褐煤的热溶解聚及其有机氧的赋存形态[J]. 燃料化学学报,2018,46(8):897−904. LU Hao,DU Jiaojiao,XIAO Jian,et al. Thermal dissolution of Huozhou and Xinghe lignites and the occurrence forms of organic oxygen in them[J]. Journal of Fuel Chemistry and Technology,2018,46(8):897−904.
[12] 殷甲楠, 张凤桐, 樊丽华, 等. 低阶煤有机溶剂萃取的研究进展[J]. 洁净煤技术, 2014, 20(6): 100−103. YIN Jia'nan, ZHANG Fengtong, FAN Lihua, et al. Research progress of organic solvent extraction of low rank coal[J]. Clean Coal Technology, 2014, 20(6): 100−103.
[13] YIN J,LIN X,WANG C,et al. Identification of the transformation features of heteroatomic compounds in a low rank coal by combining thermal extraction and various analytical approaches[J]. Fuel,2020,270(11):117480.
[14] HAMAGUCHI M,OKUYAMA N. Manufacturing process and applications of the hypercoal[J]. Carbon,2013,60:568.
[15] XING B,HUANG G,CHEN L,et al. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors[J]. Journal of Porous Materials,2016,23(1):67−73. doi: 10.1007/s10934-015-0056-0
[16] PULLEN J R,COAL L I. Solvent extraction of coal[J]. Coal Science,1983,2(17):173−288.
[17] RENGANATHAN K,ZONDLO J W,MINTZ E A,et al. Preparation of an ultra-low ash coal extract under mild conditions[J]. Fuel Processing Technology,1988,18(3):273−278. doi: 10.1016/0378-3820(88)90051-3
[18] KASHIMURA N,TAKANOHASHI T,SAITO I. Upgrading the solvent used for the thermal extraction of sub-bituminous coal[J]. Energy & Fuels,2006,20(5):2063−2066.
[19] MASAKI K,YOSHIDA T,LI C,et al. The effects of pretreatment and the addition of polar compounds on the production of "hypercoal" from subbituminous coals[J]. Energy & Fuels,2004,18(4):995−1000.
[20] MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology,2000,62(2-3):119−35. doi: 10.1016/S0378-3820(99)00123-X
[21] 谢翠平,杨建国,王羽玲. 超纯煤制备意义及制备方法简介[J]. 洁净煤技术,2004,3(3):45−47. doi: 10.3969/j.issn.1006-6772.2004.03.013 XIE Cuiping,YANG Jianguo,WANG Yuling. Significance of ultra-pue coal preparation and brief introduction of preparation method[J]. Clean Coal Technology,2004,3(3):45−47. doi: 10.3969/j.issn.1006-6772.2004.03.013
[22] LI X,ZHU X Q,KENSHIRO O,et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction[J]. Carbon,2017,32(1):41−47.
[23] SHUI H,LEI Y,TAO S,et al. Hydro-liquefaction of thermal dissolution soluble fraction of Shenfu subbituminous coal and reusability of catalyst on the hydro-liquefaction[J]. Fuel,2014,115:227−231. doi: 10.1016/j.fuel.2013.07.002
[24] SHUI H,HE F,WU Y,et al. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends[J]. Energy & Fuels,2015,29(3):1558−1563.
[25] OKUYAMA N , KOMATSU N , SHIGEHISA T . 22-4 The Development of hyper coal process for producing ash-free coal[C]// Twentieth Annual International Pittsburgh Coal Conference Proceedings. Pittsburgh, Pennsylvania, USA, 2019.
