高级检索

超高压水力割缝技术在中等硬度低透气性煤层的应用

唐永志, 李平, 朱贵旺, 陈建, 陈德忠, 丰安祥, 唐志华, 杨洋, 叶敏

唐永志,李 平,朱贵旺,等. 超高压水力割缝技术在中等硬度低透气性煤层的应用[J]. 煤炭科学技术,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12
引用本文:

唐永志,李 平,朱贵旺,等. 超高压水力割缝技术在中等硬度低透气性煤层的应用[J]. 煤炭科学技术,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12

TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12
Citation:

TANG Yongzhi,LI Ping,ZHU Guiwang,et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49

. DOI: 10.13199/j.cnki.cst.mcq22-12

超高压水力割缝技术在中等硬度低透气性煤层的应用

基金项目: 

国家科技重大专项资助项目 (2016ZX05068)

详细信息
    作者简介:

    唐永志: (1962—),男,安徽淮南人,教授级高级工程师。Tel:0554-7625092,E-mail: tyz1962@163.com

  • 中图分类号: TD713

Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam

Funds: 

National Science and Technology Major Project Funding (2016ZX05068)

  • 摘要:

    为提高高瓦斯低透气性中硬煤层瓦斯预抽效率,探讨了水力冲孔、水力压裂、水力割缝增透技术适用条件和优缺点。基于超高压水力割缝技术原理,研制了一种穿层钻孔超高压水力割缝装置,主要由金刚石水力割缝钻头、水力割缝浅螺旋钻杆、超高压旋转接头、超高压清水泵、高低压转换器、超高压橡胶管等组成,水压达到60~100 MPa,可实现钻进、切割一体化,使用简单方便。采用该装置在丁集煤矿1361(1)运输巷底板抽采巷11-2煤层穿层预抽钻孔中开展现场试验,煤层瓦斯压力1.43 MPa,瓦斯含量为8.05 m3/t,透气性系数为0.013 m2/(MPa2·d),煤层坚固性系数为0.79;1361(1)运输巷底板抽采巷11号~15号钻场区域单元长度227 m,采用高压水力割缝增透措施,1361(1)运输巷底板抽采巷6号~10号钻场区域单元长度213 m,采用矿井低压水冲孔增透措施。结果表明:超高压水力割缝钻孔平均单刀割缝时间为10.7 min,单刀出煤量为0.31 t,等效割缝半径达1.38 m,煤孔段割缝密度为1 刀/m,平均每孔割缝2.6个;超高压水力割缝钻孔平均瓦斯抽采浓度56.97%,是低压冲孔的2.37倍;单孔平均瓦斯抽采纯量0.012 m3/min,是低压冲孔的2.99倍;瓦斯抽采达标时间约23 d,分别比普通钻孔和水力冲孔技术抽采达标时间缩短了74.4%和54.9%。相较于普通钻孔和水力冲孔技术,超高压水力割缝技术在低透气性中硬煤层中瓦斯增透抽采效果更为理想。

    Abstract:

    In order to improve the gas pre-drainage efficiency of medium hard coal seam with high gas and low permeability, the applicable conditions, advantages and disadvantages of hydraulic piercing, hydraulic fracturing and hydraulic cutting seam anti-permeability technology were discussed. Based on the principle of ultra-high pressure hydraulic slotting technology, a kind of ultra-high pressure hydraulic slotting device for through-layer drilling is developed, it is mainly composed of diamond hydraulic slotting bit, shallow spiral drill pipe, ultra-high pressure rotary joint, ultra-high pressure clean water pump, high-low pressure converter, ultra-high pressure rubber pipe, etc. The water pressure reaches 60−100 MPa, which can realize the integration of drilling and cutting, and is simple and convenient to use. The device was used to carry out field tests in the pre-drainage boreholes of 11-2 coal seam through the floor roadway of 1361(1) haulage gateway in Dingji coal mine. The coal seam gas pressure was 1.43 MPa, the gas content was 8.05 m3/t, and the gas permeability coefficient was 0.013 m2/ (MPa2·d), the coal seam firmness coefficient is 0.79; 1361(1) transportation roadway floor No.11−No.15  drilling area unit length 227 meters, using high-pressure hydraulic slotting anti-permeability measures, 1361(1) transportation roadway floor No.6—No.10 drilling area unit length 213 meters, anti-permeability measures of low-pressure water punching in coal mine. The results show that the average single-knife slitting time of ultra-high pressure hydraulic slitting drilling is 10.7 min, the single-knife coal output is 0.31 t, the equivalent slitting radius is 1.38 m, the slitting density of the coal hole section is 1 knife/m, and the average cutting rate per hole is The average gas drainage concentration of ultra-high pressure hydraulic slotted holes is 56.97%, which is 2.37 times that of low-pressure punching; The time to reach the standard is about 23 days, which is 74.4% and 54.9% shorter than that of ordinary drilling and hydraulic punching technology respectively. Compared with ordinary drilling and hydraulic punching technology, ultra-high pressure hydraulic slotting technology is more ideal for gas drainage in low permeability medium-hard coal seams.

