中国煤层气井产出水地球化学研究进展

杨兆彪1,2,吴丛丛1,2,朱杰平3,李洋阳1,2,秦宗浩1,2

(1.中国矿业大学 资源与地球科学学院,江苏 徐州 221116;2.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008;3.中国石油化工股份有限公司 华东分公司,江苏 南京 210011)

摘 要:针对煤层气井产出水地球化学研究对判识排采水来源、揭示其地质意义的重要作用,系统总结了煤层气产出水在常规离子、微量元素和氢氧同位素方面的化学特征及其地球化学响应作用,并探讨了现今产出水研究中存在的问题和未来发展趋势。研究表明:世界各地煤层气产出水具有相似的离子特征,不同排采阶段特征不同。随排采进行,特征微量元素含量呈先上升后下降的趋势。产出水氢、氧同位素组成多分布在区域大气降水线附近,属大气降水来源,具有明显的D漂移特征微量元素浓度较高和氢氧同位素偏重暗示封闭型水文环境,有利于煤层气富集保存。建立了多种反映煤层气富集高产的综合地化指标和产出水来源判识模板。最后指出,煤层气井产出水来源准确判识、煤层气高产的地球化学预测模型建立、排采过程中气水联动关系深入探讨和压裂液影响的定量表述和消除等方面值得更多关注。

关键词:煤层气;产出水;地球化学特征;水源判识;产能响应

中图分类号:TD164

文献标志码:A

文章编号:0253-2336(2019)01-0110-08

杨兆彪,吴丛丛,朱杰平,等.中国煤层气井产出水地球化学研究进展[J].煤炭科学技术,2019,47(1):110-117.

doi:10.13199/j.cnki.cst.2019.01.015

YANG Zhaobiao,WU Congcong,ZHU Jieping,et al.Research progress on produced water geochemical from CBM wells in China[J].Coal Science and Technology,2019,47(1):110-117.

doi:10.13199/j.cnki.cst.2019.01.015

收稿日期:2018-09-01;

责任编辑:王晓珍

基金项目:国家自然科学基金资助项目(41772155);国家科技重大专项资助项目(2016ZX05044-002)

作者简介:杨兆彪(1980—),男,河北张家口人,副教授,博士生导师。E-mail:zhaobiaoyang@163.com

Research progress on produced water geochemical from CBM wells in China

YANG Zhaobiao1,2,WU Congcong1,2,ZHU Jieping3,LI Yangyang1,2,QIN Zonghao1,2

(1.School of Resource and Geosciences,China University of Mining and Technology,Xuzhou 221116,China;2.Key Laboratory of CBM Resources and Dynamic Accumulation Process of Ministry of Education,China University of Mining and Technology,Xuzhou 221008,China;3.East China Branch of SINOPEC,Nanjing 210011,China)

Abstract:According to the important role that geochemical study of produced water from coalbed methane(CBM)wells to the identification of the sources of drainage water and its geological significance,this paper systematically summarizes the geochemical characteristics of conventional ion,trace elements and hydrogen and oxygen isotopes and its geochemical response in CBM wells produced water,and discusses the existing problems and future development trends in the currentstudy of produced water.The research shows that worldwide CBM wells produced water has similar ionic characteristics,but with different ion features in diverse drainage phases.With the drainage development,the contents of characteristic trace elements increased first and then decreased.The hydrogen and oxygen isotopic compositions in CBM wells produced water are mostly distributed near the regional atmospheric precipitation line and have obvious D drift characteristics,which explaines a source of atmospheric precipitation.When the contents of and trace elements,are relatively high,and hydrogen and oxygen isotopes are relatively heavy,it will imply a closed hydrological environment,conducive to the CBM enrichment and preservation.And a variety of geochemical comprehensive indexes,reflecting CBM enrichment and high production,and identification templates of produced water source,have been established.Finally,it is pointed out that more attentions should be paid to the accurate identification of CBM wells produced water source,the establishment of geochemical prediction model for CBM high production,the further discussion of gas and water linkage interaction during drainage process,and the quantitative description and elimination of fracturing fluid effects.

