Review on key technologies of AI recognition for videos in coal mine
-
摘要:
煤矿安全生产视频分析与识别技术是保障我国煤矿智能化建设和煤炭工业高质量发展的核心技术支撑。为及时对煤矿井下安全隐患进行实时监测和预警,视频AI(Artificial Intelligence,人工智能)识别关键技术已经成为煤矿安全生产领域的研究热点。阐述了我国煤矿智能化建设过程中安全监测与监控的发展现状,分析了当前矿井视频监控与安全隐患识别预警存在的效率低、响应慢、效果差等问题,结合计算机视觉、边缘计算、大数据处理、云服务、智能终端等先进技术手段、进行了煤矿安全生产视频AI识别的顶层设计,提出了煤矿“人−机−环”全域视频AI感知的“云−边−端”协同计算系统架构,构建了视频识别端节点传感器、边缘计算设备、视频识别场景云服务应用体系,明确了智能识别与预警联动控制响应机制,打通了“云−边−端”信息交互感知与联动控制数据链,实现了数据共享联动和预警协同。同时,围绕矿山“人−机−环”全域AI视觉信息智能感知和全息泛化景象平台的构建,梳理了矿井安全隐患视觉感知及识别预警的技术处理流程,归纳了AI识别过程中的各类预处理−增强−重建−检测−识别方法的优点和缺点,明确了煤矿安全生产视频AI识别关键技术发展的主流方向和趋势。其次,结合王家岭煤矿、鲍店煤矿等代表性矿井的应用案例,示范展示了煤矿安全生产过程中实际典型应用场景等方面的最新进展和应用效果。最后,针对煤矿安全生产视频AI识别关键技术的特点,总结了现有煤矿安全生产视频AI识别系统存在技术理论薄弱、智能终端规格不一且应用场景混乱、数据兼容性及联动闭环能力较差、数据库安全性较弱、评价机制不统一、应用标准不完善等问题,指明了未来的发展方向是加强对视频AI识别关键技术及理论的研究,建立健全智能终端硬件规格及适用体系,构建标准统一、机制完善、实时互联、动态预测、协同控制、安全可靠的煤矿信息多维度主动感知新模式和工业互联网应用平台,逐步形成全矿井全息泛化的高精度智能感知场,实现对井下“人−机−环”全域视频信息的精准感知和危险源协同管控。
Abstract:The video analysis and identification technology of coal mine safety production is the core technical support to ensure the intelligent construction of our country's coal mines and the high-quality development of the coal industry. In order to carry out real-time monitoring and early warning for potential safety hazards in coal mines, the key technologies of video AI (Artificial Intelligence) identification have become the research hotspot in the field of safety production in coal mines. In this paper, the development status of safety monitoring in the process of intelligent construction of coal mines are first expounded. Then, the problems of low efficiency, slow response and poor effect of the current mine video monitoring and safety hazard identification as well as early warning system are concluded. Combined with advanced technologies such as computer vision, edge computing, big data processing, cloud services, and intelligent terminals, the top-level design of AI recognition for coal mine safety production video is carried out. Furthermore, the “cloud-edge-terminal” collaborative computing system architecture of “human-machine-environment” global video AI perception in coal mines is also proposed, followed with a video recognition end node sensor, edge computing equipment, and video recognition scene cloud service application system constructed. By this way, the intelligent identification and early warning linkage control response mechanism are clarified, and the “cloud-edge-terminal” information interactive perception and linkage control data chain has been dredged, resulting with data sharing linkage and early warning coordination. At the same time, around the construction of the “human-machine-environment” global AI visual information intelligent perception and holographic generalized scene platform, the technical processing process of visual perception and identification and early warning of mine safety hazards has been sorted out. What’s more, the characteristic of the processing-enhancement-reconstruction-detection-recognition method are also summarized, and the mainstream direction and trend of the key technology development of coal mine safety production video AI recognition are also pointed out. Secondly, based on the application cases of representative mines such as Wangjialing Coal Mine and Baodian Coal Mine, the author demonstrates the latest progress and application effects of typical application scenarios in the process of coal mine safety production. Finally, according to the key technology characteristics of coal mine safety production video AI recognition, it is concluded that the existing coal mine safety production video AI recognition system has weak technical theory, different specifications of intelligent terminals, confusing application scenarios, poor data compatibility and linkage closed-loop ability, weak database security, inconsistent evaluation mechanism as well as imperfect application standards, etc. Subsequently, this paper pointed out that the future development direction is to strengthen the research on key technologies and theories of video AI recognition, establish and improve intelligent terminal hardware specifications and applicable systems and build a new coal mine information multi-dimensional active perception model and industrial internet application platform with unified standards, perfect mechanism, real-time interconnection, dynamic prediction, collaborative control, safety and reliability, which gradually form a high-precision intelligent perception field of holographic generalization in the whole mine, so as to realize the precise perception of the underground "human-machine-environment" global video information and the coordinated control of danger sources.
