Study on the damage law of coal rock affected by different alternating periods of cold and heat
-
摘要:
温度是影响煤岩物理性质的重要因素,而煤岩作为固体介质存在着热胀冷缩的性质,冷热交替会使煤岩因形变发生不可逆损伤,最终导致煤岩原生裂隙结构损伤破坏。为了研究不同冷热交替周期对煤岩损伤的影响规律,选用辽宁省阜新地区长焰煤制成尺寸为100 mm×100 mm×100 mm的正方体试件,采用在低温保存箱(−15 ℃)和室温(20 ℃)内往复切换施加温度载荷的研究方法,测定试验前后煤样各力学参数和煤样表面维度,进而揭示煤样裂隙结构随冷热交替周期循环的扩展规律以及损伤机理。研究结果表明:①冷热交替作用下煤样裂隙膨胀扩展,且煤样表面裂隙扩展量、扩展率均随冷热交替周期的循环逐渐增大。②煤样在多周期温度载荷作用下力学性能减弱,损伤破坏严重,且煤样抗压强度随冷热交替周期的循环逐渐减小。③利用ABAQUS软件建立煤样结构损伤力学模型,模拟计算结果与试验结果吻合度较高。煤样整体结构损伤程度加剧,表明冷热交替作用是煤样结构损伤的重要因素。
Abstract:Temperature is an important factor affecting the physical properties of coal and rock, and as a solid medium, coal and rock have the properties of thermal expansion and contraction. The alternation of cold and heat will cause irreversible damage to the coal rock due to deformation, which will eventually lead to the damage and destruction of the original fracture structure of the coal rock. In order to study the damage law of coal and rock affected by different alternating cycles of cold and heat, the long-flame coal in Fuxin area of Liaoning Province was selected to make a cube specimen with a size of 100 mm×100 mm×100 mm. The mechanical parameters and surface dimensions of the coal samples before and after the experiment were measured by using the research method of reciprocating the application of temperature loads in a low temperature storage box(–15 °C) and room temperature(20 °C). Furthermore, the expansion law and damage mechanism of the coal sample fracture structure with the alternating cycle of cooling and heating are revealed. The results show ① The coal sample cracks expand and expand under the alternating action of cold and heat, and the expansion amount and expansion rate of the cracks on the surface of the coal sample gradually increase with the cycle of the alternating cycle of cold and heat. ② The mechanical properties of coal samples are weakened under the action of multi-cycle temperature loads, the damage is serious, and the compressive strength of coal samples gradually decreases with the cycle of alternating cycles of cold and heat. ③ The damage mechanics model of coal sample structure is established by ABAQUS software, and the simulation results are in good agreement with the experimental results. The overall structural damage degree of the coal sample is aggravated, indicating that the alternating action of cold and heat is an important factor for the structural damage of the coal sample.
-
Keywords:
- coal /
- cold and heat alternation /
- cracks /
- surface dimensions /
- mechanical model
-
0. 引 言