  • 钻孔预抽煤层瓦斯一直是我国煤矿瓦斯灾害治理的最普适手段之一[1-3]。随着煤炭开采资源逐步向深部转移,煤层瓦斯压力、瓦斯含量逐渐增加,而煤层透气性逐渐降低,煤层瓦斯的抽采难度随之增大,表现为预抽浓度偏低、预抽瓦斯量衰减快。众所周知,透气性低是影响煤层瓦斯抽采效果、制约煤矿安全生产主要因素[4-6],因此,如何提高煤层的透气性是破解瓦斯治理难题的关键。近年来,随着煤矿瓦斯治理技术的不断发展,各种瓦斯增透措施被广泛地应用于瓦斯灾害的治理,主要包括水力冲孔、水力割缝、水力压裂等。其中,水力冲孔主要是利用高压水射流冲刷钻孔内壁,增加抽采钻孔的半径、增加原始煤体的暴露空间面积[7-9];水力割缝技术则是利用高压射流水作为介质对钻孔内的煤体进行切割,从而在钻孔内形成新的缝槽,实现增加煤层透气性、降低原岩煤层应力的目的[10-12];水力压裂技术是通过向地层中挤入高压压裂液使裂缝产生并向远端扩张,从而建立新的流通通道,实现煤层增透的目的[13-15]。以上3种煤层增透措施均有各自的优势,但也存在一定的不足。其中,水力冲孔压力通常在5~20 MPa,适用坚固性系数较小的软煤,形成的孔洞具有不可控性,容易造成垮孔、堵孔、瓦斯积聚等现象;水力压裂压力可达到50~80 MPa,适用于坚固性系数较大的坚硬煤层,但压裂后裂缝将有不同程度的闭合;水力割缝压力一般为30~60 MPa,适用于中等坚硬煤层,但割缝的深度一般不超过1 m,施工过程中频繁退钻严重影响施工效率[16-17]

    淮南矿业集团丁集煤矿11-2煤层开采深度达到900 m以深,瓦斯压力超过1.4 MPa,瓦斯含量超过8 m3/t,普通的煤巷条带穿层钻孔预抽达标时间需要90 d,造成矿井采掘接替紧张。11-2煤层坚固性系数为0.7左右,透气性系数为0.013 m2/MPa2·d,属于中等硬度低透气性煤层,鉴于此,研究了1套水射压力可达100 MPa的超高压钻-割一体化技术工艺,以期能够增大煤层透气性,缩短抽采达标时间,实现松软突出煤层快速卸压消突的目的。

    超高压水力割缝是通过超高压水(60~100 MPa)将煤壁进行快速切割形缝槽并排除煤屑的方法[18-19]。水力割缝形成的缝槽等于在钻孔周围小范围内形成了一层薄的保护层,使缝槽上下的煤体得到有效卸压,大幅提升了煤层的渗透能力;同时,缝槽四周的煤体向着切割槽内产生一定的位移和膨胀变形,新生裂隙与原有孔裂隙之间相互贯通形成缝网,将进一步增加卸压增透范围,提高抽采效果和降低抽采达标时间[20-22]

    GF-100型超高压水力割缝装置主要由金刚石水力割缝钻头、水力割缝浅螺旋钻杆、超高压旋转接头、超高压清水泵、高低压转换器、超高压橡胶管等组成[23],性能良好、结构简单、操作方便、使用效果好,可实现钻进、切割一体化。设备及配件如图1所示。

    图  1  超高压水力割缝设备及配件
    Figure  1.  Equipment and accessories of ultra-high pressure hydraulic slotting

    图2为超高压水力割缝工艺示意图,具体施工程序为:

    图  2  超高压水力割缝工艺示意
    1—金刚石水力割缝钻头;2—高低压转换器;3—水力割缝浅螺旋钻杆;4—超高压旋转接头;5—螺纹接头;6—超高压橡胶管;7—超高压清水泵;8—水箱
    Figure  2.  Schematic of ultra-high pressure hydraulic schack process