-
0. 引 言
酸性矿山废水(Acid Mine Drainage,AMD)是人类在开采和利用矿物过程中产生的一种工业废水[1]。AMD中不但H+浓度很高,而且含有高浓度的硫酸盐和较多种类、毒性较强的重金属离子(如Fe2+、Mn2+、Pb2+、Zn2+)[2-4]。AMD中的污染物不仅会对排放源周围地区产生毒害作用,而且还会通过地表水和地下水输送的方式对遥远地区产生不利影响,这种不利影响会持续存在,并随着时间的推移变得更加明显。重金属会消耗水体中大量的溶解氧,且在酸性条件下,会使水体的自净效果大幅降低[5-6]。因此,解决AMD污染问题,保护流域环境,是矿业界面临的重大挑战,受到学者的高度关注。目前,AMD常用的处理方法主要有物理法、中和法和微生物法[7]。物理法和中和法是水处理中常用的方法,但具有处理成本高,极易造成二次污染等缺点[6]。微生物法中的(Sulfate-Reducing Bacteria, SRB)处理法具有经济、高效、简单的特点,被广泛的应用在水处理领域。
在酸性和含有重金属的AMD环境中,SRB的生长会受到抑制[8],前期研究成果表明,通过固定SRB颗粒技术可以有效解决上述问题[9]。但是在固定SRB颗粒时需要添加碳源材料,而传统的乳酸钠等有机碳源成本较高,不适宜在处理AMD时大面积应用。因此,需要寻找一种廉价的碳源材料。褐煤作为一种煤化程度最低的材料,具有开采便利、成本低、在矿区取材方便等优点[10]。褐煤具有发达的孔隙结构,表面含有羧基、醇羟基、酚羟基等活性基团,呈负电性,对H+和重金属离子具有较好的亲和性,可提升AMD的pH同时去除AMD中重金属离子[11]。此外,徐敬尧等[12]提出球红假单胞菌可以将褐煤中的芳香类高聚物降解为低分子量类物质。褐煤分解后的小分子有机物可以为SRB提供碳源。SRB利用褐煤分解的有机质作为碳源,将SO4 2−还原为S2−,S2−与金属离子生成沉淀,从而达到修复AMD的效果[13]。因此,褐煤协同球红假单胞菌作为固定SRB颗粒的基质材料不仅可以解决SRB的碳源问题,而且可以吸附金属离子增强SRB的活性,但是关于褐煤协同球红假单胞菌固定SRB颗粒处理AMD中金属的机理尚不明确。
试验基于微生物固定化技术,以聚乙烯醇和饱和硼酸作为主要固定剂[14-16]。以褐煤、球红假单胞菌和SRB为主要基质材料,制备褐煤协同球红假单胞菌固定SRB颗粒(L-P-SRB)。将制备的L-P-SRB用于处理AMD中的Fe2+、Mn2+、和SO4 2−,探究了L-P-SRB对AMD的处理效果。同时,基于还原动力学及吸附动力学原理,分析了L-P-SRB对AMD中SO4 2−和Fe2+、Mn2+去除机理。冬季气温较低,微生物在低温条件下活性会受到抑制,探究了低温冷藏处理L-P-SRB对AMD的修复效果,为低温条件下矿区处理AMD提供一定的依据。
1. 试 验
1.1 酸性矿山废水离子去除试验材料
试验使用褐煤购自山西大同,使用破碎机将褐煤进行研磨筛分,选取粒径为75 μm的褐煤备用。试验所用球红假单胞菌是购自杭州立冬公司,在范尼尔液体培养基中进行富集培养备用。试验所用SRB来自实验室保存菌种,将菌种接入改进型Starkey式培养基中进行富集培养备用。其中,试验所用Na2SO4、MnSO4、FeSO4、硼酸、聚乙烯醇、海藻酸钠、NaCl、CaCl2等药品均为分析纯。
模拟废水是参考某煤矿实际废水水质配制而成,其中SO4 2−、Mn2+、Fe2+质量浓度分别为816、39.31、55.14 mg/L,pH为4.0。
1.2 试验方法
根据已有研究成果[17],可知颗粒的最佳质量配比为褐煤3%、球红假单胞菌10%,SRB 10%。将球红假单胞菌和SRB放入50 mL离心管中,以12 000 r/min离心10 min,取离心后的沉淀备用。制备凝胶后冷却备用,将1.98 g褐煤,6.6 g球红假单胞菌浓缩液和6.6 g SRB浓缩液加入到凝胶中,制备成球形的固定化颗粒,强化4 h后取出,用9 g/L生理盐水冲洗3次。将制备好的L-P-SRB等量分装,在4 ℃条件下分别冷藏0、2、4、6 d,用以模拟实际生产中一次制备多次使用的情况。颗粒在使用前12 h,加入到无机改进型Starkey式培养基溶液激活,激活后使用。
L-P-SRB对SO4 2−的还原动力学和对Fe2+、Mn2+的吸附动力学试验:将激活后的L-P-SRB按照固液比1∶10 g/mL分别投加到250 mL的1号和2号废水中,进行褐煤协同球红假单胞菌固定SRB颗粒处理AMD中Fe2+、Mn2+和SO4 2−反应动力学试验。其中,1号废水含SO4 2−、Fe2+质量浓度分别为816、55.14 mg/L,pH为4.0;2号废水含SO4 2−、Mn2+质量浓度分别为816、39.31 mg/L,pH为4.0。在35 ℃、120 r/min的恒温振荡器中进行振荡反应,每日上午十点取样进行水质检测。试验做3组平行试验,取平均值作为最终结果。基于还原动力学及吸附动力学原理,分析L-P-SRB对AMD中SO4 2−的还原动力学和对Fe2+、Mn2+的吸附动力学。
低温冷藏处理L-P-SRB对AMD中Fe2+、Mn2+的去除试验:将L-P-SRB在4 ℃条件下分别冷藏0、2、4、6 d,分批激活,分别投入1号、2号废水中,定期检测废水中Fe2+、Mn2+的质量浓度,分析低温处理L-P-SRB对AMD中Fe2+、Mn2+的去除效果。
试验结束后,取处理AMD前后的L-P-SRB进行SEM和FT-IR检测,对比分析L-P-SRB微观结构和表面官能团的变化情况,进一步揭示L-P-SRB处理AMD的反应机理。
1.3 试验仪器和水质检测方法
试验仪器:TG-328A型电子天平、PHS-3C型pH计、CT-8022型ORP计、DL-1型电子万用炉、HZ-9811K型的双速恒温振荡器、日立Z-2000火焰原子分光光度计、V-1600PC型的可见分光光度计、JSM 7200F型扫描电子显微镜、赛默飞IS5型红外光谱仪。
pH测量方法为玻璃电极法(HJ 1147—2020);氧化还原电位(oxidation-reduction potential, ORP)值测量方法为甘汞电极法;SO4 2−测量方法为铬酸钡分光光度法(HJ/T 342—2007);Mn2+、Fe2+测量方法为火焰原子吸收分光光度法(GB 11911—89)。
2. 试验结果与讨论
2.1 L-P-SRB对AMD中Fe2+、Mn2+的去除效果分析