全球能源需求量的增加是促进天然气资源生产的一个驱动因素[1]。煤层气是一种储集在低孔隙率、低渗透率非常规储层中的天然气。随着开采深度的增加,储层渗透率降低,吸附容量增大,这给我国煤层气开采带来了巨大的技术挑战[2]。特别是我国北方煤层气生产主要局限于高瓦斯含量、埋藏深度大、渗透率低的煤层气储层。为了改善煤层渗透性,在过去的几十年里实施了水力压裂技术、无水压裂技术等技术解决方案。然而,这些技术仍然存在一些局限性,包括消耗大量水资源、压裂液污染地表水[3–5],由于水的影响,黏土矿物的膨胀会堵塞渗流通道[6]。在高能气体压裂过程中形成的裂缝很小,没有使用支撑剂,因此压裂后裂缝的闭合对渗透率影响不大[7-8]。由于低黏度液态二氧化碳在压裂过程中携带较少支撑剂[9],不利于深井压裂。此外,大量二氧化碳的泄露会导致空气污染[10]。因此,当前迫切需要开发新的压裂方法以提高煤层气抽采。
在20世纪末,采用液氮作为一种压裂液已成功应用于地层裂缝的增加[11]。由于液氮在大气压下的超低温效应(–196 ℃)和水冰相变膨胀(696倍)特性,可以有效弥补其他压裂方法的不足[12]。张文勇等[13]采用液氮伴注压裂技术提高施工砂比,降低压裂液滤失,减小对储层的伤害,缩短煤层气井排采见气周期。蔡承政等[14]发现液氮的热力冲击作用可以使干燥岩石在较短时间内产生收缩变形和孔隙体积减小,并且试验后红色砂岩和白色砂岩岩样的孔隙体积分别降低了8.63%和4.78%。WANG等[15]发现液氮处理前后煤的总孔隙体积增大,煤的渗透性得到改善;MACK[16]认为当煤层被低温冻结时,储集层水冰相变引起的膨胀远远大于煤本身强度,从而促进了裂隙的萌生和膨胀;CAI等[17]和COETZEE等[18]发现,经液氮处理后煤岩孔隙、裂隙的连通性得到有效改善。此外, ZHAI等[19]提出液氮冻融循环能改善煤的有效孔隙率和总孔隙率,有利于煤的有效压裂;QIN等[20]发现冻融循环导致煤表面脱落的微纳米级颗粒增加,煤岩物理性质显著劣化;LI等[21-22]发现冻融循环破坏了煤岩孔隙结构,促进了裂隙网络的形成,从而改善了煤岩渗透性。以上研究结果表明,液氮冻融循环可以有效增产煤层气。虽然液氮应用前景广泛,但煤岩孔隙、裂隙在冻融循环过程中如何演化,冷热交替是否有效破坏煤岩结构尚不清楚。以往关于低温冻结条件下煤岩温度场变化大多都是通过理论推导、试验研究进行,而对于这一领域的数值模拟鲜有研究。因此,在上述研究的基础上,笔者采用低温、室温反复切换施加温度载荷最终导致煤样破裂的研究方法探讨了不同冷热交替周期煤岩的损伤规律,最后通过数值模拟计算结果与试验结果进行了相互验证。
1. 试验方案
1.1 煤样制备
选用辽宁省阜新地区长焰煤作为试验材料,为保证煤样的均匀性,所有煤样均是从同一区块煤钻取,采集完毕后立即用保鲜膜封存,防止污染和氧化。试验室内将钻取煤样处理制成尺寸为100 mm×100 mm×100 mm的正方体试件。为减少煤样的分散性对试验结果造成影响,首先通过目视检查,其次采用非金属超声探测仪测量煤样纵波波速,选择纵波波速在1655~1725 m/s范围内的完整煤样。在试验前,对煤样进行真空抽气饱和,抽气压力为0.1 MPa,抽气4 h后在大气压力下静置6 h,获得饱和煤样。煤样基本参数见表1。依次对不同冷热交替周期煤样进行标注,见表2。试验最低温度为–15 ℃,将煤样编号为T0C15X。
表 1 试验煤样基本参数Table 1. Basic parameters of coal samples煤样 密度/ (g·cm−3) 埋深/m 工业分析/% Mad Aad Vdaf FCad 长焰煤 1.45 650 6.12 30.28 33.95 39.46 表 2 煤样编号Table 2. Coal sample labeling冷热交替周期/d 编号 冷热交替周期/d 编号 1 T0C151 56 T0C1556 6 T0C156 61 T0C1561 11 T0C1511 66 T0C1566 16 T0C1516 71 T0C1571 21 T0C1521 76 T0C1576 26 T0C1526 81 T0C1581 31 T0C1531 86 T0C1586 36 T0C1536 91 T0C1591 41 T0C1541 96 T0C1596 46 T0C1546 101 T0C15101 51 T0C1551 106 T0C15106 1.2 试验方法
将煤样放置于低温保存箱(–15 ℃)中静置4 h,之后将第1块煤样于20 ℃室温环境下放置20 h作为一个冷热交替周期,在进行至第6周期时加入第2块煤样,进行相同的冷热交替作用,之后每过5周期便再加入1块煤样,冷热交替作用直至煤样出现破裂,试验结束。利用Axiovert 40 MAT倒置金相显微镜对试验前后煤样表面裂隙宽度进行观测,计算表面裂隙宽度扩展量、扩展率;利用Fraclab软件计算试验前后煤样表面维度;利用NM-48非金属超声检测仪测定不同冷热交替作用周期前后煤样波速,进一步计算出试验后煤样波速衰减率以及煤样内部孔隙率;利用MH-25万能试验机对冷热交替作用后未破碎煤样进行单轴压缩试验,通过试验所得数据,绘制应力−应变曲线,分析煤样抗压强度变化,揭示不同冷热交替周期煤样结构损伤规律与机理。试验流程如图1所示。
2. 试验结果
2.1 煤样表面裂隙扩展镜像形貌
首先将试验煤样冷热交替作用至106周期后,标记为T0C15106的煤样发生破碎。其次用白色染剂对未破碎煤样表面原生裂隙明显处标记直径为5 mm的观测区,利用Axiovert 40 MAT倒置金相电子显微镜放大100倍进行观测,选择煤样原生裂隙的3个固定观测位置(A、B、C)用比例尺测量其裂隙宽度,如图2所示。计算得出裂隙扩展量与裂隙扩展率,见表3。
表 3 试验前后煤样裂隙扩展量Table 3. The amount of crack propagation in coal samples before and after the experimentμm 煤样