[26] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 15-31. [27] 张双全. 煤化学(第2版)[M]. 徐州: 中国矿业大学出版社, 2009: 5−30. [28] QIN Zhihong. New advances in coal structure model[J]. International Journal of Mining Science and Technology,2018,28(4):541−559. doi: 10.1016/j.ijmst.2018.06.010
[29] OKUYAMA N,KOMATSU N,SHIGEHISA T,et al. Hyper-coal process to produce the ash-free coal[J]. Fuel Processing Technology,2004,85(8/9/10):947−967. doi: 10.1016/j.fuproc.2003.10.019
[30] TAKANOHASHI T,SHARMA A,SAKIMOTO N,et al. Reforming of low-rank coal by chemical upgrading[J]. Fuel,2019,59(8):1382−1385. doi: 10.2355/isijinternational.ISIJINT-2018-807
[31] TAKANOHASHI T,SHISHIDO T,SAITO I. Effects of hypercoal addition on coke strength and thermoplasticity of coal blends[J]. Energy & Fuels,2008,22(3):1779−1783.
[32] YOSHIDA T,TAKANOHASHI T,SAKANISHI K,et al. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy & Fuels,2002,16(4):1006−1007.
[33] KASHIMURA N,TAKANOHASHI T,MASAKI K,et al. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy & Fuels,2006,20(5):2088−2092.
[34] KOYANO K,TAKANOHASHI T,SAITO I. Estimation of the extraction yield of coals by a simple analysis[J]. Energy & Fuels,2011,25(6):2565−2571.
[35] TAKANOHASHI T,SHISHIDO T,KAWASHIMA H,et al. Characterisation of hyper coals from coals of various ranks[J]. Fuel,2008,87(4-5):592−598. doi: 10.1016/j.fuel.2007.02.017
[36] 张 帅. 预处理在低阶煤制备无灰煤中的应用[D]. 唐山: 华北理工大学, 2016. 48−53. ZHANG Shuai. The application of pre-treatment in producing ash-free coal by low rank coals[D]. Tangshan: North China University of Science and Technology, 2016: 48−53.
[37] SHUI H,WANG Z,WANG G. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel,2006,85(12):1798−1802.
[38] LI C,TAKANOHASHI T,YOSHIDA T,et al. Effect of acid treatment on thermal extraction yield in ashless coal production[J]. Fuel,2004,83(6):727−732. doi: 10.1016/j.fuel.2003.06.002
[39] MASAKI K,KASHIMURA N,TAKANOHASHI T,et al. Effect of pretreatment with carbonic acid on “hypercoal” (ash-free coal) production from low-rank coals[J]. Energy & Fuels,2005,19(5):144−151.
[40] 李 显,朱贤青,肖 黎,等. 酸洗脱灰及离子交换对低阶煤热溶剂提质分离的影响[J]. 燃料化学学报,2014,42(8):897−904. doi: 10.1016/S1872-5813(14)60038-4 LI Xian,ZHU Xianqing,XIAO Li,et al. Degradative solvent extraction of demineralized and ion-exchanged low-rank coals[J]. Journal of Fuel Chemistry and Technology,2014,42(8):897−904. doi: 10.1016/S1872-5813(14)60038-4
[41] FUJITSUKA H,ASHIDA R,MIURA K. Upgrading and dewatering of low rank coals through solvent treatment at around 350°C and low temperature oxygen reactivity of the treated coals[J]. Fuel-Guildford,2013,114(1):16−20.
[42] LI X,ASHIDA R,MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy & Fuels,2012,26(11):6897−6904.
[43] RAHMAN M,PUDASAINEE D,GUPTA R. Review on chemical upgrading of coal: Production processes, potential applications and recent developments[J]. Fuel Processing Technology,2017,158:35−36. doi: 10.1016/j.fuproc.2016.12.010
[44] OUCHI K,ITOH S,MAKABE M,et al. Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties[J]. Fuel,1989,68(6):735−740. doi: 10.1016/0016-2361(89)90212-3
[45] MUANGTHONG-ON T,WANNAPEERA J,JADSADAJERM S,et al. Effect of solvent on the degradative solvent extraction of low rank coal[J]. Energy & Fuels,2017,31(11):11954−11962.