Key words:CBM;produced water;geochemical characteristics;water source identification;productivity response

0 引 言

煤层气是成煤过程中产生的,赋存于煤层中的以甲烷为主的混合气体,是一种非常规优质清洁能源[1]。我国煤层气资源丰富,世界排名第三[2]。巨大的资源量背后蕴藏着巨大的经济和社会价值,高效开采煤层气对保证煤矿安全生产,提高经济效益,实现能源升级,改善环境具有重要意义。

煤层气井排采是通过抽排煤层及其围岩中的地下水[3],使储层压力不断降低至临界解吸压力,吸附在煤储层中的气体开始解吸,并通过孔裂隙扩散、渗流、运移至井筒产出的过程[1,4]。被排出的地层水在不断径流过程中与煤层及围岩发生各种物理、化学和生物作用,产出水组成和性质均会发生改变[5-6]。因此,煤层气井产出水作为排采的直接产物,蕴藏着丰富的地球化学信息,对判识排采水来源、揭示其地质意义具有重要作用。

目前,人们对产出水地球化学性质的研究主要集中在常规离子[7-12]、微量元素[13-16]和氢氧同位素[17-21]等3个方面。笔者通过综合分析国内外学者对煤层气井产出水地球化学的研究,总结了产出水地球化学特征及地质意义,并探讨了中国现今煤层气井产出水研究中存在的问题和未来的发展趋势。

1 煤层气井产出水地球化学特征

1.1 产出水常规离子特征

世界各地的煤层气井产出水均具有相似的离子特征,即Na+、K+、Cl-浓度较高,含量较低。一般认为受压裂液污染的地层水中Na+、K+和Cl-浓度大幅度增高,浓度降低,其他离子含量变化较小;地表水中Na+、K+、Cl-浓度最低,但含量相对煤层水较高[22-25]

不同排采阶段,煤层气井产出水具有不同的地球化学特征。随排采进行,产出水变化主要可分为3个阶段:压裂液返排阶段、过渡阶段和稳定阶段,对应的水质依次为Na-Cl型、Na-HCO3-Cl型和Na-HCO3型(图1)[9,11,25-27]。排采初期,随排采时间和排水量增加,主要变化为Na++K+、Cl-、Ca2+和Mg2+浓度及其矿化度均呈幂函数形式不断减少,含量逐渐增加,变化较小;排采后期,通常以排采400 d以后或者单井累计产水量超过1 200 m3为界限,各离子含量和地化指标均趋于稳定,并不断接近原始地层水特征[8-10,25-30]

图1 煤层气井不同产水阶段stiff图[26]
Fig.1 Stiff picture of different dewatering period of CBM well[26]

1.2 产出水微量元素特征

地下水在径流过程中与煤岩中矿物质发生水—岩作用是导致微量元素溶出的主要方式,控制机理主要有矿物的溶解与沉淀、氧化与还原、离子交换和离子吸附与解吸等[3,5,14-16,31-32]。产出水中微量元素溶出量主要受煤岩中矿物质组成成分、元素自身稳定性、地层水温度和pH等影响,不同排采阶段产出水微量元素溶出规律随时间和空间不断变化,不同元素之间相互制约和影响,和部分微量元素演化特征与离子分布规律相互关联[3,33]

随排采进行,特征微量元素(常取Li、As、Ba,Mn,Rb,Sr、Cr等地层水中含量较高的元素作为特征元素研究)溶出量基本呈现先上升后下降的趋势。这主要由于排采初期煤层气井的排水量较大,水-岩相互作用较强,容易加速煤层及围岩顶底板中元素的溶解导致元素含量上升;后期产水量降低或停止产水,从而元素溶出量降低[3,33-34]。刘会虎提出元素溶出量与井间干扰作用关系密切,认为井间干扰形成后单井元素含量发生变化会导致整个井域内其他井该元素溶出量同向变化[3]