编号不同位置试验前d0 不同位置试验后dn 扩展量$\Delta $d A B C 平均 A B C 平均 T0C151 破碎 T0C156 72.34 75.86 80.43 76.21 234.51 240.38 249.81 241.57 255.02 T0C1511 223.25 207.85 212.49 214.53 422.24 419.52 435.68 425.81 211.28 T0C1516 243.23 229.94 231.75 234.97 452.61 435.82 429.41 438.95 203.98 T0C1521 312.25 304.62 329.52 315.46 504.63 499.24 513.75 505.87 190.41 T0C1526 303.28 325.22 308.47 312.32 502.60 493.17 506.58 500.79 188.47 T0C1531 301.25 317.23 319.83 412.77 498.27 500.42 475.42 491.37 178.60 T0C1536 298.18 304.25 291.62 298.01 457.94 463.78 468.21 463.31 165.30 T0C1541 255.49 261.17 231.97 249.54 406.78 410.12 396.78 404.56 155.02 T0C1546 311.51 312.40 410.59 344.83 452.14 471.49 502.25 475.29 130.46 T0C1551 243.76 241.12 224.55 236.48 365.26 357.42 364.45 362.38 125.90 T0C1556 188.27 190.59 190.62 189.82 304.34 310.53 300.96 305.28 115.46 T0C1561 173.21 175.34 193.86 180.80 286.91 283.71 279.77 283.46 102.66 T0C1566 159.65 165.45 173.85 166.32 260.00 250.35 259.43 256.59 90.24 T0C1571 206.54 187.94 226.47 206.98 284.03 281.40 302.46 289.30 82.32 T0C1576 79.68 98.15 85.22 87.68 145.31 163.90 150.97 153.39 65.71 T0C1581 84.37 82.95 100.43 89.25 137.28 135.86 153.34 142.16 52.91 T0C1586 190.24 82.76 89.58 120.86 228.82 121.34 128.16 159.44 38.58 T0C1591 187.17 132.92 116.28 145.46 217.07 162.82 146.18 175.36 29.90 T0C1596 83.48 85.13 76.23 81.61 105.47 101.12 95.42 100.67 19.06 T0C15101 271.22 268.27 289.49 276.33 286.84 283.89 305.11 291.95 15.62 T0C15106 509.94 497.47 495.33 500.91 520.93 508.46 506.32 511.90 10.99 煤样表面裂隙宽度扩展量
$ \Delta d $ 可表达为$$ \Delta d = {d_n} - {d_0} $$ (1) 式中:
$ \Delta d $ 为试验前后煤样表面裂隙宽度扩展量,μm;$ {d_0} $ 为试验前煤样表面裂隙宽度, μm;$ {d_n} $ 为第n周期试验后煤样表面裂隙宽度,μm。由式(1)可得出煤样表面裂隙宽度扩展率
$ \delta $ 表达式$$ \delta = \frac{{{d_n} - {d_0}}}{{{d_0}}} $$ (2) 式中:
$ \delta $ 为煤样表面裂隙宽度扩展率。显微镜观测发现,煤样表面裂隙扩展量、扩展率均随冷热交替周期的循环逐渐增大。分别建立以冷热交替周期为自变量,裂隙扩展量、扩展率为因变量的关系曲线,将试验前后煤样裂隙扩展量与不同冷热交替周期进行拟合,如图3所示。
由图3a可知,煤样T0C156在经过106个周期冷热交替循环后裂隙扩展量最大,最大裂隙扩展量之差为255.02 μm,煤样表面裂隙随冷热交替作用周期的循环而增大。根据拟合曲线发现冷热交替周期与煤样表面裂隙扩展呈正相关,拟合结果为0.989 36,拟合效果较好。由图3b可知,冷热交替周期越长,煤样裂隙扩展率越高,煤样T0C156裂隙扩展率最高,为2.169 79。由于T0C151煤样发生破碎,无法测量试验前后裂隙扩展量和扩展率,不予具体分析。
2.2 煤样表面维度差值变化
利用Axiovert 40 MAT 倒置金相显微镜扫描,得到试验前后不同冷热交替周期煤样表面镜像形貌图像,并将其进行Photoshop图像格式转换,再利用表面分形分析工具处理图像以获得灰度矩阵,将所得灰度矩阵转化为高度矩阵,根据盒维数计算公式:
$$ N = a{\delta ^{ - D}} $$ (3) 式中:
$ D $ 为分形维数;$ \delta $ 为所用码尺的精度;$ N $ 为覆盖一个分形集合所用的盒子数目;$ a $ 为常数[23-26]。对于需要分形、分维的物体,只要物体的形状具有自相似性,则式(3)成立,因此利用分形分析工具FracLab计算出不同冷热交替周期煤样表面分形维数,划分20个区域进行分形维数计算,取平均值作为最后结果,计算结果见表4。表 4 PCM测定方法计算得出试验前后煤样分形维数Table 4. Fractal dimension of coal samples before and after the experiment was calculated by the PCM measurement method煤样编号 试验前分形维数 试验后分形维数 维度差值 T0C156 2.115 2.343 0.228 T0C1511 2.123 2.326 0.203 T0C1516 2.141 2.325 0.184 T0C1521 2.137 2.301 0.164 T0C1526 2.133 2.281 0.148 T0C1531 2.174 2.310 0.136 T0C1536 2.116 2.236 0.120 T0C1541 2.146 2.254 0.108 T0C1546 2.121 2.217 0.096 T0C1551 2.152 2.240 0.088 T0C1556 2.130 2.206 0.076 T0C1561 2.129 2.189 0.060 T0C1566 2.178 2.226 0.048 T0C1571 2.155 2.199 0.044 T0C1576 2.112 2.144 0.032 T0C1581 2.163 2.193 0.030 T0C1586 2.139 2.167 0.028 T0C1591 2.159 2.175 0.016 T0C1596 2.121 2.137 0.016 T0C15101 2.149 2.161 0.012 T0C15106 2.171 2.179 0.008 计算结果显示, T0C156维度差值最大,说明煤样内部结构不平整,裂隙网络交织复杂。根据表4绘制不同冷热交替周期作用下煤样维度差值曲线,如图4所示。