[46] YOSHIDA T,LI C,TAKANOHASHI T,et al. Effect of extraction condition on “HyperCoal” production (2): effect of polar solvents under hot filtration[J]. Fuel Processing Technology,2004,86(1):61−72. doi: 10.1016/j.fuproc.2003.12.003
[47] PAINTER P,PULATI N,CETINER R,et al. Dissolution and dispersion of coal in ionic liquids[J]. Energy & Fuels,2010,244:1848−1853.
[48] SöNMEZ Ö,YıLDıZ Ö,ÇAKıR M Ö,et al. Influence of the addition of various ionic liquids on coal extraction with NMP[J]. Fuel,2018,212:12−18. doi: 10.1016/j.fuel.2017.10.017
[49] 邓 兵,秦志宏,华宗琪,等. 褐煤的溶剂萃取研究进展[J]. 燃料与化工,2011,42(4):9−12,5. doi: 10.3969/j.issn.1001-3709.2011.04.003 DENG Bing,QIN Zhihong,HUA Zongqi,et al. Progress of study on ligbite extraction with solvent[J]. Fuel & Chemical Processes,2011,42(4):9−12,5. doi: 10.3969/j.issn.1001-3709.2011.04.003
[50] SHUI H,YAN Z,LI H,et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel,2013,108:385−390. doi: 10.1016/j.fuel.2012.11.005
[51] KIM S D,WOO K J,JEONG S K ,et al. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone[J]. Korean Journal of Chemical Engineering,2008,25(4):758−763.
[52] 杨建校,魏文杰,祁 勇,等. 无灰煤高效利用研究进展[J]. 煤炭学报,2020,45(9):3301−3313. doi: 10.13225/j.cnki.jccs.2019.0727 YANG Jianxiao,WEI Wenjie,QI Yong,et al. Reserch progress on hyper-coal for efficirnt utilization[J]. Journal of China Coal Society,2020,45(9):3301−3313. doi: 10.13225/j.cnki.jccs.2019.0727
[53] 郭秉霖,侯彩霞,樊丽华,等. 萃取温度对无灰煤结构及煤基活性炭电化学性能的影响[J]. 无机化学学报,2018,34(9):1615−1624. doi: 10.11862/CJIC.2018.201 GUO Binglin,HOU Caixia,FAN Lihua,et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon[J]. Chinese Journal of Inorganic Chemistry,2018,34(9):1615−1624. doi: 10.11862/CJIC.2018.201
[54] 崔咏梅,廉新培,赵风云,等. 热溶剂萃取法制备超纯煤的研究进展[J]. 现代化工,2016,36(9):49−53. doi: 10.16606/j.cnki.issn0253-4320.2016.09.012 CUI Yongmei,LIAN Xinpei,ZHAO Fengyun,et al. Preparation of super clean coal by thermal solvent extraction[J]. Modern Chemical Industry,2016,36(9):49−53. doi: 10.16606/j.cnki.issn0253-4320.2016.09.012
[55] 崔咏梅,胡永琪,许永权,等. 热萃取小康庄1/3焦煤制备超纯煤的工艺研究[J]. 煤炭科学技术,2014,42(1):121−124. doi: 10.13199/j.cnki.cst.2014.01.028 CUI Yongmei,HU Yongqi,XU Yongquan,et al. Study on super clean coal preparation technique with 1/3 coking coal from Xiaokang Village by heat extraction[J]. Coal Science and Technology,2014,42(1):121−124. doi: 10.13199/j.cnki.cst.2014.01.028
[56] 张兆翔. 溶剂热萃取法制备超纯煤的研究 [D].石家庄: 河北科技大学, 2014: 15−16. ZHANG Zhaoxiang. Study on preparation of super-clean coal with thermal solvent extraction[D]. Shijiazhuang: Hebei University of Science and Technology, 2014: 15−46.
[57] ASHIDA R,MORIMOTO M,MAKINO Y,et al. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel,2009,88(8):1485−1490. doi: 10.1016/j.fuel.2008.12.003
[58] MIURA K,SHIMADA M,MAE K,et al. Extraction of coal below 350 °C in flowing non-polar solvent[J]. Fuel,2001,80(11):1573−1582. doi: 10.1016/S0016-2361(01)00036-9
[59] 张志红. 煤溶剂抽提产物的选择性富集及分析 [D]. 太原: 太原理工大学, 2005: 20−48. ZHANG Zhihong. The selecting collection of solvent extracts of coal[D]. Taiyuan: Taiyuan University of Technology, 2005: 20−48.