将L-P-SRB添加到含Fe2+、Mn2+的废水(1号、2号废水)后,废水中pH、ORP的变化情况以及SO4 2−、Fe2+、Mn2+的去除情况如图1、图2所示。
由图1可知,0~48 h时,L-P-SRB能有效提升1号、2号废水的pH值,降低1号、2号废水的ORP值, L-P-SRB处理1号、2号废水48 h后,pH值和ORP值分别为7.69、7.76 mV和−49、−31 mV。48~144 h时,1号、2号废水体系中的pH值逐渐趋于平稳,ORP值呈上升的趋势,最终达72 mV和61 mV。由图2可知,L-P-SRB对SO4 2−、Fe2+、Mn2+的去除率均呈先增加再趋于平稳的趋势,L-P-SRB对1号、2号废水中SO4 2−的最终去除率分别为91.28%、81.94%,对Fe2+、Mn2+的最终去除率分别为92.42%、79.39%。根据已有研究成果,褐煤对SO4 2−的去除率几乎为零[18]。因此,L-P-SRB去除率SO4 2−主要依靠SRB的代谢作用。反应前期,SRB和球红假单胞菌适应新的废水环境后,球红假单胞菌活性增强、分解褐煤形成大量小分子的有机物,为SRB提供碳源,使SRB活性不断增强。1号废水中SO4 2−的去除率明显高于2号,因为高浓度的Mn2+对SRB和球红假单胞菌有抑制作用相反虽然中低浓度的Fe2+对细菌没有明显促进作用,但是直到80 mg/L的Fe2+对细菌也未见明显的抑制作用[19]。反应后期,SO4 2−的去除速率变慢,这是因为体系中的碳源和电子减少,SRB的活性降低,SO4 2−的还原速率降低。
2.2 L-P-SRB对SO42的还原动力学和对Fe2+、Mn2+的吸附动力学分析
利用SO4 2−反应动力学方程式(1)和式(2),对L-P-SRB还原SO4 2−的过程进行零级与一级拟合,结果如图3、图4和表1所示。
表 1 SO4 2−反应动力学参数Table 1. Kinetic parameters of SO4 2− reaction项目 零级反应 一级反应 k0/(mg·L−1·h−1) R2 k1/h−1 R2 1号 5.610 6 0.896 0.019 65 0.955 2号 5.081 4 0.879 0.013 56 0.907 $$ C_{t}=C_{0}-k_{0}t $$ (1) $$ \ln C_{t}=\ln C_{0}-k_{1}t $$ (2) 式中:C0为初始SO4 2−质量浓度,mg/L;Ct为任意时刻 SO4 2−质量浓度,mg/L;k0为零级反应速率常数,mg/(L·h);k1为一级反应速率常数,h−1;t为反应时间。
由图3、图4和表1可知,1号和2号废水的一级反应动力学模型相关系数都要大于零级反应动力学模型相关系数。说明L-P-SRB对SO4 2−的还原动力学更加符合一级反应动力学模型。SO4 2−的还原主要受电子受体影响,废水中SO4 2−的主要去除过程是SRB异化还原作用[20]。0~12 h,SO4 2−的去除速率较慢,主要体系中的SRB和球红假单胞菌适应废水环境,代谢较为缓慢。12~72 h,SO4 2−的还原速率达到最大值221.43 mg/(L·d)和209.98 mg/(L·d),此阶段L-P-SRB中的球红假单胞菌比SRB生长周期更短,响应速度更快,在经过短暂适应后,球红假单胞菌率先对L-P-SRB中的褐煤进行分解,产生大量的碳源和电子,促进SRB对SO4 2−的还原。72 h后,球红假单胞菌和SRB的活性下降,导致SO4 2−的还原速率下降。120 h之后,微生物失活,SO4 2−的还原反应已基本停滞。
利用拟一级动力学反应模型式(3)和拟二级动力学反应模型式(4),对L-P-SRB吸附Fe2+、Mn2+的过程进行一级与二级拟合,结果如图5和表2所示。
表 2 Fe2+、Mn2+的吸附动力学参数Table 2. Adsorption kinetic parameters of Fe2+ and Mn2+离子 拟一级动力学 拟二级动力学 k1/h−1 qe/(mg·g−1) R2 k2/(g·mg−1·h−1) qe/(mg·g−1) R2 Fe2+ 0.030 1 0.515 0.976 0.389 0 0.666 0.971 Mn2+ 0.032 4 0.316 0.996 0.089 6 0.385 0.994 $$ \ln ({q_{\rm{e}}} - {q_t}) = \ln {q_{\rm{e}}} - {k_1}t $$ (3) $$ \frac{{\text{t}}}{{{q_t}}} = \frac{1}{{{k_2}{q_{\rm{e}}}^2}} + \frac{1}{{{q_{\rm{e}}}}}t $$ (4) 式中:qe为吸附平衡时的吸附量,mg/g;qt为吸附时间为t时刻的吸附量,mg/g;t为吸附时间,h;k1为拟一级动力学反应速率常数,h-1;k2为拟二级动力学反应速率常数,g/(mg·h)。
由图5和表2可知,L-P-SRB吸附Fe2+、Mn2+的拟一级反应动力学模型相关系数都略大于拟二级反应动力学模型相关系数,说明L-P-SRB吸附Fe2+、Mn2+的过程更符合拟一级反应动力学,吸附以物理吸附为主。其中,L-P-SRB吸附Fe2+和Mn2+的拟一级反应动力学方程分别为:ln (0.515−qt)= ln 0.515−0.030 1t, R2=0.976和ln (0.316−qt)= ln 0.316−0.032 4t, R2=0.996。其中,拟合得L-P-SRB吸附Fe2+的qe=0.515 mg/g与试验测得t =144 h时的平衡吸附量0.510 mg/g接近,拟合得L-P-SRB吸附Mn2+的qe=0.316 mg/g与试验测得t =144 h时的平衡吸附量0.312 mg/g接近,说明拟合效果较好。
2.3 低温冷藏处理L-P-SRB对AMD中Fe2+、Mn2+的去除效果分析
低温冷藏处理L-P-SRB对AMD中Fe2+、Mn2+的去除效果如图6、图7所示。
由图6、图7可知,低温冷藏对L-P-SRB的活性影响较小,基本不会抑制L-P-SRB处理AMD中的Fe2+、Mn2+。低温冷藏对最终的去除率影响很小,主要是对前期处理速率有影响,对24~72 h的影响较为明显,原因是冷藏影响了SRB和球红假单胞菌的激活,延长了菌种的延滞期,但对细菌的活性没有影响。72 h之后达到了与没有冷藏的颗粒相同的效果。论证了L-P-SRB在低温条件下处理AMD的可行性,同时在实际生产过程中L-P-SRB可一次制备后经低温冷藏保存分多次使用,极大节约了生产成本,增加的水处理的灵活性。