    1)用$\phi $113 mm金刚石复合片钻头,按钻孔设计参数施工至设计深度。根据煤孔段长度,按1m割1刀计算该钻孔需割缝刀数。

    2)关闭静压水,撤出一根钻杆,连接高压水管路,开启高压水泵,由低到高调节增大,最后从高低压转换器上的喷嘴射出,钻机旋转,通过高压水流对周边煤体进行切割,每刀割缝时间不小于10 min。

    3)割缝期间根据孔口返水返渣情况,确定关闭高压清水泵时间,待管路卸压后撤卸1根钻杆,重新接上高压管路。

    4)重复上述步骤,完成预计割缝刀数。割缝完成后,及时关闭超高压清水泵,待充分卸压后,撤卸钻杆、封孔完成割缝作业。

    试验地点为丁集煤矿1361(1)运输巷底板抽采巷,预抽煤层为11-2煤,煤层瓦斯压力1.43 MPa,瓦斯含量8.05 m3/t,透气性系数0.013 m2/(MPa2·d),煤层坚固性系数0.79;普通钻孔抽采效率低,抽采达标时间长,以往工作面巷道抽采达标时间长达90 d,严重制约了矿井采掘接替。

    丁集煤矿1361(1)运输巷底板抽采巷长2 556.3 m,设计标高:−950.5~−837.5 m,巷道宽4.6 m,高3.6 m,锚网索支护,距11-2煤底板法距23.1~25.6 m,与被掩护煤巷中对中平距30 m。每间隔40 m设计施工一个帮部钻场,钻场尺寸为5.5 m×4 m×3 m(长×宽×高),钻场内施工注浆锚索并进行喷注浆,每个钻场设计6~7组钻孔,每组钻孔11个孔,终孔间距走向为7.5 m,倾向为5 m。1361(1)工作面平面布置如图3所示。

    图  3  1361(1)工作面平面布置
    Figure  3.  Layout plan of 1361 (1) working face

    1361(1)运输巷底板抽采巷11号~15号钻场为第三预抽评价单元,长度227 m,采用高压水力割缝增透措施。1361(1)运输巷底板抽采巷第二预抽评价单元,钻场号为6~10号钻场,单元长度213 m,采用矿井低压水冲孔增透措施。水力冲孔压力控制在5~20 MPa之间,超高压水力割缝压力控制在60 MPa以上。为了确保考察对比客观,2个预抽评价单元钻孔封孔方式均采用“两堵一注”带压注浆,抽采负压基本一致。

    1361(1)运输巷底板抽采巷2020-08-01开始在11号钻场进行高压水力割缝作业,第三预抽单元完成割缝钻孔共计240个。其中对11号钻场割缝情况进行统计考察,平均每刀割煤量10袋,因见煤段长度及割缝刀数差异,每孔割缝煤量不一样,具体割出煤量见表1

    表  1  1361(1)运输巷底板抽采巷11号钻场割缝情况统计
    Table  1.  Statistical of seam cutting in No.11 drilling yard of 1361 (1) transportation channel floor roadway
    孔号煤段
    长度/m
    割缝
    刀数
    割缝
    煤量/t
    割缝
    时间/min
    施工
    时间
    66-14.941.3412020-08-01夜
    66-34.641.2452020-08-01早
    66-53.630.9332020-08-02中
    66-73.330.8312020-08-01中
    66-92.720.5252020-08-01中
    66-112.720.6232020-08-02夜
    67-15.141.4402020-08-05夜
    67-33.220.7222020-08-05早
    67-53.830.9332020-08-05早
    67-72.920.6232020-08-05中
    67-92.620.7202020-08-05中
    67-112.320.6212020-08-06夜
    68-13.831.0352020-08-08中
    68-33.120.6222020-08-07中
    68-53.630.9242020-08-08夜
    68-72.520.7222020-08-08早
    68-92.520.6212020-08-08早
    68-112.220.5232020-08-08中
    下载: 导出CSV 
    | 显示表格

    根据统计分析,高压水力割缝每孔割2~4刀,割缝时间20~40 min,平均每刀割缝时间10.7 min,单孔割出煤量约0.8 t,单刀出煤量0.31 t。割缝高度按照平均4 cm计算,等效割缝半径约1.38 m。

    按照设计方案要求钻孔施工完毕以后,将所有设计钻孔接入瓦斯抽采系统进行瓦斯流量参数测定,利用多功能瓦斯参数测定仪对瓦斯流量进行测定,同时,对2种方案中的监测结果进行对比分析,监测内容包括抽采瓦斯体积分数、抽采流量等。