[60] 张 宗. 低阶煤分级热溶萃取提质研究[D]. 武汉: 华中科技大学, 2016: 15−48. ZHANG Zong. Study on thermal degradative solvent extraction of low-rank coals[D]. Wuhan: Huazhong University of Science & Technology, 2016: 15−48.
[61] LI C,TAKANOHASHI T,SAITO I,et al. Elucidation of mechanisms involved in acid pretreatment and thermal extraction during ashless coal production[J]. Energy & Fuels,2004,18(1):97−101.
[62] MIURA K,MAE K,SHINDO H,et al. Extraction of low rank coals by coal derived oils at 350 ℃ for producing clean fuels[J]. Journal of Chemical Engineering of Japan,2003,36(7):742−750. doi: 10.1252/jcej.36.742
[63] MIURA K,NAKAGAWA H,ASHIDA R,et al. Production of clean fuels by solvent skimming of coal at around 350 °C[J]. Fuel,2004,83(6):733−738.
[64] LI X,ZHANG Z,ZHANG L,et al. Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent[J]. Fuel Processing Technology,2018,173:48−55. doi: 10.1016/j.fuproc.2018.01.005
[65] MICHIO,HAMANO. Call for proposal programs of NEDO (New Energy and Industrial Technology Development Organization)[J]. Journal of the Robotics Society of Japan,2001,19(8):937−940. doi: 10.7210/jrsj.19.937
[66] 樊丽华, 杜敬文, 梁英华, 等. 无灰煤的热解行为及其在配煤中的添加效果[J]. 煤炭科学技术, 2017, 45(3): 185−190. FAN Lihua, DU Jingwen, LIANG Huaying, et al. Pyrolysis behavior of hypercoal and its adding effect in blending coal[J]. Coal Science and Technology. 2017, 45(3): 185−190.
[67] 堺康尔, 奥山宪幸, 吉田拓也, 等. 无灰煤的制造方法和无灰煤的制造装置[P]. 中国: ZL201780049047.9, 2018-04-09. [68] 堺康尔, 奥山宪幸, 木下繁, 等. 无灰煤的制造方法 [P]. 中国: ZL201280063050.3, 2014-03-17. [69] JIAN Y M,XIAN L I,ZHU X Q,et al. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. Journal of Fuel Chemistry and Technology,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
[70] MIURA K, ASHIDA R, XIAN L, et al. Upgrading of low-rank coal and biomass utilizing mild solvent treatment at around 350°C[C]//IEEE Conference on Clean Energy and Technology (CET). Kuala Lumpur, Malaysia, 2011.
[71] WANNAPEERA J,LI X,WORASUWANNARAK N,et al. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy & Fuels,2012,26(7):4521−4531.
[72] 李 显. 一种生物质-低阶煤共热溶制备无灰煤的方法[P]. 中国:ZL 201780001785.6, 2017-11-01. [73] 惠 振. 气煤和焦煤热溶物的性质及其配煤炼焦时对焦炭质量影响研究[D]. 马鞍山: 安徽工业大学, 2016: 21−69. HUI Zhen. Study on the properties of the thermal dissolution of gas and coking coals and the use their TDSFs in the coal blending for coke-making[D]. Maanshan: Anhui University of Technology, 2016: 21−69.