1.3 产出水氢氧同位素特征

根据现有报道,我国煤层气井产出水δD为-9.58%~-2.32%、δ18O为-1.310%~-0.514%,沁水盆地南部和鄂尔多斯地区产出水氢、氧同位素组成明显轻于贵州地区(表1)。氢氧同位素组成研究方法通常采用我国的大气降水线方程δD=7.9δ18O+8.2[35],我国煤层气井产出水氢氧同位素均分布在大气降水线附近,且普遍呈明显的D漂移特征,少数呈O漂移,属于大气降水来源或与地表水、浅层地下水弱混合[20-21,36-37]。地表水一般因受蒸发作用较为强烈,较轻的H216O比H218O更易被蒸发,其氢、氧同位素值一般位于大气降水线以下,具有O漂移特征[19,38]

通常认为,在煤系还原环境下,富含H和16O等较轻同位素的地层水和富含D和18O等重同位素的煤层以及围岩中矿物质发生同位素交换,可导致地层水中氢氧同位素漂移,即H216O+D(煤系)=HD16O+H(煤系)、H216O+18O(煤系)=H218O+16O(煤系)。此外,微生物在封闭还原的煤层环境中可作用生成HDS,HDS溶于水并发生同位素交换,促使反应加剧,导致地层水呈现D漂移特征,同时H2S的存在暗示排采水属煤层水[18,33,35,39-41]

根据对黔西煤层气井产出水特征的分析,文献[18,34]认为煤中氢、氧元素含量相对高低是导致产出水氢、氧同位素组成特征和是否呈现D或O漂移的根本原因之一;随煤层气排采的进行,滞留在煤层中的压裂液或地层水与煤层和围岩的水岩作用逐渐加强,产出水氢氧同位素值呈增大趋势;另外研究区季节性降雨可使大气降水补给作用增强导致同位素值降低。

2 煤层气井产出水地球化学响应

2.1 产出水常规离子响应

封闭的地下水环境有助于煤层气富集和保存,普遍认为,富集,意味着接近富氧水源补给区,代表开放型水文环境;和Cl-富集,说明远离富氧水源补给区,代表封闭型水文环境[33,38,42-43]。水动力条件较弱的地下水滞留区,地层水盐度和脱硫系数越高,钠氯系数越低,越有利于煤层气富集和保存[17],产出水的矿化度和离子浓度越高,煤层含气量越高[27-28,44]

产出水特征对日产气量也具有较大影响,高产井排采水矿化度一般为500~3 000 mg/L,并具有明显的富和贫Mg2+的特征,这种特征或是煤储层生气量大、煤层气井产气量高、排采时间较长以及产水量较大等共同作用的结果[7-10,26,33-34,43]。郭晨等通过对黔西比德-三塘盆地织金区块煤层气井产出水进行研究时指出,Na++Cl-离子浓度和日产气量呈正相关,与日产水量呈负相关;当Na++Cl-离子浓度介于833~1 768 mg/L时,煤层气单井产气量较高,产出水封闭性越强,越有利于煤层气高产[7]。以离子成分为基础的评价煤层水环境封闭程度的水化学封闭指数F*与产能具有良好的相关关系,且中等封闭指数最有利于实现高产[34,42],基于地化指标而建立的产能响应指数δ可直观反映以煤层气井日均产气量与产水量之比定义的产能潜力大小[33]

(1)

(2)