    对2个预抽评价单元抽采负压、浓度、混量及纯量进行考察记录,见表2表3

    表  2  1361(1)运输巷底板抽采巷第二评价单元抽采数据
    Table  2.  Extraction data of the second evaluation unit of 1361 (1) transportation channel floor roadway
    日期(月-日)抽放负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    07-2021.230.25.171.56
    07-2121.030.05.171.55
    07-2221.328.05.431.52
    07-2321.229.05.281.53
    07-2421.128.25.531.56
    07-2521.028.05.391.51
    07-2621.028.45.421.54
    07-2720.827.05.741.55
    07-2821.227.25.631.53
    07-2920.626.65.861.56
    07-3020.726.25.921.55
    07-3121.226.05.921.54
    08-0121.125.06.121.53
    08-0221.025.55.961.52
    08-0320.225.85.931.53
    08-0420.825.66.091.56
    08-0521.225.26.191.56
    08-0621.125.06.081.52
    08-0720.724.26.281.52
    08-0821.224.66.181.52
    08-0921.124.46.271.53
    08-1021.023.86.551.56
    08-1120.723.66.611.56
    08-1221.223.26.721.56
    08-1321.122.66.861.55
    08-1421.023.06.701.54
    08-1520.723.06.651.53
    08-1621.222.66.731.52
    08-1721.122.26.891.53
    08-1821.022.07.091.56
    08-1920.222.46.961.56
    08-2020.821.07.431.56
    08-2120.721.07.431.56
    08-2221.221.27.171.52
    08-2321.121.67.041.52
    08-2420.721.07.241.52
    08-2521.220.07.651.53
    08-2621.119.87.881.56
    08-2721.019.67.961.56
    08-2820.219.18.171.56
    08-2920.819.28.071.55
    08-3021.219.07.951.51
    下载: 导出CSV 
    | 显示表格
    表  3  1361(1)运输巷底板抽采巷第三评价单元抽采数据
    Table  3.  Extraction data of the third evaluation unit of 1361 (1) transportation channel floor roadway
    日期(月-日)抽采负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    08-2021.071.03.702.63
    08-2121.070.03.802.66
    08-2220.268.23.872.64
    08-2320.868.03.902.65
    08-2420.766.04.142.73
    08-2521.266.23.872.56
    08-2621.165.03.942.56
    08-2720.763.04.052.55
    08-2821.260.24.532.73
    08-2920.660.24.582.76
    08-3020.758.24.792.79
    08-3121.258.84.862.86
    09-0121.159.04.812.84
    09-0221.060.04.772.86
    09-0320.258.64.952.90
    09-0420.856.85.162.93
    09-0521.156.05.002.80
    09-0621.055.05.152.83
    09-0721.056.25.092.86
    09-0820.855.15.142.83
    09-0921.252.25.542.89
    09-1020.652.05.462.84
    09-1121.254.25.282.86
    09-1221.152.45.532.90
    09-1321.053.05.532.93
    09-1420.753.25.663.01
    09-1521.252.65.512.90
    09-1621.252.25.612.93
    09-1721.153.05.282.80
    09-1821.052.65.382.83
    09-1921.253.45.362.86
    09-2021.153.05.532.93
    09-2121.053.05.452.89
    09-2221.153.25.512.93
    09-2320.853.05.642.99
    09-2421.252.05.652.94
    09-2521.152.05.692.96
    09-2620.653.05.472.90
    09-2720.753.25.512.93
    09-2821.253.05.472.90
    09-2921.053.05.512.92
    09-3021.252.05.672.95
    下载: 导出CSV 
    | 显示表格

    2种不同抽采方法的单元平均瓦斯浓度统计结果如图4所示。从图4中可知,在41 d抽采时间内,单元平均瓦斯抽采浓度均为逐渐减小的变化趋势,高压水力割缝试验钻孔浓度在23 d时趋于稳定,水力冲孔试验钻孔浓度始终降低。其中,超高压水力割缝单元瓦斯浓度在52%~71%,平均为56.97%;水力冲孔试验单元平均瓦斯浓度分布在19.0%~30.2%,平均为24.07%。

    图  4  1361(1)运输巷底板抽采巷预抽单元浓度对比
    Figure  4.  Comparison of concentrations of pre-pumping units of 1361 (1) transportation channel floor roadway