[74] SHUI H,ZHAO W,SHAN C,et al. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Processing Technology,2014,118:64−68. doi: 10.1016/j.fuproc.2013.08.013
[75] 段小宝,申岩峰,孔 娇,等. 煤热溶技术及热溶物在配煤炼焦过程中的应用[J]. 化工进展,2018,37(11):4226−4236. doi: 10.16085/j.issn.1000-6613.2017-2419 DUAN Xiaobao,SHEN Yanfeng,KONG Jiao,et al. Thermal dissolution technology of coal and application of soluble portions in coal blending for coke-making[J]. Chemical Industry and Engineering Progress,2018,37(11):4226−4236. doi: 10.16085/j.issn.1000-6613.2017-2419
[76] 卢田隆一,全 荣. 劣质煤利用煤高温溶剂萃取物炼焦[J]. 燃料与化工,2008,39(6):54−63. doi: 10.3969/j.issn.1001-3709.2008.06.024 LUTIAN Longyi,QUAN Rong. Coking of inferior coal using coal high-temperature solvent extract[J]. Fuel & Chemical Processes,2008,39(6):54−63. doi: 10.3969/j.issn.1001-3709.2008.06.024
[77] 胡浩权. 煤直接转化制高品质液体燃料和化学品[J]. 化工进展, 2016, 35(12): 4096−4098. HU Haoquan. Coal direct conversion to high quality liquid fuels and chemicals[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4096−4098.
[78] 胡发亭,颜丙峰,王光耀,等. 我国煤制燃料油技术进展及工业化现状[J]. 洁净煤技术,2019,25(1):57−63. doi: 10.13226/j.issn.1006-6772.18122501 HU Fating,YAN Bingfeng,WANG Guangyao,et al. Technical progress and industrialization status of coal to fuel oil in China[J]. Clean Coal Technology,2019,25(1):57−63. doi: 10.13226/j.issn.1006-6772.18122501
[79] DERBYSHIRE F,STANSBERRY P. Comments on the reactivity of low-rank coals in liquefaction[J]. Fuel,1987,66(12):1741−1742. doi: 10.1016/0016-2361(87)90375-9
[80] SOLOMON P R,SERIO M A,DESPANDE G V,et al. Cross-linking reactions during coal conversion[J]. Energy & Fuels,1990,4(1):42−54.
[81] LI X,PRIYANTO D E,ASHIDA R,et al. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy & Fuels,2015,29(5):3127−3133.
[82] KOYANO K,TAKANOHASHI T,SAITO I. Catalytic hydrogenation of hypercoal (ashless coal) and reusability of catalyst[J]. Energy and Fuels,2009,23(4):3652−3657.
[83] 赵 欢,王 鑫,焦忠泽,等. 热溶解聚技术及其影响因素的研究现状[J]. 沈阳航空航天大学学报,2020,37(2):70−77. doi: 10.3969/j.issn.2095-1248.2020.02.010 ZHAO Huan,WANG Xin,JIAO Zhongze,et al. Research status of thermal dissolution technology and its factors[J]. Journal of Shenyang Aerospace University,2020,37(2):70−77. doi: 10.3969/j.issn.2095-1248.2020.02.010
[84] 王亚杰, 左海滨, 王京秀, 等.中国HyperCoal清洁高值化应用研究现状与进展[J]. 工程科学学报,2021,43(12):1750−1760. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112015 WANG Yajie,ZUO Haibin,WANG Jingxiu,et al. Research status and prospect of clean and high-value utilization of hyper-coal in China[J]. Chinese Journal of Engineering,2021,43(12):1750−1760. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112015
[85] 梁大明, 孙仲超. 煤基炭材料[M]. 北京: 化学工业出版社, 2011: 5−20. [86] YANG J,NAKABAYASHI K,MIYAWAKI J,et al. Preparation of pitch based carbon fibers using hyper-coal as a raw material[J]. Carbon,2016,106:28−36. doi: 10.1016/j.carbon.2016.05.019
[87] YANG J,WU W,ZHANG X,et al. Improving spinnability of hyper-coal derived spinnable pitch through the hydrogenation with 1, 2, 3, 4-Tetrahydroquinoline[J]. C–Journal of Carbon Research,2018,4(3):46−46. doi: 10.3390/c4030046
[88] QIAN W,LI X,ZHU X,et al. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Adv,2020,10(14):8172−8180. doi: 10.1039/C9RA09966B
[89] 李金宏,周岐雄,米红宇,等. 基于煤萃取物的类石墨状多孔炭的制备及其电容性能研究[J]. 无机材料学报,2016,31(1):39−46. doi: 10.15541/jim20150329 LI Jinhong,ZHOU Qixiong,MI Hongyu,et al. Preparation and capacitive properties of graphite-like porous carbon based on coal extracts[J]. Journal of Inorganic Materials,2016,31(1):39−46. doi: 10.15541/jim20150329
[90] 樊丽华,王晓柳,侯彩霞,等. 褐煤基活性炭和无灰煤基活性炭性能对比研究[J]. 功能材料,2017,48(1):1244−1248. FAN Lihua,WANG Xiaoliu,HOU Caixia,et al. Research on perfomance comparison of lignite-activated carbon and hypercoal-activated carbon[J]. Journal of Functional Materials,2017,48(1):1244−1248.