煤层气井产出水来源一般有浅层地表水、煤层水和压裂水(被压裂液污染的煤层水)3种类型,主要依据产出水离子组成成分和化学特征进行识别。煤层气低产井产出浅层水或压裂液,高产井排采煤层水的观点已基本得到普遍认同(图2)[7-10,16,18,33-34]。多数学者[43]认为压裂水具有较高的Na+、Cl-、δD、δ18O、d漂移指数和特征微量元素浓度,并建立了基于Cl-和Na+离子的多层合排井层间干扰判识标准和以Na++Cl-、Cl-、δD、δ18O和d漂移指数为响应指标的产出水来源判识模板[7-8,18,33-34,42-43]。由于压裂液中加有KCl,Cl-浓度可在一定程度上反映压裂液返排率,多数研究者认为Cl-质量浓度在1 000 mg/L以下,产出水来自煤层水[7,33,35]。此外,根据产出水水质和矿化度大小也可判定水来源,即一般压裂水水质为Na-Cl型或Na-HCO3-Cl型、矿化度为3 000~6 000 mg/L;煤层水为Na-HCO3型、矿化度一般为500~3 000 mg/L[6,26-27,30]

图2 基于Na+和Cl-离子质量浓度的地球化学响应[43]
Fig.2 Geochemical responded template based on Na+ and Cl- concentrations

2.2 产出水微量元素响应

关于地层水中微量元素地质响应的研究大多见于常规油气田中,主要用于判识储层沉积相、封闭性、水动力条件,分析油气的生成、运移、聚集、保存及进行有利区评价[14,44]。目前对排采过程中产出水微量元素的研究主要借鉴常规油气分析方法。

郭晨等对黔西产出水来源进行了探讨,指出产层平均埋深越大,Li和Sr元素含量越高,产气量也越高;浅层地下水的特征元素溶出量均小于煤层水的相应元素含量,建立了甄别浅层地下水和煤层水来源的交汇模板[43]。吴丛丛[34]等根据黔西产出水特征补充提出,除Li元素外,压裂水中特征微量元素溶出量均大于煤层水中含量,同时Li元素或具有碳酸氢盐亲和性从而导致和煤层气井日产气量呈正相关,可作为响应产能的特征微量元素,认为Li元素大于质量浓度大于1 500 mg/L时煤层气井趋于高产、产出煤层水,两者小于该值则产气量较低、排采压裂液。故基于郭晨和吴丛丛等的认识及两区块相似的地质特征[34,43],可初步建立黔西更具综合作用的产出水来源判识模板,用于区分压裂水、煤层水和浅层水(图3)。

图3 基于特征微量元素的产出水来源判识模板
Fig.3 Identification template of water source based on
characteristic trace elements in produced water

秦勇等[16]通过分析沁水盆地南部3号和15号煤层单层排采水微量元素特征,提取Li、Ba、Sr、Rb、Ga特征微量元素建立了研究区合排井产出水来源判识模板及合层排采可行性评价方法,这对我国薄及中厚煤层群发育、合层排采为最佳开发方式的滇东黔西地区产出水来源的精细判识具有较大启示作用。

同时,煤层气排采水中微量元素溶出特征或具有更多的环境及人类健康指示意义等问题有待于进一步分析和验证。如F元素是地层水中的重要元素,世界卫生组织(WHO)规定的饮用水标准F含量要小1.5 mg/L,部分区域产出水F元素含量远大于1.5 mg/L,引起水的污染,需要做进一步的关注和研究。

2.3 产出水氢氧同位素响应

煤层气井产出水氢氧同位素特征具有丰富的地球化学指示意义。前人通过对沁水盆地南部煤层气井产出水研究,认为δD、δ18O和矿化度呈正相关,δD/δ18O值小于0.5时有利于高产,且分布特征与地下水环境演化有关,即地下水径流区和补给区(氧化环境)氢氧同位素值较小,滞留区(还原环境)氢氧同位素值较大,有利于煤层气富集保存,可作为判断煤层水径流条件与煤层气开发有利区优选的水文指标[17,19,35]。陈陆望等[45-46]提出深层地下水氢氧同位素分布和地下水流场有关,并具有水循环示踪作用。