0~72 h,Fe2+的去除速率较高,是因为球红假单胞菌代谢作用使L-P-SRB中的褐煤分解,使颗粒的孔隙率变大,有利于褐煤对Fe2+的吸附作用。同时,分解产生的小分子有利于SRB的生长繁殖,将SO4 2−还原为S2−,而S2−能和Fe2+进行反应生成硫化沉淀物,有利于Fe2+的去除。72~120 h,球红假单胞菌的活性下降,对颗粒褐煤的分解基本停止,导致吸附Fe2+达到饱和状态,SRB活性下降,Fe2+与S2−反应处于停滞状态,使Fe2+最终去除率基本稳定在91%左右。据报道,无载体的SRB菌液对低于10 mg/L的Mn2+无去除作用,高浓度的Mn2+对SRB和球红假单胞菌有明显的延滞和毒害作用[8]。0~72 h,高浓度的Mn2+对红假单胞菌和SRB没有产生明显的抑制影响,说明在高浓度的重金属情况下,L-P-SRB可以对细菌产生隔离保护作用,有利于缩短菌种的延滞期,进而缩短水处理时间。MnS的溶度积常数较大(Ksp=2.5×10−15),因此这个阶段L-P-SRB去除Mn2+主要以是褐煤吸附Mn2+为主,仅有少量的Mn2+和S2−进行反应生成MnS沉淀。经冷藏处理的L-P-SRB对Mn2+的最终去除率为78%~79%。
2.4 L-P-SRB在处理Fe2+、Mn2+前后的SEM和FT-IR分析
将L-P-SRB和处理Fe2+、Mn2+后的L-P-SRB,置于电热鼓风干燥箱中105 ℃干燥24 h,使用JSM7200F扫描电镜进行SEM分析,对比L-P-SRB处理Fe2+、Mn2+前后的比表面和内部孔隙结构的变化规律。将上述干燥的样品进行研磨处理,使用赛默飞IS5型红外光谱仪进行红外吸收光谱分析,分析处理Fe2+、Mn2+前后L-P-SRB官能团的变化情况,揭示L-P-SRB处理Fe2+和Mn2+的机理。
由图8可知,L-P-SRB表面附着大量褐煤颗粒,这些褐煤可以作为吸附材料,率先发挥吸附作用。处理结束后,L-P-SRB表面的褐煤消失,可以证明球红假单胞菌适应水环境后会对褐煤进行分解,将褐煤分解为小分子物质。小分子会被SRB利用,促进SRB的生长,导致颗粒的表面出现大量的粗糙的沟壑,增大颗粒的比表面积,提供更多的附着点位,为重金属离子的吸附和SO4 2−的还原提供了足够的场所[21]。对比图9、图10中L-P-SRB的结构可知,在处理废水时,L-P-SRB的褐煤被球红假单胞菌分解形成了蜂窝状结构,增加了颗粒的孔隙率,在这些空隙中SO4 2−可以被SRB还原为S2−,S2−与重金属离子反应生成了片状和零散无定形状的沉淀。
由图11可知,处理废水后,L-P-SRB在波数3 430 cm−1处对应的—OH伸缩振动吸收峰增强。L-P-SRB颗粒中的褐煤被球红假单胞菌分解,颗粒表面的羧基和羟基官能团与水分子形成氢键,吸附在颗粒表面,导致L-P-SRB颗粒红外光谱中吸附游离水的—OH 伸缩振动吸收峰增强。处理废水后,颗粒在2 910 cm−1附近的反对称—CH振动信号增强,此处对应的是甲基和亚甲基,表明球红假单胞菌够破坏褐煤结构中芳环与侧链之间的C—C,从而使褐煤中芳环结构与侧链断开。在1 600 cm−1附近的—OH吸收峰减弱,说明L-P-SRB颗粒结构中有羟基水脱出,表明在水处理过程,球红假单胞菌使颗粒分子结构与羟基之间的化学键发生了断裂。这主要是L-P-SRB颗粒结构中的羟基与Fe2+和Mn2+发生配位作用,从而使羟基水脱出[22-23]。1 400 cm−1和1 100 cm−1附近对应醚类、醇类、酚类的—OH和C—O伸缩振动峰增强,说明L-P-SRB颗粒结构中的C—O被破坏,生成了小分子的结构。600~850 cm−1处复杂的C—H面外弯曲振动吸收峰发生了变化,说明L-P-SRB颗粒结构上发生了一定的崩塌变化,使结构更加的复杂。
3. 结 论
1)L-P-SRB对可以对SO4 2−起到很好的去除作用,对含Fe2+、Mn2+废水中SO4 2−的去除率分别91.28%、81.94%。说明球红假单胞菌可以分解褐煤形成小分子,为SRB提供碳源和电子,且为SRB提供载体和良好的生长代谢环境,促进SRB还原SO4 2−。L-P-SRB还原SO4 2−的过程为电化学还原过程,且一级反应动力学模型可以很好地描述该还原过程。
2)褐煤协同球红假单胞菌固定化SRB颗粒对Fe2+和Mn2+的去除率分别为91%和79%。L-P-SRB吸附Fe2+、Mn2+的过程以物理吸附为主,L-P-SRB吸附Fe2+和Mn2+的拟一级反应动力学方程分别为:ln(0.515−qt)= ln0.515−0.030 1t,R2=0.976和ln(0.316−qt)= ln0.316−0.032 4t,R2=0.996。L-P-SRB不但对金属离子有很好的的吸附作用,而且可以有效提升废水的pH。低温冷藏处理的L-P-SRB 对AMD中的Fe2+和Mn2+仍具有较好的效果,为低温条件下矿区处理AMD提供一定的依据。同时,L-P-SRB可一次制备后经低温冷藏保存分多次使用,节约了生产成本,增强了矿区处理AMD的灵活性。
3)通过SEM和FT-IR分析可知,球红假单胞菌对褐煤有一定的分解作用,破坏褐煤分子结构与羟基之间的化学键、使褐煤分子结构中的 C—C和 C=O断裂,增大颗粒的比表面积,使L-P-SRB的吸附能力增加。同时,为SRB提供载体,且能促进SRB的生长,对Fe2+、Mn2+和SO4 2−有很好的去除效果。
-
-
[1] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1−10. WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1−10.
[2] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34−41. WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34−41.
[3] 赵洪建. 煤矿综掘工作面视频融合技术研究[D]. 徐州: 中国矿业大学, 2018. ZHAO Hongjian. Research on video fusion technology of fully mechanized mining face in coal mining[J]. Xuzhou: China University of Mining and Technology, 2018.
