高级检索

基于DR-YOLOM的带式输送机运行状态多任务检测方法

Multi task detection method for operating status of belt conveyor based on DR-YOLOM

  • 摘要: 煤矿井下带式输送机运行状态的检测是带式输送机安全运行的关键,但现有检测方法大多只能处理单一检测任务,难以实现多任务同时检测。针对现有技术难以实现综合检测的现状,提出一种基于改进YOLOM的带式输送机运行状态多任务检测方法:使用单一网络同时完成大尺寸煤块识别、输送带边缘检测和煤流状态检测3项任务。相较于各任务使用单独模型的方法,将3个不同的颈部和头部集成到具有共享主干的模型中,可以节省大量计算资源和推理时间。首先,在低照度和多尘雾的运输巷道内,采集图像语义信息薄弱使得模型对目标语义信息的提取能力较差。因此利用扩张式残差模块(DWR)替换主干网络P6层和P8层C2f模块中的Bottleneck结构,在减少参数量的同时增强模型提取多尺度上下文语义信息的能力。其次,针对模型需进行目标识别和分割不同类型任务的需求,采用具有跳层连接结构的高效层聚合网络(RepGFPN)优化特征融合部分,在控制模型参数数量和推理速度的同时极大提高模型对不同检测任务的检测精度;最后,为应对3种标签形状各异的检测任务,引入Inner-CIoU损失函数,弥补CIoU损失函数在不同检测任务中泛化能力较弱的不足。为验证DR-YOLOM算法的适用性和鲁棒性,选用U-net和DeepLabV3+网络模型与DR-YOLOM多任务检测模型分割任务的分割效果进行对比分析,采用Faster RCNN和Yolov8进行目标检测效果对比,同时进行模型改进前后的损失函数与精度曲线对比。结果表明,相较于主流的单一检测算法,DR-YOLOM多任务检测算法有更好的综合检测能力,并且该算法可以在维持少量参数量的同时,保证高的目标识别精度、分割精度以及合适的推理速度,其中大尺寸煤块识别的mAP50为90%,输送带边缘分割和煤流分割的mIoU分别为78.7%,96.6%,模型参数数量为4.43 M,推理速度可以达到40 fps,对比基础模型mAP50、mIoU分别提高了1.3%、0.7%、2.1%。为验证DR-YOLOM算法的实用性,使用巡检机器人在实验室进行视频数据采集,并用DR-YOLOM多任务检测算法对其采集的视频数据进行检测。实验结果表明,DR-YOLOM多任务检测算法能够满足带式输送机运行状态的多任务检测要求。

     

    Abstract: The detection of the operating status of underground belt conveyors in coal mines is the key to the safe operation of belt conveyors. However, most detection methods for the operating status of belt conveyors can only handle a single detection task, making it difficult to achieve simultaneous detection of multiple tasks. A multi task detection method for the operation status of belt conveyors based on DR-YOLOM is proposed to address the current difficulty in achieving comprehensive detection with existing technologies. A single network is used to simultaneously recognize large-sized coal blocks, detect belt edges, and detect coal flow status. Compared with using a separate model for each task, integrating three different necks and heads into a model with a shared backbone can save a lot of computing resources and inference time. Firstly, the image semantic information collected in low illumination and dusty transportation tunnels is weak, which makes the model's ability to extract target semantic information poor. Therefore, the Bottleneck structure in C2f modules of the backbone network P6 and P8 layers is replaced with an Extended Residual Module (DWR), reducing the number of parameters while improving the model's ability to extract multi-scale contextual semantic information. Secondly, as the model requires target recognition and segmentation of different types of tasks, an efficient layer aggregation network (RepGFPN) with skip layer connection structure is adopted to optimize the feature fusion part, greatly improving the detection accuracy of the model for different detection tasks while controlling the number of model parameters and inference speed; Finally, to address the detection tasks of three different label shapes, the Inner CIOU loss function is introduced to compensate for the weak generalization ability of the CIoU loss function in different detection tasks. In order to verify the applicability and robustness of the DR-YOLOM algorithm, U-net and DeepLabV3+network models were selected to compare and analyze the segmentation performance of the DR-YOLOM multi task detection model. Faster RCNN and Yolov8 were used to compare the performance of object detection, and the loss function and accuracy curve before and after model improvement were compared. The results show that compared to mainstream single detection algorithms, DR-YOLOM multi task detection algorithm has better comprehensive detection ability, and this algorithm can ensure high target recognition accuracy, segmentation accuracy, and appropriate inference speed with a small number of parameters. Among them, the mAP50 for large-scale coal block recognition is 90%, the mIoU for belt edge segmentation and coal flow segmentation are 78.7% and 96.6%, respectively, and the number of model parameters is 4.43 M. The inference speed can reach 40 frames per second, which is 1.3%, 0.7%, and 2.1% higher than the basic models mAP50 and mIoU, respectively. Finally, in order to verify the practicality of the DR-YOLOM algorithm, an inspection robot was used to collect video data in the laboratory, and the DR-YOLOM multi task detection algorithm was used to detect the collected video data. The experimental results show that the DR-YOLOM multi task detection algorithm can meet the requirements of multi task detection for the operation status of belt conveyors.

     

/

返回文章
返回