郭晨等[18,43]对黔西煤层气井产出水来源进行了探讨,提出表层水、煤层水和压裂水具有δD、δ18O和D漂移程度不断增大的特点,且低产井产出水氢、氧同位素组成较轻、D漂移不明显,而高产井氢、氧同位素组成较重和D漂移明显;并据此建立了反映D漂移程度的参数:d=δD-7.96δ18O和以δD、δ18O和d漂移指数为响应指标的产出水来源判识模板(图4)。同时δD、d值和产能关系密切,随产层埋深的增加而增大,与产气量呈正相关、产水量呈负相关[43]。田文广等认为保德地区煤层气井产出水中δD、δ18O值均分布在鄂尔多斯盆地大气降水线之下,呈现O漂移特征,是由于存在地表水的入渗[38]。吴丛丛(2018)在参考Dansgaard W(1984)提出的表征地层水D漂移程度的漂移指数d基础上,进一步定义和修正了适用于煤层气井排采阶段的D漂移综合指数d′,见公式(3),d′与煤层气产能具有负相关关系[47]。关于产出水氢氧同位素对煤层气富集高产控制机理[6,14,19]的研究目前仍较为薄弱,更待深层次探讨。

(3)

图4 基于δD和δ18O的产出水来源判识模板[43]
Fig.4 Identification template of water source based onδD and δ18O in produced water

3 存在问题及未来发展趋势

煤层气井产出水地球化学研究作为一个较新的研究领域,尚存在很多复杂的科学问题亟待解决,笔者认为其中首要研究和解决的主要问题和未来发展趋势可概括为如下5点:

1)煤层气产出水地球化学研究目前主要集中于常规离子特征响应研究,在微量元素和氢氧同位素方面研究成果较少,尤其是微量元素响应研究,未来需进一步挖掘和探索其蕴含的丰富地球化学信息以及环境意义。

2)排采水来源精确解析研究。目前实际生产中,往往难以判识水的来源,尤其是多层合采。为此需加强煤层气井产出水来源及形成演化过程的研究、建立多种产出水来源判识模板和地化指标。

3)前人已提出多种反映煤层气高产的产出水地球化学响应指标,这些均是基于已经产出的产出水特征及产气量建立的关系,可逐渐完善形成产出水地球化学产能预测模型,即通过现阶段的产出水地球化学特征去研判后期的产气量,为煤层气产能预测提供更多手段。

4)煤层气井排采是通过排水降压实现的,排采过程中气、水同时产出,产出气中尤其是CO2的部分溶解会改变产出水的地球化学性质,形成新的化学场平衡。同时压裂液混入地层水后会发生强烈的水岩作用,屏蔽原始地层水信息,这些变化如何定量表述和消除,亟需开展水岩作用模拟研究,从而更为准确地识别原始地层水信息。

5)虽已取得较多产出水地球化学响应的研究成果,但从研究结果来看,煤层气产出水地球化学特征的区域差异性非常明显。至今无一套被普遍认可在较大或全国范围应用的统一认识。因此,未来应更多关注不同地区产出水性质的差异和比较,形成更具普适性的产出水来源判识图版和产能响应指标。

参考文献:

[1] 傅雪海,秦 勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:34-73.

[2] 陈 磊,蒋庆哲,赵瑞雪,等.中国煤层气资源潜力分析研究[J].现代化工,2009,29(S1):1-6. CHEN Lei,JIANG Qingzhe,ZHAO Ruixue,et al.Analysis and research on the potential of China's coalbed methane resources[J].Modern Chemical Industry,2009,29(S1):1-6.

[3] 刘会虎.沁南地区煤层气排采井间干扰的地球化学约束机理[D].徐州:中国矿业大学,2011:1-181.

[4] 张遂安,曹立虎,杜彩霞.煤层气井产气机理及排采控压控粉研究[J].煤炭学报,2014,39(9):1927-1931. ZHANG Suian,CAO Lihu,DU Caixia.Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J].Journal of China Coal Society,2014,39(9):1927-1931.