[91] LI X,ASHIDA R,MAKINO M,et al. Enhancement of gasification reactivity of low-rank coal through high-temperature solvent treatment[J]. Energy & Fuels,2014,28(9):5690−5695.
[92] 崔咏梅,赵风云,刘彦华,等. 褐煤热萃取残渣处理含酚废水[J]. 河北科技大学学报,2013,34(1):40−43. doi: 10.7535/hbkd.2013yx01009 CUI Yongmei,ZHAO Fengyun,LIU Yanhua,et al. Treatment of phonolic watewater using lignite thermal extraction residue[J]. Journal of Hebei University of Science and Technology,2013,34(1):40−43. doi: 10.7535/hbkd.2013yx01009
[93] 蔡 颋. 低阶煤热溶剂萃取残渣制备介孔炭的研究[D]. 武汉: 华中科技大学, 2015: 20−50. CAI Ting, Study on preparation of mesoporous carbon from solvent extraction residue of low-rank coals[D]. Wuhan: Huazhong University of Science & Technology, 2015: 20−50.
[94] PRIYANTO D E. Degradative solvent extraction of low grade carbonaceous resources and the utilization of products for liquid fuels and carbon material[D]. Kyoto University, 2013: 15−40.
[95] 罗化峰,乔元栋,徐青云,等. 大同煤温和超临界热溶-炭化耦合转化过程研究[J]. 洁净煤技术,2019,25(1):142−147. doi: 10.13226/j.issn.1006-6772.18091403 LUO Huafeng,QIAO Yuandong,XU Qingyun,et al. Study on conversion process bymild supercritical thermal extraction coupled with carbonization technology of Datong Caol[J]. Clean Coal Technology,2019,25(1):142−147. doi: 10.13226/j.issn.1006-6772.18091403
[96] 陈 悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009 CHEN Yue,CHEN Chaomei,LIU Zeyuan,et al. The methodology function of Cite Space mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
[97] 侯海燕,陈超美,刘则渊,等. 知识计量学的交叉学科属性研究[J]. 科学学研究,2010,28(3):328−332. doi: 10.16192/j.cnki.1003-2053.2010.03.020 HOU Haiyan,CHEN Chaomei,LIU Zeyuan,et al. Interdisciplinary feature of knowmetrics[J]. Studies in Science of Science,2010,28(3):328−332. doi: 10.16192/j.cnki.1003-2053.2010.03.020
[98] WANNAPEERA J,LI X,WORASUWANNARAK N,et al. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy & fuels,2012,26(7):4521−4531.
[99] ZHU X Q,ZHANG Z,ZHOU Q X,et al. Upgrading and multistage separation of rice straw by degradative solvent extraction[J]. Journal of Fuel Chemistry and Technology,2015,43(4):422−428. doi: 10.1016/S1872-5813(15)30010-4
[100] FAN X,YU G,ZHAO Y P,et al. Molecular Characteristics of Shenfu coal characterized by mass spectrometers with three ion sources[J]. Chemistry Select,2018,37(3):10383−10387. doi: 10.1002/slct.201802238
-
期刊类型引用(0)
其他类型引用(1)