由图4可知,冷热交替周期越长,煤样表面维度差值越大。根据拟合曲线可知,冷热交替周期与煤样表面维度差值呈正相关,拟合结果为0.947 21,拟合效果较好,表明煤样整体损伤程度随冷热交替周期的循环而加剧。
2.3 煤样波速衰减率
经过106个周期冷热交替作用后,对煤样x、y、z(x、y平行层理, z垂直层理)3个方向进行波速测试,计算波速衰减率
$ \eta $ ,结果见表5,通过计算结果来判断煤样整体结构损伤程度:表 5 试验后煤样波速衰减率Table 5. Coal sample wave velocity attenuation rate after experiment煤样编号 ηx/10−3 ηy/10−3 ηz/10−3 T0C151 破碎 T0C156 35.88 98.30 601.46 T0C1511 31.07 91.26 582.26 T0C1516 30.65 85.17 562.78 T0C1521 28.51 80.42 541.72 T0C1526 29.26 75.28 511.25 T0C1531 27.66 67.22 486.02 T0C1536 26.13 61.05 455.17 T0C1541 25.24 56.26 412.47 T0C1546 24.02 51.95 386.67 T0C1551 22.24 47.18 351.21 T0C1556 20.17 42.51 321.49 T0C1561 19.46 39.23 335.73 T0C1566 18.33 34.96 296.46 T0C1571 25.54 29.98 288.24 T0C1576 21.98 28.41 259.83 T0C1581 17.41 24.22 223.56 T0C1586 15.97 22.94 199.48 T0C1591 12.03 19.46 176.89 T0C1596 11.52 17.41 152.43 T0C15101 9.15 14.17 133.27 T0C15106 8.24 13.16 125.31 $$ \eta = \frac{{{v_0} - {v_n}}}{{{v_0}}} $$ (4) 式中:
$ \eta $ 为波速衰减率;$ {v_n} $ 为试验后声波在煤样中的传播速度,m/s;$ {v_0} $ 为试验前声波在煤样中的传播速度,m/s。将冷热交替周期作为自变量,煤样波速衰减率作为因变量,绘制关系曲线,如图5所示。
由图5可知,随着冷热交替周期的循环,煤样波速衰减率逐渐增大,表明试验前后煤样内部结构发生了变化,煤样裂隙发育和扩展、内部孔隙率增大导致声波的传递速率变低,煤样整体损伤程度加剧。WYLLIE[27]的时间平均方程解释了声波在煤样中传播速度
$ {v_0} $ 与孔隙率$ \varphi $ 之间的关系:$$ \varphi = \frac{1}{{{v_0}\left( {1 - \eta } \right)}} \frac{{{v_{\rm{t}}}{v_{{\rm{ma}}}}}}{{{v_{{\rm{ma}}}} - {v_{\rm{t}}}}} - \frac{{{v_{\rm{t}}}}}{{{v_{{\rm{ma}}}} - {v_{\rm{t}}}}} $$ (5) 式中:
${v_{\rm{t}}}$ 为声波在纯水中的传播速度,m/s;${v_{{\rm{ma}}}}$ 为声波在煤样骨架结构中的传播速度,m/s。若煤样不发生变化,则其中的
${v_{{\rm{ma}}}}$ 和${v_{\rm{t}}}$ 就是常数保持不变,式(6)表明了孔隙率$ \varphi $ 是波速$ {v_0} $ 的反比例函数,而波速衰减率$ \eta $ 越大,表明煤样孔隙程度的孔隙率$ \varphi $ 就越大[28]。结合式(4)、式(5)整理得到孔隙率$ \varphi $ 的表达式:$$ \varphi {\text{ = }}\frac{m}{{1 - \eta }} - n $$ (6) 式中:
$ m $ 、$ n $ 均为常数。可以得出煤样孔隙率$ \varphi $ 与波速衰减率$ \eta $ 的关系,煤样波速衰减率越大,孔隙率越大,两者呈正相关。2.4 煤样单轴抗压强度
煤样经过不同冷热交替周期作用后,标号为T0C151的煤样发生破碎,无法进行单轴压缩试验。利用MH-25试验机进行单轴压缩试验,对冷热交替试验后未碎裂的剩余煤样进行试验,绘制煤样应力–应变曲线,观察曲线变化趋势,测量试验后煤样抗压强度,如图6所示。
由图6可见,煤样经过106个周期冷热交替作用后抗压强度发生显著变化,21块煤样按照冷热交替作用周期从长到短,其抗压强度依次为2.066、2.367、2.678、2.993、3.295、3.597 、4.182、4.283、4.563、4.874、5.199、5.504、6.120、6.130、6.430、6.752、7.002、7.412、7.836 、8.298、8.684 MPa。经过第106周期后,标号T0C151的煤样发生破碎,破碎后抗压强度无法测量,对冷热交替作用后的剩余煤样建立以冷热交替周期为自变量,以煤样抗压强度为因变量的函数关系,将其进行拟合,如图7所示。