[4] 王国法,刘 峰,庞义辉,等. 煤矿智能化-煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization: the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
[5] 刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15. LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
[6] 范京道. 智能化无人综采技术[M]. 北京: 煤炭工业出版社, 2017. FAN Jingdao. Intelligent unmanned mechanized mining technology[M]. Beijing: Coal Industry Press, 2017.
[7] 孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22−25,71. SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22−25,71.
[8] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19−23,83. doi: 10.13199/j.cnki.cst.2016.01.004 SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19−23,83. doi: 10.13199/j.cnki.cst.2016.01.004
[9] 孙继平. 煤矿监控新技术与新装备[J]. 工矿自动化,2015,41(1):1−5. SUN Jiping. New technologies and new equipments of coal mine monitoring[J]. Industry and Mine Automation,2015,41(1):1−5.
[10] LALATENDU M,DEVI P M,PRASANTA K J. Application of wireless sensor network for environmental monitoring in underground coal mines: a systematic review[J]. Journal of Network and Computer Applications,2018,106:48−67. doi: 10.1016/j.jnca.2017.12.022
[11] 曾 婷,黄东军. 智能视频监控系统异常行为检测算法研究综述[J]. 计算机测量与控制,2021,29(7):1−6. ZENG Ting,HUANG Dongjun. A survey of detection algorithms for abnormal behaviors in intelligent video surveillance system[J]. Computer Measurement & Control,2021,29(7):1−6.
[12] 杨传印. 基于煤矿视频AI识别技术应用研究[J]. 山东煤炭科技,2022,40(1):181−183,186. YANG Chuanyin. Research and application of AI recognition technology based on coal mine video[J]. Shandong Coal Science and Technology,2022,40(1):181−183,186.
[13] 张 华,李靖锋,魏红磊,等. 基于智能视频识别技术的智能化煤矿安全管理研究与应用[J]. 工矿自动化,2021,47(S1):10−13. ZHANG Hua,LI Jingfeng,WEI Honglei,et al. Research and application of intelligent coal mine safety management based on intelligent video recognition technology[J]. Industry and Mine Automation,2021,47(S1):10−13.
[14] 杨超宇,李 策,苏剑臣,等. 基于视频的煤矿安全监控行为识别系统研究[J]. 煤炭工程,2016,48(4):111−113, 117. YANG Chaoyu,LI Ce,SU Jianchen,et al. Research on video-based system of activity recognition for coal mine safety surveillance[J]. Coal Engineering,2016,48(4):111−113, 117.
[15] 张立亚. 矿山智能视频分析与预警系统研究[J]. 工矿自动化,2017,43(11):16−20. ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Industry and Mine Automation,2017,43(11):16−20.
[16] SATYANARAYANAN M. The emergence of edge computing. computer, 2017, 50(1): 30−39.
[17] OLAGUE G,HERNÁNDEZ D. E,LLAMAS P. Brain programming as a new strategy to create visual routines for object tracking[J]. Multimedia Tools and Applications,2019,78:5881−5918.
[18] 屈世甲,武福生. 基于边缘计算的采煤工作面甲烷监测模式研究[J]. 煤炭科学技术,2020,48(12):161−167. QU Shijia,WU Fusheng. Research on methane monitoring mode of coal mining face based on edge computing[J]. Coal Science and Technology,2020,48(12):161−167.