    经对比分析可得,高压水力割缝试验钻孔浓度是水力冲孔试验钻孔浓度的2.37倍,高浓稳定抽采持续时间长,衰减慢。分析其原因主要为:超高压水力割缝相当于首先开采一到多层薄的保护层,使煤层多次膨胀变形,可极大地增加原始煤层的暴露表面积和瓦斯流动微通道连通性,从而使瓦斯压力达到充分的卸压,有效降低瓦斯压力梯度,提高煤层透气性。

    2种不同抽采方法的单孔平均纯量统计结果如图5所示。从图5中可知,在41 d 抽采时间内,高压水力割缝单元单孔平均瓦斯抽采纯量呈逐渐增大趋势,水力冲孔单元单孔平均瓦斯抽采纯量基本保持不变。其中,高压水力割缝单元单孔平均瓦斯抽采纯量在10.67~12.46 L/min, 平均为11.8 L/min;水力冲孔试验单元平单孔平均瓦斯抽采纯量分布在3.87~4 L/min,平均为3.95 L/min。经对比分析可得,超高压水力割缝单元单孔平均瓦斯抽采纯量是水力冲孔的2.99倍,这进一步说明超高压水力割缝增透抽采效果较好。

    图  5  1361(1)运输巷底板抽采巷预抽单元单孔抽采纯量对比
    Figure  5.  Comparison of single-hole extraction purity of the pre-pumping unit 1361 (1) transportation channel floor roadway

    依据试验区域单元瓦斯抽采达标条件的要求,按照2个预抽单元抽采纯量核算,所得结果显示,1361(1)运输巷底板抽采巷预第二预抽评价单元抽采达标时间约51 d,而1361(1)运输巷底板抽采巷预第二预抽评价单元抽采达标时间约23 d,采用超高压水力割缝增透技术比普通钻孔和水力冲孔技术抽采达标时间分别缩短了74.4%和54.9%。

    1)超高压水力割缝相当于首先开采一到多层薄的保护层,使煤层多次膨胀变形,可极大地增加原始煤层的暴露表面积和瓦斯流动微通道连通性,从而使瓦斯压力达到充分卸压,有效提高瓦斯抽采效果。

    2)超高压水力割缝单元平均瓦斯浓度为56.97%,单孔平均瓦斯抽采纯量为11.8 L/min,分别是水力冲孔的2.37倍和2.99倍。超高压水力割缝单元抽采达标时间约23 d,分别比普通钻孔和水力冲孔技术抽采达标时间缩短了74.4%和54.9%。

    3)超高压水力割缝增透技术在同等抽采效果情况下可极大地减少钻孔施工数量,有效缩短钻孔施工时间,显著减少瓦斯达标抽采时间,在瓦斯灾害治理应用效果显著,有效解决了瓦斯抽采难和达标时间漫长的问题。

  • 图  1   超高压水力割缝设备及配件

    Figure  1.   Equipment and accessories of ultra-high pressure hydraulic slotting

    图  2   超高压水力割缝工艺示意

    1—金刚石水力割缝钻头;2—高低压转换器;3—水力割缝浅螺旋钻杆;4—超高压旋转接头;5—螺纹接头;6—超高压橡胶管;7—超高压清水泵;8—水箱

    Figure  2.   Schematic of ultra-high pressure hydraulic schack process

    图  3   1361(1)工作面平面布置

    Figure  3.   Layout plan of 1361 (1) working face

    图  4   1361(1)运输巷底板抽采巷预抽单元浓度对比

    Figure  4.   Comparison of concentrations of pre-pumping units of 1361 (1) transportation channel floor roadway

    图  5   1361(1)运输巷底板抽采巷预抽单元单孔抽采纯量对比

    Figure  5.   Comparison of single-hole extraction purity of the pre-pumping unit 1361 (1) transportation channel floor roadway

    表  1   1361(1)运输巷底板抽采巷11号钻场割缝情况统计

    Table  1   Statistical of seam cutting in No.11 drilling yard of 1361 (1) transportation channel floor roadway

    孔号煤段
    长度/m
    割缝
    刀数
    割缝
    煤量/t
    割缝
    时间/min
    施工
    时间
    66-14.941.3412020-08-01夜
    66-34.641.2452020-08-01早
    66-53.630.9332020-08-02中
    66-73.330.8312020-08-01中
    66-92.720.5252020-08-01中
    66-112.720.6232020-08-02夜
    67-15.141.4402020-08-05夜
    67-33.220.7222020-08-05早
    67-53.830.9332020-08-05早
    67-72.920.6232020-08-05中
    67-92.620.7202020-08-05中
    67-112.320.6212020-08-06夜
    68-13.831.0352020-08-08中
    68-33.120.6222020-08-07中
    68-53.630.9242020-08-08夜
    68-72.520.7222020-08-08早
    68-92.520.6212020-08-08早
    68-112.220.5232020-08-08中
    下载: 导出CSV