由图7发现,冷热交替作用周期越长,煤样抗压强度越低,抗压能力越来远差,力学性能减弱,导致煤样产生疲劳裂纹或脆性断裂,致使煤样整体结构损伤程度加剧,说明冷热交替作用周期是煤样结构损伤的重要因素。根据拟合曲线可知抗压强度和冷热交替周期的函数关系,斜率为负值,抗压强度最大差值达到6.618 MPa,冷热交替周期与煤样抗压强度呈负相关,拟合结果为0.996 65,拟合效果较好,说明冷热交替周期对煤样抗压强度影响明显,而且拟合结果与试验结果相符合。
3. 机理分析
由于冷热交替周期性作用,煤样结构会随着作用周期的累加而逐渐产生疲劳损伤,当疲劳损伤到达一定程度时,煤样到达自身疲劳极限,从而导致破坏。
MARTIN和CHANDLER采用塑性体应变
$ \varepsilon _v^p $ 的累积值定义损伤变量[29-32],即随着冷热交替周期的延长,煤样的体积无法恢复到原来的形态,并随着冷热交替周期的延长而逐渐增大,进一步反映了煤样结构损伤程度。煤样破坏应变分为纵向应变和横向应变。在冷热交替作用的过程中,由于膨胀力的作用,煤样发生变形。对应于变形的应变是横向应变和纵向应变的叠加,将塑性剪切应变$ {\gamma _P} $ 定义损伤变量如下:$$ {\gamma _P} = \varepsilon _{\textit{z}}^P - \varepsilon _{xy}^P $$ (7) 式中:
$\varepsilon _{\textit{z}}^{p}$ 为轴向塑性应变;$\varepsilon _{xy}^{p}$ 为横向塑性应变。当应变达到极限值时,在煤样水平面处,沿着裂隙发生损伤,产生剪切破坏;经过冷热交替作用周期的增加,煤样损伤不断累积,当应力超过煤样的极限强度时,煤样就会整体破坏,最终导致破碎。4. 力学模型
利用ABAQUS软件模拟不同冷热交替周期煤样损伤规律研究过程,模拟煤样大小设置为10 mm×10 mm×10 mm的正方体模型,选取试验煤样设置模拟过程中模型的具体参数:材料密度设定为1.45×10−9 t/mm3,泊松比设定为0.3,弹性模量E设定为1.2×105 MPa以达到阜新长焰煤的要求。由于软件无法模拟出以微米为单位的裂隙,所以用厚度为3 mm的扁状椭圆型模拟裂隙。建立模型划分网格后运行施加载荷,通过改变载荷来模拟不同冷热交替周期煤样模型损伤效果,选取Mises等效应力来评价煤样模型加载后损伤程度,模拟试验加载结果如图8所示。
由图8可以看出,煤样模型经106个周期施加载荷后等效应力发生明显变化,按照加载周期从长到短,其等效应力最大值依次为120.2、114.7、109.2、103.8、98.31、92.85、87.39、81.93、76.47、71.00、65.54、60.08 、54.62、49.16、43.69、38.23、32.77、21.85、16.39、10.92、5.462 MPa。T0C156模拟煤样裂隙尖端处产生了等效应力最大值,最大值达到120.2 MPa,符合尖端应力集中规律,并随着作用周期的循环,模拟裂隙尖端处等效应力呈递减趋势,与试验所得结果基本吻合。
在此基础上建立了以冷热交替周期为自变量,等效应力为因变量的关系曲线,以便观察两者之间存在的关系,如图9所示。
由图9模拟结果可看出,模拟煤样裂隙尖端处等效应力与冷热交替周期存在明显线性关系。拟合曲线中斜率为负值,随着冷热交替周期的循环,等效应力逐渐减小,拟合结果为0.997 83,拟合结果较好。对比图7,发现数值模拟得到的等效应力与试验测得的抗压强度基本上一致。模拟计算结果与试验结果进行了相互验证,说明冷热交替作用周期是煤样结构损伤的重要因素。该研究对寒区旱区岩石工程的安全性和稳定性评价具有一定的现实意义。
5. 结 论
1)冷热交替作用下煤样表面裂隙膨胀扩展,随着冷热交替作用周期的循环,煤样表面裂隙扩展量、扩展率均逐渐增大,煤样抗压强度逐渐降低,力学性能变差,损伤破坏严重,并在106周期作用后破碎。
2)多周期冷热交替作用后煤样维度差值均呈上升趋势,表明煤样发生了不同程度损伤,煤样损伤程度随作用周期的循环而逐渐加剧。
3)利用ABAQUS软件建立煤样损伤力学模型,进行模拟计算,发现模拟计算结果与试验结果较为吻合,煤样裂隙尖端等效应力随着作用周期的循环而减小,损伤程度加剧,表明冷热交替作用周期是煤样结构损伤的重要因素。
-
表 1 试验煤样基本参数
Table 1 Basic parameters of coal samples
煤样 密度/ (g·cm−3) 埋深/m 工业分析/% Mad Aad Vdaf FCad 长焰煤 1.45 650 6.12 30.28 33.95 39.46 表 2 煤样编号
Table 2 Coal sample labeling
冷热交替周期/d 编号 冷热交替周期/d 编号 1 T0C151 56 T0C1556 6 T0C156 61 T0C1561 11 T0C1511 66 T0C1566 16 T0C1516 71 T0C1571 21 T0C1521 76 T0C1576 26 T0C1526 81 T0C1581 31 T0C1531 86 T0C1586 36 T0C1536 91 T0C1591 41 T0C1541 96 T0C1596 46 T0C1546 101 T0C15101 51 T0C1551 106 T0C15106 表 3 试验前后煤样裂隙扩展量
Table 3 The amount of crack propagation in coal samples before and after the experiment
μm 煤样