[19] HESCOCK J,NEWMAN C,AGIOUTANTIS Z. Development of a new algorithm for implementing the edge effect offset for subsidence calculations[J]. International Journal of Mining Science and Technology,2018,28(1):61−66. doi: 10.1016/j.ijmst.2017.11.010
[20] 朱晓娟,张 浩. 智慧煤矿中边缘计算任务分配研究[J]. 工矿自动化,2021,47(6):32−39. ZHU Xiaojuan,ZHANG Hao. Research on task allocation of edge computing in intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):32−39.
[21] 李敬兆,秦晓伟,汪 磊. 基于边云协同框架的煤矿井下实时视频处理系统[J]. 工矿自动化,2021,47(12):1−7. LI Jingzhao,QIN Xiaowei,WANG Lei. Real-time video processing system in coal mine based on edge-cloud collaborative framework[J]. Industry and Mine Automation,2021,47(12):1−7.
[22] 陈晓晶. 基于“云−边−端”协同的煤矿火灾智能化防控建设思路探讨[J]. 煤炭科学技术,2022,50(12):136−143. CHEN Xiaojing. Discussion on the construction of intelligent prevention and control of coal mine fire based on “cloud-edge-end” cooperation[J]. Coal Science and Technology,2022,50(12):136−143.
[23] 屈世甲,武福生,贺耀宜. 煤矿安全监测监控体系中边缘计算模式研究[J]. 煤炭科学技术,2022,50(5):247−252. QU Shijia,WU Fusheng,HE Yaoyi. Application of edge computing mode in coal mine monitoring and control system[J]. Coal Science and Technology,2022,50(5):247−252.
[24] 姜德义,魏立科,王 翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484−492. JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484−492.
[25] YAO Haifei,WANG Haiyan,LI Yanchuan,et al. Three-dimensional spatial and temporal distributions of dust in roadway tunneling[J]. International Journal of Mining Science and Technology,2020,7(1):88−96.
[26] 王诚聪. 基于视频分析的煤矿安全生产典型违规行为识别[D]. 唐山: 华北理工大学, 2021. WANG Chengcong. Identification of typical violations of coal mine safety production based on video analysis[D]. Tangshan: North China University of Science and Technology, 2021.
[27] 张谢华,张 申,方 帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J]. 煤炭学报,2014,39(1):198−204. ZHANG Xiehua,ZHANG Shen,FANG Shuai,et al. Clearing research on fog and dust images in coalmine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198−204.
[28] 王启明,李 季. 煤矿井下高清图像快速去雾算法研究[J]. 小型微型计算机系统,2018,39(11):2557−2560. doi: 10.3969/j.issn.1000-1220.2018.11.038 WANG Qiming,LI Ji. Study on fast hzae removal algorithm for underground high definition image[J]. Journal of Chinese Computer Systems,2018,39(11):2557−2560. doi: 10.3969/j.issn.1000-1220.2018.11.038
[29] 应东杰,李文节. 煤矿监控图像增强算法的分析与实现[J]. 工矿自动化,2012,38(8):55−58. YING Dongjie,LI Wenjie. Analysis of enhancement algorithms of coal mine monitoring image and its realization[J]. Industry and Mine Automation,2012,38(8):55−58.
[30] 范凌云,梁修荣. 基于小波分解子带直方图匹配的矿井视频图像增强方法[J]. 金属矿山,2016(6):130−133. doi: 10.3969/j.issn.1001-1250.2016.06.026 FAN Lingyun,LIANG Xiurong. Mine video images enhancement method based on the histogram matching method of the sub-bands of wavelet transform[J]. Metal Mine,2016(6):130−133. doi: 10.3969/j.issn.1001-1250.2016.06.026
[31] 范伟强,刘 毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248−4260. FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248−4260.
[32] 谢海波. 提升小波变换域矿井光照不均匀图像双直方图均衡化增强[J]. 金属矿山,2016(5):153−157. XIE Haibo. Bi-histogram equalization enhancement of the undermine uneven illumination image based on lifting wavelet transform domain[J]. Metal Mine,2016(5):153−157.
[33] 曹陇鑫,马宗方,石 晶. 基于Retinex的自适应非均匀低照度图像增强算法[J]. 计算机测量与控制,2020,28(10):155−159,176. CAO Longxin,MA Zongfang,SHI Jing. Retinex-based adaptive non-uniform low light image enhancement algorithm[J]. Computer Measurement and Control,2020,28(10):155−159,176.
[34] LECCA M. STAR: A segmentation-based approximation of point-based sampling milano retinex for color image enhancement[J]. IEEE Transactions on Image Processing,2018,27(12):5802−5812. doi: 10.1109/TIP.2018.2858541
[35] 程铁栋,卢晓亮,易其文,等. 一种结合单尺度Retinex与引导滤波的红外图像增强方法[J]. 红外技术,2021,43(11):1081−1088. CHENG Tiedong,LU Xiaoliang,YI Qiwen,et al. Research on infrared image enhancement method combined with single-scale Retinex and guided image filter[J]. Infrared Technology,2021,43(11):1081−1088.
[36] 王 彦,谢晓方,肖楚琬等. 基于改进MSR滤波算法的X光图像增强[J]. 计算机工程,2012,38(8):186−188. WANG Yan,XIE Xiaofang,XIAO Chuwan,et al. X-ray image enhancement based on improved MSR filtering algorithm[J]. Computer Engineering,2012,38(8):186−188.
[37] WANG J,LU K,XUE J,et al. Single image dehazing based on the physical model and MSRCR algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology,2018,28(9):2190−2199. doi: 10.1109/TCSVT.2017.2728822
[38] 张 翔,王 伟,肖 迪. 一种改进的具有色彩保护的多尺度Retinex图像增强算法[J]. 计算机科学,2018,45(10):246−249. doi: 10.11896/j.issn.1002-137X.2018.10.045 ZHANG Xiang,WANG Wei,XIAO Di. Improved image enhancement algorithm based on multi-scale retinex with chromaticity preservation[J]. Computer Science,2018,45(10):246−249. doi: 10.11896/j.issn.1002-137X.2018.10.045
[39] LECCA M,SIMONE G,BONANOMI C,et al. Point-based spatial colour sampling in Milano-Retinex: a survey[J]. IET Image Processing,2018,12(6):833−849. doi: 10.1049/iet-ipr.2017.1224
[40] 阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186−192. RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186−192.