    表  2   1361(1)运输巷底板抽采巷第二评价单元抽采数据

    Table  2   Extraction data of the second evaluation unit of 1361 (1) transportation channel floor roadway

    日期(月-日)抽放负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    07-2021.230.25.171.56
    07-2121.030.05.171.55
    07-2221.328.05.431.52
    07-2321.229.05.281.53
    07-2421.128.25.531.56
    07-2521.028.05.391.51
    07-2621.028.45.421.54
    07-2720.827.05.741.55
    07-2821.227.25.631.53
    07-2920.626.65.861.56
    07-3020.726.25.921.55
    07-3121.226.05.921.54
    08-0121.125.06.121.53
    08-0221.025.55.961.52
    08-0320.225.85.931.53
    08-0420.825.66.091.56
    08-0521.225.26.191.56
    08-0621.125.06.081.52
    08-0720.724.26.281.52
    08-0821.224.66.181.52
    08-0921.124.46.271.53
    08-1021.023.86.551.56
    08-1120.723.66.611.56
    08-1221.223.26.721.56
    08-1321.122.66.861.55
    08-1421.023.06.701.54
    08-1520.723.06.651.53
    08-1621.222.66.731.52
    08-1721.122.26.891.53
    08-1821.022.07.091.56
    08-1920.222.46.961.56
    08-2020.821.07.431.56
    08-2120.721.07.431.56
    08-2221.221.27.171.52
    08-2321.121.67.041.52
    08-2420.721.07.241.52
    08-2521.220.07.651.53
    08-2621.119.87.881.56
    08-2721.019.67.961.56
    08-2820.219.18.171.56
    08-2920.819.28.071.55
    08-3021.219.07.951.51
    下载: 导出CSV

    表  3   1361(1)运输巷底板抽采巷第三评价单元抽采数据

    Table  3   Extraction data of the third evaluation unit of 1361 (1) transportation channel floor roadway

    日期(月-日)抽采负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    08-2021.071.03.702.63
    08-2121.070.03.802.66
    08-2220.268.23.872.64
    08-2320.868.03.902.65
    08-2420.766.04.142.73
    08-2521.266.23.872.56
    08-2621.165.03.942.56
    08-2720.763.04.052.55
    08-2821.260.24.532.73
    08-2920.660.24.582.76
    08-3020.758.24.792.79
    08-3121.258.84.862.86
    09-0121.159.04.812.84
    09-0221.060.04.772.86
    09-0320.258.64.952.90
    09-0420.856.85.162.93
    09-0521.156.05.002.80
    09-0621.055.05.152.83
    09-0721.056.25.092.86
    09-0820.855.15.142.83
    09-0921.252.25.542.89
    09-1020.652.05.462.84
    09-1121.254.25.282.86
    09-1221.152.45.532.90
    09-1321.053.05.532.93
    09-1420.753.25.663.01
    09-1521.252.65.512.90
    09-1621.252.25.612.93
    09-1721.153.05.282.80
    09-1821.052.65.382.83
    09-1921.253.45.362.86
    09-2021.153.05.532.93
    09-2121.053.05.452.89
    09-2221.153.25.512.93
    09-2320.853.05.642.99
    09-2421.252.05.652.94
    09-2521.152.05.692.96
    09-2620.653.05.472.90
    09-2720.753.25.512.93
    09-2821.253.05.472.90
    09-2921.053.05.512.92
    09-3021.252.05.672.95
    下载: 导出CSV
  • [1] 程远平,俞启香. 中国煤矿区域性瓦斯治理技术的发展[J]. 采矿与安全工程学报,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002

    CHENG Yuanping,YU Qixiang. Development of regional gas control technology for chinese coalmines[J]. Journal of Mining and Safety Engineering,2007,24(4):383−390. doi: 10.3969/j.issn.1673-3363.2007.04.002

    [2] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1998.
    [3] 袁 亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001

    YUAN Liang. Gas control concept and coal and gas co mining technology[J]. China Coal,2010,36(6):5−12. doi: 10.3969/j.issn.1006-530X.2010.06.001

    [4]

    LI Zhonghui,WANG Enyuan,OU Jianchun,et al. Hazard evaluation of coal and gas outbursts in a coal-mine roadway based on logistic regression model[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:185−195. doi: 10.1016/j.ijrmms.2015.07.006

    [5]

    FAN Chaojun,LI Sheng,LUO Mingkun,et al. Coal and gas outburst dynamic system[J]. International Journal of Rock Mechanics and Mining Sciences,2016,26(6):75−82.