编号不同位置试验前d0 不同位置试验后dn 扩展量$\Delta $d A B C 平均 A B C 平均 T0C151 破碎 T0C156 72.34 75.86 80.43 76.21 234.51 240.38 249.81 241.57 255.02 T0C1511 223.25 207.85 212.49 214.53 422.24 419.52 435.68 425.81 211.28 T0C1516 243.23 229.94 231.75 234.97 452.61 435.82 429.41 438.95 203.98 T0C1521 312.25 304.62 329.52 315.46 504.63 499.24 513.75 505.87 190.41 T0C1526 303.28 325.22 308.47 312.32 502.60 493.17 506.58 500.79 188.47 T0C1531 301.25 317.23 319.83 412.77 498.27 500.42 475.42 491.37 178.60 T0C1536 298.18 304.25 291.62 298.01 457.94 463.78 468.21 463.31 165.30 T0C1541 255.49 261.17 231.97 249.54 406.78 410.12 396.78 404.56 155.02 T0C1546 311.51 312.40 410.59 344.83 452.14 471.49 502.25 475.29 130.46 T0C1551 243.76 241.12 224.55 236.48 365.26 357.42 364.45 362.38 125.90 T0C1556 188.27 190.59 190.62 189.82 304.34 310.53 300.96 305.28 115.46 T0C1561 173.21 175.34 193.86 180.80 286.91 283.71 279.77 283.46 102.66 T0C1566 159.65 165.45 173.85 166.32 260.00 250.35 259.43 256.59 90.24 T0C1571 206.54 187.94 226.47 206.98 284.03 281.40 302.46 289.30 82.32 T0C1576 79.68 98.15 85.22 87.68 145.31 163.90 150.97 153.39 65.71 T0C1581 84.37 82.95 100.43 89.25 137.28 135.86 153.34 142.16 52.91 T0C1586 190.24 82.76 89.58 120.86 228.82 121.34 128.16 159.44 38.58 T0C1591 187.17 132.92 116.28 145.46 217.07 162.82 146.18 175.36 29.90 T0C1596 83.48 85.13 76.23 81.61 105.47 101.12 95.42 100.67 19.06 T0C15101 271.22 268.27 289.49 276.33 286.84 283.89 305.11 291.95 15.62 T0C15106 509.94 497.47 495.33 500.91 520.93 508.46 506.32 511.90 10.99 表 4 PCM测定方法计算得出试验前后煤样分形维数
Table 4 Fractal dimension of coal samples before and after the experiment was calculated by the PCM measurement method
煤样编号 试验前分形维数 试验后分形维数 维度差值 T0C156 2.115 2.343 0.228 T0C1511 2.123 2.326 0.203 T0C1516 2.141 2.325 0.184 T0C1521 2.137 2.301 0.164 T0C1526 2.133 2.281 0.148 T0C1531 2.174 2.310 0.136 T0C1536 2.116 2.236 0.120 T0C1541 2.146 2.254 0.108 T0C1546 2.121 2.217 0.096 T0C1551 2.152 2.240 0.088 T0C1556 2.130 2.206 0.076 T0C1561 2.129 2.189 0.060 T0C1566 2.178 2.226 0.048 T0C1571 2.155 2.199 0.044 T0C1576 2.112 2.144 0.032 T0C1581 2.163 2.193 0.030 T0C1586 2.139 2.167 0.028 T0C1591 2.159 2.175 0.016 T0C1596 2.121 2.137 0.016 T0C15101 2.149 2.161 0.012 T0C15106 2.171 2.179 0.008 表 5 试验后煤样波速衰减率
Table 5 Coal sample wave velocity attenuation rate after experiment
煤样编号 ηx/10−3 ηy/10−3 ηz/10−3 T0C151 破碎 T0C156 35.88 98.30 601.46 T0C1511 31.07 91.26 582.26 T0C1516 30.65 85.17 562.78 T0C1521 28.51 80.42 541.72 T0C1526 29.26 75.28 511.25 T0C1531 27.66 67.22 486.02 T0C1536 26.13 61.05 455.17 T0C1541 25.24 56.26 412.47 T0C1546 24.02 51.95 386.67 T0C1551 22.24 47.18 351.21 T0C1556 20.17 42.51 321.49 T0C1561 19.46 39.23 335.73 T0C1566 18.33 34.96 296.46 T0C1571 25.54 29.98 288.24 T0C1576 21.98 28.41 259.83 T0C1581 17.41 24.22 223.56 T0C1586 15.97 22.94 199.48 T0C1591 12.03 19.46 176.89 T0C1596 11.52 17.41 152.43 T0C15101 9.15 14.17 133.27 T0C15106 8.24 13.16 125.31 -
[1] PAN Jienan, LYU Minmin, HOU Quanlin, et al. Coal microcrystalline structural changes related to methane adsorption/desorption[J]. Fuel, 239: 13–23.
