高级检索

孟巧荣,王慧娴,王朋飞,等. 深埋倾斜特厚煤层窄煤柱护巷机理与围岩控制[J]. 煤炭科学技术,2024,52(3):38−52

. DOI: 10.13199/j.cnki.cst.2023-0239
引用本文:

孟巧荣,王慧娴,王朋飞,等. 深埋倾斜特厚煤层窄煤柱护巷机理与围岩控制[J]. 煤炭科学技术,2024,52(3):38−52

. DOI: 10.13199/j.cnki.cst.2023-0239

MENG Qiaorong,WANG Huixian,WANG Pengfei,et al. Gateroad protection mechanism and surrounding rock control for gob-side entry with slender pillar in deep and inclined extra-thick coal seams[J]. Coal Science and Technology,2024,52(3):38−52

. DOI: 10.13199/j.cnki.cst.2023-0239
Citation:

MENG Qiaorong,WANG Huixian,WANG Pengfei,et al. Gateroad protection mechanism and surrounding rock control for gob-side entry with slender pillar in deep and inclined extra-thick coal seams[J]. Coal Science and Technology,2024,52(3):38−52

. DOI: 10.13199/j.cnki.cst.2023-0239

深埋倾斜特厚煤层窄煤柱护巷机理与围岩控制

Gateroad protection mechanism and surrounding rock control for gob-side entry with slender pillar in deep and inclined extra-thick coal seams

  • 摘要: 我国中东部地区采深大、巷道变形和冲击风险大,窄煤柱沿空掘巷技术可改善巷道围岩环境。为掌握窄煤柱护巷机理并形成针对性围岩控制技术体系,以800 m埋深倾斜特厚煤层3 m窄煤柱沿空掘巷为背景,开展了理论分析、现场实测及数值模拟研究,结果表明:①该巷围岩破碎程度及变形煤柱侧比实体煤侧严重,煤柱破碎程度及变形采空区侧比巷道侧大,尽管埋深大,但已稳定采空区承担较大覆岩载荷,高应力已充分向深部岩体分流;②巷道变形非对称,实体煤侧顶板下沉量比煤柱侧大,巷帮以浅部变形为主,煤柱帮上部和实体煤帮中部变形较大;③采空区是掘巷卸荷后主要的形变通道,利于形变能向采空区缓释、降低冲击风险;④卸压区形状由掘巷前三角形扩展为掘巷后平行四边形,掘巷后应力集中区转移至实体煤帮右上方实体煤岩体中;⑤窄煤柱一次和二次剪切破坏的交界面及掘巷右上方实体高应力区为围岩关键控制区,据此提出基于煤柱多重塑性破坏区发育规律的煤柱加固和高应力区精准卸压联合的围岩控制技术体系。研究可为邻近工作面以及其他类似深埋倾斜特厚煤层开采提供理论支撑和科学依据。

     

    Abstract: The depth of coal mining in the central and eastern China is increasing, the ground pressure is high, the roadway deformation and burst risk is great. Gob-side entry with slender gate pillar (GESGP) is constantly adopted to improve surrounding rock environment. In order to grasp ground pressure behavior of the gob-side entry and develop targeted surrounding rock control measures, field observation and numerical simulation have been carried out against a case of GESGP of 3 m pillar in a ultra thick coal seam of a 800 m cover depth. The results show that: ① Fragmentation and deformation of surrounding rock on the coal pillar side are larger than the other side. Fragmentation and deformation of pillar at the gob side is larger than the other; Although the buried depth is great, the gob is settled and a large amount of overburden load is sustained by it, so the stress is sufficiently transferred to the deep rocks; ② The deformation of the gob-side entry is asymmetrical, the roof sags more on the pillar side than the other, pillar rib top and solid coal side rid middle are greater with deformation occurring mostly at shallow part; ③ Gob is the “escape” passage for entry deformation which is good for slow release of deformation energy and reduction of burst; ④ The range of the pressure relief area is expanded from triangle before excavation to parallelogram after excavation, also the location of the stress concentration area is shifted to the upper right of the entry; ⑤ Interface of the first/second shear failure planes on the pillar and the high stress zone on the upper right of the entry are the key targeted control zones. The surrounding rock control system was put forward that coal pillar reinforcement based on multiple plastic zone development cycles and precise destress of high stress zone. The research can provide research foundation and scientific basis for the adjacent panels and other similar deep and inclined extra-thick coal seams.

     

/

返回文章
返回