[5] 单 耀.含煤地层水岩作用与矿井水环境效应[D].徐州:中国矿业大学,2009:1-137.

[6] 卫明明,琚宜文.沁水盆地南部煤层气田产出水地球化学特征及其来源[J].煤炭学报,2015,40(3):629-635. WEI Mingming,JU Yiwen.Chemical characteristic and origin of produced waters from coalbed gas field in the southern of Qinshui Basin[J].Journal of China Coal Society,2015,40(3):629-635.

[7] 郭 晨,秦 勇,韩 冬.黔西比德—三塘盆地煤层气井产出水离子动态及其对产能的指示[J].煤炭学报,2017,42(3):680-686. GUO Chen,QIN Yong,HAN Dong.Ions dynamics of produced water and indication for CBM production from wells in Bide-Santang Basin,Western Guizhou[J].Journal of China Coal Society,2017,42(3):680-686.

[8] 张松航,唐书恒,李忠城,等.煤层气井产出水化学特征及变化规律:以沁水盆地柿庄南区块为例[J].中国矿业大学学报,2015,44(2):292-299. ZHANG Songhang,TANG Shuheng,LI Zhongcheng,et al.The hydrochemical characteristics and ion changes of the coproduced water-taking Shizhuangnan block,south of the Qinshui basin as an example[J].Journal of China University of Mining and Technology,2015,44(2):292-299.

[9] HUANG Huazhou,SANG Shuxun,MIAO Yao,et al.Trends of ionic concentration variations in water coproduced with coalbed methane in the Tiefa Basin[J].International Journal of Coal Geology,2017,182:32-41.

[10] HUANG Huazhou,BI Caiqin,SANG Shuxun,et al.Signature of coproduced water quality for coalbed methane development[J].Journal of Natural Gas Science and Engineering,2017,47:34-46.

[11] DAHM KG,GUERRA KL,MUNAKATA J,et al.Trends in water quality variability for coalbed methane produced water[J].Journal of Cleaner Production,2014,84:840-848.

[12] 时 伟,唐书恒,李忠城,等.沁水盆地南部山西组煤储层产出水的化学特征[J].煤炭科学技术,2017,45(3):154-160. SHI Wei,TANG Shuheng,LI Zhongcheng,et al.Chemical characteristics of drainage water from Shanxi formation coal reservoir of southern Qinshui Basin[J].Coal Science and Technology,2017,45(3):154-160.

[13] 金 军,高 为,孙 键,等.黔西松河矿区煤中元素地球化学特征及成煤环境意义[J].煤炭科学技术,2017,45(12):166-173,204. JIN Jun,GAO Wei,SUN Jian,et al.Geochemistry characteristics and coal formation environmental significances of elements in coal from Songhe mining area in western Guizhou[J].Coal Science and Technology,2007,45(12):166-173,204.

[14] 李 伟,秦胜飞.四川盆地须家河组地层水微量元素与氢氧同位素特征[J].石油学报,2012,33(1):55-63. LI Wei,QIN Shengfei.Characteristics of trace elements and hydrogen and oxygen isotopes in theformation water of the Xujiahe formation,Sichuan Basin[J].Acta Petrolei Sinica,2012,33(1):55-63.

[15] DAI Shifeng,REN Deyi,CHOU Chenlin,et al.Geochemistry of trace elements in Chinese coals:a review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94:3-21.

[16] 秦 勇,张 政,白建平,等.沁水盆地南部煤层气井产出水源解析及合层排采可行性判识[J].煤炭学报,2014,39(9):1892-1898. QIN Yong,ZHANG Zheng,BAI Jianping,et al.Source apportionment of producedwater and feasibility discrimination of commingling CBM production from wells in southern Qinshui Basin[J].Journal of China Coal Society,2014,39(9):1892-1898.