[41] 程德强,郑 珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31−34. CHENG Deqiang ZHENG Zhen,JIANG Hailong. Image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31−34.
[42] 唐守锋,史 可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32−36. TANG Shoufeng,SHI Ke,TONG Guanming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32−36.
[43] 张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(S1):532−540. ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532−540.
[44] DU Yuxin,TONG Minming,ZHOU Lingling,et al. Edge detection based on retinex theory and wavelet multiscale product for mine images[J]. Applied Optics,2016,55:9625−9637. doi: 10.1364/AO.55.009625
[45] 钟梦圆,姜 麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索,2022,16(5):972−990. doi: 10.3778/j.issn.1673-9418.2111126 ZHONG Mengyuan,JIANG Lin. A review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology,2022,16(5):972−990. doi: 10.3778/j.issn.1673-9418.2111126
[46] WANG L,XIANG S,MENG G,et al. Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2013,23(8):1289−1299. doi: 10.1109/TCSVT.2013.2240915
[47] HU X,PENG S,HWANG W L. Learning adaptive interpolation kernels for fast single-image super resolution[J]. Signal, Image and Video Processing,2014,8(6):1077−1086. doi: 10.1007/s11760-014-0634-7
[48] 叶坤涛,刘继锋,郭振龙,等. 基于MCA的压缩感知彩色图像超分辨率重建[J]. 江西理工大学学报,2019,40(3):86−94. YE Kuntao,LIU Jifeng,GUO Zhenlong,et al. Super-resolution reconstruction of compressed sensing colour image based on MCA[J]. Journal of Jiangxi University of Science and Technology,2019,40(3):86−94.
[49] REN C,HE X,TENG Q,et al. Single image super-resolution using local geometric duality and non-local similarity[J]. IEEE Transactions on Image Processing,2016,25(5):2168−2183. doi: 10.1109/TIP.2016.2542442
[50] 汪海涛,于文洁,张光磊. 基于在线多字典学习的矿井图像超分辨率重建方法[J]. 工矿自动化,2020,46(9):74−78. WANG Haitao,YU Wenjie,ZHANG Guanglei. Suoer-resolution reconstruction method of mine image based on online multi-dictionary learning[J]. Industry and Mine Automation,2020,46(9):74−78.
[51] 蔡文郁,张美燕,吴 岩,等. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报,2022,44(1):178−186. doi: 10.11999/JEIT201046 CAI Wenyu,ZHANG Meiyan,WU Yan,et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics & Information Technology,2022,44(1):178−186. doi: 10.11999/JEIT201046
[52] TING Y,SHU JIA,HAO M. Research on the Application of Super Resolution Reconstruction Algorithm for Underwater Image[J]. Computers, Materials & Continua,2020,62(3):1249−1258.
[53] GAO Rui, CHENG Deqiang, YAO Jie, et al. Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving. KSII Transaction ON Internet and Information Systems, 2020, 14(9): 3745-3761.
[54] 程德强,于文洁,郭 昕,等. 自适应的图像在线字典学习超分辨率重建算法[J]. 激光与光电子学进展,2020,57(6):302−312. CHENG Deqiang,YU Wenjie,GUO Xin,et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction image[J]. Laser & Optoelectronics Progress,2020,57(6):302−312.
[55] 程德强,陈亮亮,蔡迎春,等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报,2018,43(7):2084−2090. CHENG Deqiang,CHEN Liangliang,CAI Yingchun,et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society,2018,43(7):2084−2090.
[56] 宋玉龙. 基于反馈残差网络的矿井图像超分辨率重建算法研究[D]. 徐州: 中国矿业大学, 2018. SONG Yulong. Research on mine image super-resolution reconstruction algorithm based on feedback residual network[D]. Xuzhou: China University of Mining and Technology, 2018.
[57] CHEN L L,KOU Q Q,CHENG D Q,et al. Content-guided deep residual network for single image super-resolution[J]. Optik,2020,202:163678. doi: 10.1016/j.ijleo.2019.163678
[58] 程德强,郭 昕,陈亮亮,等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报,2021,26(3):605−618. doi: 10.11834/jig.200108 CHENG Deqiang,GUO Xin,CHEN Liangliang,et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics,2021,26(3):605−618. doi: 10.11834/jig.200108
[59] 徐金婧,徐熙平. 基于时空显著特征的运动目标检测方法研究[J]. 长春理工大学学报(自然科学版),2020,43(4):43−48. XU Jinjing,XU Xiping. Research on moving target detection method based on time and space saliency features[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2020,43(4):43−48.
[60] YIN Jiale,LIU Lei,LI He,et al. The infrared moving object detection and security detection related algorithms based on W4 and frame difference[J]. Infrared Physics and Technology,2016,77:302−315. doi: 10.1016/j.infrared.2016.06.004
[61] SATOSHI H,KYOHEI N. Optical flow for real-time human detection and action recognition based on CNN classifiers[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2019,23(4):735−742. doi: 10.20965/jaciii.2019.p0735
[62] 程德强,刘 洁,郭 政. 基于分层光流的煤矿井下运动目标跟踪算法[J]. 工矿自动化,2015,41(3):75−79. CHENG Deqiang,LIU Jie,GUO Zheng. An algorithm for moving targets tracking in coal mine underground based on layered optical flow[J]. Industry and Mine Automation,2015,41(3):75−79.