    [6] 王 凯,李 波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784.

    WANG Kai,LI Bo,WEI Jianping,et al. Change law of coal seam permeability around hydraulic punching boreholes[J]. Journal of Mining and Safety Engineering,2013,30(5):778−784.

    [7] 刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010

    LIU Mingju,KONG Liu'an,HAO Fuchang,et al. Application of hydraulic punching technology in coal seams with serious outburst[J]. Journal of China Coal Society,2005,30(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010

    [8] 王恩元,汪 皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005

    WANG Enyuan,WANG Hao,LIU Xiaofei,et al. Temporal and spatial evolution law of coal stress and gas around hydraulic punching holes[J]. Coal Science and Technology,2020,48(1):39−45. doi: 10.13199/j.cnki.cst.2020.01.005

    [9] 薛 斐. 水力冲孔煤层增透机理及应用研究[D]. 北京: 中国矿业大学(北京), 2018.

    XUE Fei. Study on the mechanism and application of coal seam permeability enhancement by hydraulic punching [D]. Beijing : China University of Mining and Technology−Beijing, 2018.

    [10] 张永将,孟贤正,季 飞. 顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001

    ZHANG Yongjiang,MENG Xianzheng,JI Fei. Research and application of ultra-high pressure hydraulic slotting and anti permeability technology for long borehole in bedding[J]. Mining Safety and Environmental Protection,2018,45(5):1−5,11. doi: 10.3969/j.issn.1008-4495.2018.05.001

    [11] 曹建军. 超高压水力割缝卸压抽采区域防突技术应用研究[J]. 煤炭科学技术,2020,48(6):88−94.

    CAO Jianjun. Application research on regional outburst prevention technology of ultra-high pressure hydraulic slot pressure in relief drainage area[J]. Coal Science and Technology,2020,48(6):88−94.

    [12] 刘生龙,朱传杰,林柏泉,等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报,2020,37(5):983−990.

    LIU Shenglong,ZHU Chuanjie,LIN Baiquan,et al. The role of spatial distribution pattern of hydraulic slitting on coal seam pressure relief and permeability enhancement[J]. Journal of Mining and Safety Engineering,2020,37(5):983−990.

    [13] 杨兆中,张 丹,易良平,等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261

    YANG Zhaozhong,ZHANG Dan,YI Liangping,et al. Longitudinal propagation model and numerical simulation of fracturing fractures in multilayer superimposed coal seams[J]. Journal of China Coal Society,2021,46(10):3268−3277. doi: 10.13225/j.cnki.jccs.2020.1261

    [14] 王 利,孟兵兵,曹运兴,等. 水力压裂体积张开度模型[J]. 岩石力学与工程学报,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223

    WANG Li,MENG Bingbing,CAO Yunxing,et al. Hydraulic fracturing volume opening model[J]. Journal of Rock Mechanics and Engineering,2020,39(5):887−900. doi: 10.13722/j.cnki.jrme.2019.1223

    [15]

    ZHANG Yongjiang,ZOU Quanle,GUO Lindong. Air-leakage model and sealing technique with sealing-isolation integration for gas-drainage boreholes in coal mines[J]. Process Safety and Environmental Protection,2020,140:258−272. doi: 10.1016/j.psep.2020.03.024

    [16] 徐雪战. 低透气煤层超高压水力割缝与水力压裂联合增透技术[J]. 煤炭科学技术,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034

    XU Xuezhan. Ultra high pressure hydraulic slotting and hydraulic fracturing combined antireflection technology for low permeability coal seams[J]. Coal Science and Technology,2020,48(7):311−317. doi: 10.13199/j.cnki.cst.2020.07.034

    [17] 袁本庆. 煤巷条带水力化增透技术措施适用条件及评价指标初探[J]. 煤矿安全,2018,49(12):164−168.

    YUAN Benqing. Preliminary study on the application conditions and evaluation indicators of the technical measures for hydraulically enhancing the transparency of coal roadway strips[J]. Safety in Coal Mines,2018,49(12):164−168.

    [18] 林柏泉,刘 厅,邹全乐,等. 割缝扰动区裂纹扩展模式及能量演化规律[J]. 煤炭学报,2015,40(4):719−727.

    LIN Baiquan,LIU Ting,ZOU Quanle,et al. Crack propagation mode and energy evolution law in slotting disturbance zone[J]. Journal of China Coal Society,2015,40(4):719−727.