[2] LIU Dameng,YAO Yanbin,TANG Dazhen,et al. Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, Southern North China[J]. International Journal of Coal Geology,2009,79(3):97−112. doi: 10.1016/j.coal.2009.05.001
[3] ARMOR John N. Key questions, approaches, and challenges to energy today[J]. Catalysis Today,2014,236:171−181. doi: 10.1016/j.cattod.2013.12.029
[4] PELAK Adam J,SHARMA Shikha. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development[J]. Environmental Pollution,2014,195:91−100. doi: 10.1016/j.envpol.2014.08.016
[5] LIU Jia,LIANG Xin,XUE Yi,et al. Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery[J]. Applied Thermal Engineering,2020,178:115554. doi: 10.1016/j.applthermaleng.2020.115554
[6] ANDERSON R L,RATCLIFFE I,GREENWELL H C,et al. Clay swelling: a challenge in the oilfield[J]. Earth-Science Reviews,2010,98(3-4):201−216. doi: 10.1016/j.earscirev.2009.11.003
[7] GALEN Van M W, CUTHILL D A, PETERSON G L, et al. Propellant-assisted perforating in tight-gas reservoirs: wireline formation tests show successful stimulation[C] International Oil and Gas Conference and Exhibition in China. Beijing: OnePetro,2010.
[8] ZHANG Zhaoyang,MAO Jincheng,YANG Xiaojiang,et al. Advances in waterless fracturing technologies for unconventional reservoirs[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2019,41(2):237−251. doi: 10.1080/15567036.2018.1514430
[9] CRAWFORD H R,NEILL G H,BUCY B J,et al. Carbon dioxide-a multipurpose additive for effective well stimulation[J]. Journal of Petroleum Technology,1963,15(3):237−242. doi: 10.2118/571-PA
[10] 张 昆, 孟召平, 金 毅, 等.不同煤体结构煤的孔隙结构分形特征及其研究意义[J/OL].煤炭科学技术:1-10[2023-06-07]. https://doi.org/10.13199/j.cnki.cst.2022-1867. ZHANG Kun, MENG Zhaoping, JIN Yi, et al. Fractal characteristics of pore structures on different coal structures and its research significance[J/OL]. Coal Science and Technology:1-10[2023-06-07]. https://doi.org/10.13199/j.cnki.cst.2022-1867.
[11] 郑学林,张广清,郑士杰. 液氮超低温诱导岩石类材料裂缝形成机制研究[J]. 岩石力学与工程学报,2022,41(5):889−903. ZHENG Xuelin,ZHANG Guangqing,ZHENG Shijie. Study on formation mechanisms of fractures in rock-like materials induced by liquid nitrogen ultra-low temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):889−903.
[12] 田苗苗,张 磊,薛俊华,等. 液氮致裂煤体技术研究现状及展望[J]. 煤炭科学技术,2022,50(7):191−198. TIAN Miaomiao,ZHANG Lei,XUE Junhua,et al. Study and prospection of liquid nitrogen fracturing coal technology[J]. Coal Science and Technology,2022,50(7):191−198.
[13] 张文勇,司 磊,郭启文,等. 煤层气井液氮伴注压裂增透机制及应用研究[J]. 煤炭科学技术,2019,47(11):97−102. ZHANG Wenyong,SI Lei,GUO Qiwen,et al. Study on mechanism and application of liquid nitrogen injection combined with fracturing to enhance permeability in CBM wells[J]. Coal Science and Technology,2019,47(11):97−102.
[14] 蔡承政,任科达,杨玉贵,等. 液氮压裂作用下页岩破裂特征试验研究[J]. 岩石力学与工程学报,2020,39(11):2183−2203. CAI Chengzheng,REN Keda,YANG Yugui,et al. Experimental research on shale cracking characteristics due to liquid nitrogen fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(11):2183−2203.
[15] WANG Haichao,FU Xuehai,JIAN Kuo,et al. Changes in coal pore structure and permeability during N2 injection[J]. Journal of Natural Gas Science and Engineering,2015,27:1234−1241. doi: 10.1016/j.jngse.2015.09.068
[16] MACK D J. Fracturing process using carbon dioxide and nitrogen: U. S. Patent 5069283[P]. 1991-12-03.