[63] 朱文杰,王广龙,田 杰. 空时自适应混合高斯模型复杂背景运动目标检测[J]. 北京理工大学学报,2018,38(2):165−172. ZHU Wenjie,WANG Guanglong,TIE Jie. Spatio-temporal adaptive mixture of gaussians for moving object detection in complex backgrounds scenes[J]. Transactions of Beijing Institute of Technology,2018,38(2):165−172.
[64] 张谢华. 煤矿智能视频监控系统关键技术的研究[D]. 徐州: 中国矿业大学, 2013. ZHANG Xiehua. Research on key techniques in coalmine intelligent video surveillance system[D]. Xuzhou: China University of Mining and Technology, 2013.
[65] 张小艳,郭海涛. 基于改进混合高斯模型的井下目标检测算法[J]. 工矿自动化,2021,47(4):67−72. ZHANG Xiaoyan,GUO Haitao. Underground target detection algorithm based on improved Gaussian mixture model[J]. Industry and Mine Automation,2021,47(4):67−72.
[66] 许 鹏. 基于边缘计算的煤矿井下皮带异物检测关键技术研究[D]. 徐州: 中国矿业大学, 2021. XU Peng. Study on the key technology of foreign object detection of coal mine belt based on edge computing[D]. Xuzhou: China University of Mining and Technology, 2021.
[67] 胡璟皓. 基于深度学习的带式输送机非煤异物视频检测系统[D]. 太原: 太原理工大学, 2021. HU Jinghao. Video monitoring system for non-coal foreign matter of belt conveyor based on deep learning[D]. Taiyuan: Taiyuan University of Technology, 2021.
[68] 郝 帅,张 旭,马 旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147−4156. doi: 10.13225/j.cnki.jccs.2021.1644 HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147−4156. doi: 10.13225/j.cnki.jccs.2021.1644
[69] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361−1369. CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361−1369.
[70] 程德强,张皓翔,江 曼,等. 融合主曲率与颜色信息的彩色图像检索算法[J]. 计算机辅助设计与图形学学报,2021,33(2):223−231. CHENG Deqiang,ZHANG Haoxiang,JINAG Man,et al. Color image retrieval method fusing principal curvature and color information[J]. Journal of Computer-Aided Design & Computer Graphics,2021,33(2):223−231.
[71] ZHANG Haoxiang,JIANG Man,KOU Qiqi. Color image retrieval algorithm fusing color and principal curvatures information[J]. IEEE Access,2020(8):184945−184954.
[72] ZOU Huadong,JIA Ruiqing. Visual positioning and recognition of gangues based on scratch feature detection[J]. Traitement du Signal,2019,36(2):147−153. doi: 10.18280/ts.360204
[73] 王 超,张 强. 基于LBP和GLCM的煤岩图像特征提取与识别方法[J]. 煤矿安全,2020,51(4):129−132. WANG Chao,ZHANG Qiang. Coal rock image feature extraction and recognition method based on LBP and GLCM[J]. Safety in Coal Mines,2020,51(4):129−132.
[74] 寇旗旗, 程德强, 于文洁, 等. 一种基于颜色和纹理信息的运动目标识别装置及方法 [P]. 中国: ZL110232703A, 2019-09-13. KOU Qiqi, CHENG Deqiang, YU Wenjie, et al. A moving target recognition device and method based on color and texture information [P]. China: ZL110232703A, 2019-09-13.
[75] 黄 瀚,程小舟,云 霄,等. 基于DA-GCN的煤矿人员行为识别方法[J]. 工矿自动化,2021,47(4):62−66. HUANG Han,CHENG Xiaozhou,YUN Xiao,et al. DA-GCN-based coal mine personnel action recognition method[J]. Industry and Mine Automation,2021,47(4):62−66.
[76] YANG J,PENG J,LI Y,et al. Gangue localization and volume measurement based on adaptive deep feature fusion and surface curvature filter[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1−13.
[77] 刘 浩,刘海滨,孙 宇,等. 煤矿井下员工不安全行为智能识别系统研究[J]. 煤炭学报,2021:1−13. LIU Hao,LIU Haibin,SUN Yu,et al. Research on intelligent recognition system of unsafe behavior of coal mine underground employee[J]. Journal of China Coal Society,2021:1−13.
[78] 王伟峰,张宝宝,王志强,等. 基于YOLOv5的矿井火灾视频图像智能识别方法[J]. 工矿自动化,2021,47(9):1−13. WANG Weifeng,ZHANG Baobao,WANG Zhiqiang,et al. Intelligent identification method of mine fire video images based on YOLOv5[J]. Industry and Mine Automation,2021,47(9):1−13.
[79] 方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263−270. FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263−270.
[80] 程德强,王雨晨,寇旗旗,等. 基于改进深度残差网络的矿井图像分类[J]. 计算机应用研究,2021,38(5):1576−1580. CHENG Deqiang,WANG Yuchen,KOU Qiqi,et al. Classification of mine images based on improved deep residual network[J]. Application Research of Computers,2021,38(5):1576−1580.
[81] 焦 通,申德荣,聂铁铮,等. 区块链数据库: 一种可查询且防篡改的数据库[J]. 软件学报,2019,30(9):2671−2685. JIAO Tong,SHEN Derong,NIE Tiezhen,et al. BlockchainDB: Querable and immutable database[J]. Journal of Software,2019,30(9):2671−2685.
-
期刊类型引用(2)
1. 辛在军,王玺洋,李亮,李娅,邓觅,姚忠. 固定化SRB包埋颗粒组分优选及处理含SO_4~(2-)废水效果研究. 工业水处理. 2024(03): 112-119 . 百度学术
2. 高飞,王涛,肖一鑫,方立天. 山西莫底沟矿区含硫矿物产酸潜力评估. 安全与环境工程. 2024(02): 301-310 . 百度学术
其他类型引用(0)