    [19] 李晓红,王晓川,康 勇,等. 煤层水力割缝系统过渡过程能量特性与耗散[J]. 煤炭学报,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014

    LI Xiaohong,WANG Xiaochuan,KANG Yong,et al. Energy characteristics and dissipation in the transition process of coal seam hydraulic slitting system[J]. Journal of China Coal Society,2014,39(8):1404−1408. doi: 10.13225/j.cnki.jccs.2014.9014

    [20] 杨增强. 煤体高压射流钻割卸压原理及其防冲研究[D]. 徐州: 中国矿业大学, 2014.

    YANG Zengqiang. Research on pressure relief principle of coal high-pressure jet drilling and cutting and its erosion prevention [D]. Xuzhou: China University of Mining and Technology, 2014.

    [21] 张永将,黄振飞,李成成. 高压水射流环切割缝自卸压机制与应用[J]. 煤炭学报,2018,43(11):3016−3022.

    ZHANG Yongjiang,HUANG Zhenfei,LI Chengcheng. Self relieving mechanism and application of high-pressure water jet ring cutting joint[J]. Journal of China Coal Society,2018,43(11):3016−3022.

    [22] 张永将,黄振飞,季 飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016

    ZHANG Yongjiang,HUANG Zhenfei,JI Fei. Coal rock and gas dynamic disaster prevention and control technology based on hydraulic slotting and pressure relief[J]. Coal Science and Technology,2021,49(4):133−141. doi: 10.13199/j.cnki.cst.2021.04.016

    [23] 张永将,陆占金. 超高压水力割缝煤层增透成套装置研制及应用[J]. 煤炭科学技术,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011

    ZHANG Yongjiang,LU Zhanjin. Development and application of a complete set of ultra-high pressure hydraulic slit coal seam permeability increasing device[J]. Coal Science and Technology,2020,48(10):97−104. doi: 10.13199/j.cnki.cst.2020.10.011

  • 期刊类型引用(14)

    1. 魏建平,校朋伟,张慧栋,陈长江,刘勇. 磨料水射流旋转切割煤岩最优参数匹配模型研究. 煤炭科学技术. 2025(01): 192-202 . 本站查看
    2. 陈芳. 水力冲孔技术在九鑫煤矿的应用研究. 能源与环保. 2025(02): 81-88 . 百度学术
    3. 聂百胜,包松,柳先锋,刘鹏,张豪,何珩溢,李孜健,周皓文,贾雪祺,何学秋. 地面煤层气高强电爆震体积致裂技术及工程试验. 煤炭学报. 2025(01): 546-563 . 百度学术
    4. 曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 . 百度学术
    5. 季飞. 松软煤层水力割缝缝槽形态控制技术研究及应用. 能源与环保. 2024(02): 29-33+39 . 百度学术
    6. 李树清,吕晨辉,黄飞,钱运来,黄向韬,赵天哲,汤铸,杨凤玲,王晨. 金刚石串珠绳锯切割煤层卸压增透效应研究. 煤炭学报. 2024(02): 785-800 . 百度学术
    7. 王博,侯恩科,马良,孙四清,杜新峰,杨建超,王正喜,单元伟. 顶板水平井分段分簇压裂治理掘进巷道瓦斯模式研究. 煤炭科学技术. 2024(05): 114-126 . 本站查看
    8. 邹军. 低透气性突出煤层群首采层水力割缝卸压抽采技术研究. 中国煤炭. 2024(06): 52-58 . 百度学术
    9. 郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 . 百度学术
    10. 刘永三. 超高压水射流割压联合技术试验分析. 陕西煤炭. 2024(07): 20-23+37 . 百度学术
    11. 王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 . 百度学术
    12. 刘杰,赵长鑫,张浩,李志斌,王斌荣,潘如小. 白羊岭煤矿底抽巷穿层水力冲孔技术研究与应用. 煤炭科技. 2024(05): 169-175 . 百度学术
    13. 双海清,张星,李宝军,林海飞,周斌,高海东,崔名威. 水射流割缝-注氮驱替联合促抽瓦斯模拟. 西安科技大学学报. 2024(06): 1030-1040 . 百度学术
    14. 迟跃彬,褚俊洁,贾京飞,刘帅. 桑树坪二号井难抽采煤层瓦斯突出特征与防治. 陕西煤炭. 2023(05): 110-114 . 百度学术

    其他类型引用(5)

图(5)  /  表(3)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  14
  • PDF下载量:  321
  • 被引次数: 19
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-17

目录

/

返回文章
返回