[17] CAI Chengzheng,LI Gensheng,HUANG Zhonghou,et al. Rock pore structure damage due to freeze during liquid nitrogen fracturing[J]. Arabian Journal for Science and Engineering,2014,39:9249−9257. doi: 10.1007/s13369-014-1472-1
[18] COETZEE Sansha,NEOMAGUS Hein W J P,BUNT John R,et al. The transient swelling behaviour of large (−20+16 mm) South African coal particles during low-temperature devolatilisation[J]. Fuel,2014,136:79−88. doi: 10.1016/j.fuel.2014.07.021
[19] ZHAI Cheng,QIN Lei,LIU Shimin,et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy & Fuels,2016,30(7):6009−6020.
[20] QIN Lei,ZHAI Cheng,LIU Shimin,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw: a nuclear magnetic resonance investigation[J]. Fuel,2017,194:102−114. doi: 10.1016/j.fuel.2017.01.005
[21] LI Bo,ZHANG Lulu,WEI Jianping,et al. Pore damage properties and permeability change of coal caused by freeze-thaw action of liquid nitrogen[J]. Advances in Civil Engineering,2018,2018:5076391.
[22] LI Bo,ZONG Chaohui,HUANG Laisheng,et al. Study on the influence of liquid nitrogen cold soaking on the temperature variations and seepage characteristics of coal samples with different moisture contents[J]. Geofluids,2021,2021:8924016.
[23] 葛小波,李吉君,卢双舫,等. 基于分形理论的致密砂岩储层微观孔隙结构表征:以冀中坳陷致密砂岩储层为例[J]. 岩性油气藏,2017,29(5):106−112. doi: 10.3969/j.issn.1673-8926.2017.05.012 GE Xiaobo,LI Jijun,LU Shuangfang,et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure: a case of tight sandstone reservoir in Jizhong Depression[J]. Lithologic Reservoirs,2017,29(5):106−112. doi: 10.3969/j.issn.1673-8926.2017.05.012
[24] 姜 涛. 砂岩微观孔隙分形特征与渗透率的相关性研究[D]. 廊坊: 华北科技学院, 2019. JIANG Tao. Correlation between microscopic pore fractal characteristics and permeability of sandstone[D]. Langfang: North China Institute of Science and Technology, 2019.
[25] 沈俊男. 基于CT技术和分形理论的煤体孔裂隙结构表征[D]. 青岛: 山东科技大学, 2019. SHEN Junnan. characterization of coal pore fracture structure based on CT technology and fractal theory[D]. Qingdao: Shandong University of Science and Technology, 2019.
[26] 汪文瑞,刘兆霞,王 刚,等. 考虑分形维数的注水模型及注水时间研究[J]. 采矿与安全工程学报,2018,35(4):817−825. WANG Wenrui,LIU Zhaoxia,WANG Gang,et al. Study on water injection model considering fractal dimension and water injection time[J]. Journal of Mining & Safety Engineering,2018,35(4):817−825.
[27] 李和万,左建平,王来贵,等. 液氮冷加载对围压煤体结构损伤的影响规律研究[J]. 采矿与安全工程学报,2020,37(4):804−811. LI Hewan,ZUO Jianping,WANG Laigui,et al. Effect of cold loading by liquid nitrogen on structural damage of coal[J]. Journal of Mining & Safety Engineering,2020,37(4):804−811.
[28] 李和万. 循环冷加载作用下煤样结构损伤实验研究[D]. 阜新: 辽宁工程技术大学, 2017. LI Hewan. Experimental study on structural damage of coal samples under cyclic cold loading[D]. Fuxin: Liaoning Technical University, 2017.
[29] 周 辉,张 凯,冯夏庭,等. 脆性大理岩弹塑性耦合力学模型研究[J]. 岩石力学与工程学报,2010,29(12):2398−2409. ZHOU Hui,ZHANG Kai,FENG Xiating,et al. Elastoplastic coupling mechanical model for brittle marble[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(12):2398−2409.
[30] 刘泉声,胡云华,刘 滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. 岩土力学,2009,30(2):289−296. doi: 10.3969/j.issn.1000-7598.2009.02.001 LIU Quansheng,HU Yunhua,LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. Rock and Soil Mechanics,2009,30(2):289−296. doi: 10.3969/j.issn.1000-7598.2009.02.001
[31] 苗胜军,刘泽京,赵星光,等. 循环荷载下北山花岗岩能量耗散与损伤特征[J]. 岩石力学与工程学报,2021,40(5):928−938. MIAO Shengjun,LIU Zejin,ZHAO Xingguang,et al. Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):928−938.
[32] 包 含,裴润生,兰恒星,等. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律:以黑云母石英片岩为例[J]. 岩石力学与工程学报,2021,40(10):2015−2026. doi: 10.13722/j.cnki.jrme.2021.0410 BAO Han,PEI Runsheng,LAN Hengxing,et al. Damage evolution of biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):2015−2026. doi: 10.13722/j.cnki.jrme.2021.0410
-
期刊类型引用(1)
1. 张彦奇,王毅,王骏辉,裴秋艳,戎彦龙. 冷热循环冲击饱水煤体结构损伤规律研究. 矿业研究与开发. 2024(10): 133-140 . 百度学术
其他类型引用(2)