[17] WANG Bo,SUN Fenjin,TANG Dazheng,et al.Hydrological control rule on coalbed methane enrichment and high yield in Fanzhuang block of Qinshui Basin[J].Fuel,2015,140:568-577.

[18] 郭 晨,秦 勇,夏玉成,等.基于氢、氧同位素的煤层气合排井产出水源判识:以黔西地区比德三塘盆地上二叠统为例[J].石油学报,2017,38(5):493-501. GUO Chen,QIN Yong,XIA Yucheng,et al.Source discrimination of produced water from CBM commingling wells based on the hydrogen and oxygen isotopes:a case study of the Upper Permian,Bide-Santang western Guizhou area[J].Acta Petrolei Sinica,2017,38(5):93-501.

[19] 时 伟,唐书恒,李忠城,等.沁水盆地南部山西组煤储层产出水氢氧同位素特征[J].煤田地质与勘探,2017,45(2):62-68. SHI Wei,TANG Shuheng,LI Zhongcheng,et al.Hydrogen-oxygen isotope characteristics of produced water from coal reservoir of Shanxi formation in Qinshui Basin[J].Coal Geology and Exploration,2017,45(2):62-68.

[20] 毛庆亚,王建力,王家录,等.贵州安顺与重庆北碚大气降水中δD和δ18O特征分析[J].西南大学学报:自然科学版,2017,39(2):114-120. MAO Qingya,WANG Jianli,WANG Jialu,et al.Analysis of the characteristics of δD and δ18O in the meteoric precipitation in Anshun,Guizhou province and Beibei Chongqing[J].Journal of Southwest University:Natural Science Edition,2017,39(2):114-120.

[21] 张晓敏.沁水盆地南部煤层气产出水化学特征及动力场分析[D].焦作:河南理工大学,2012:1-73.

[22] VAN VOAST WA.Geochemical signature of formation waters associated with coalbed methane[J].AAPG Bull,2003,87:667-676.

[23] TAULIS M,MILKE M.Chemical variability of groundwater samples collected from a coal seam gas exploration well,Maramarua,New Zealand[J].Water Res,2013,47:1021-1034.

[24] YANG Mei,JU Yiwen,LIU Guijian,et al.Geochemical characters of water coproduced with coalbed gas and shallow groundwater in Liulin Coaleld of China[J].Acta Geologica Sinica:English Edition,2013,87(6):1690-1700.

[25] ZHANG Songhang,TANG Shuheng,LI Zhongcheng.Study of hydrochemical characteristics of CBM co-produced water of the Shizhuangnan block in the southern Qinshui Basin,China,on its implication of CBM development[J].International Journal of Coal Geology,2016,159:169-182.

[26] 李忠诚,唐书恒,王晓锋,等.沁水盆地煤层气井产出水化学特征与产能关系研究[J].中国矿业大学学报,2011,40(3):424-429. LI Zhongcheng,TANG Shuheng,WANG Xiaofeng,et al.Relationshipbetween water chemical composition and productionof coalbed methane wells,Qinshui Basin[J].Journal of China University of Mining and Technology,2011,40(3):424-429.

[27] 李 灿,唐书恒,张松航,等.沁水盆地柿庄南煤层气井产出水的化学特征及意义[J].中国煤炭地质,2013,25(9):25-29. LI Can,TANG Shuheng,ZHANG Songhang,et al.Chemical characteristics and significance of CBM well produced waterin Shizhuang south area,Qinshui Basin[J].Coal Geology of China,2013,25(9):25-29.

[28] 于宝石.筠连煤层气井产出水化学特征及意义[J].中国煤层气,2015,12(5):32-35,8. YU Baoshi.Chemical characteristic of produced water of Junlian CBM well and its intention[J].China Coalbed Methane,2015,12(5):32-35,8.

[29] 唐书恒,朱卫平,李忠城,等.柳林区块煤层气井产出水特征及动态变化规律[J].中国煤层气技术进展,2011:336-342. TANG Shuheng,ZHU Weiping,LI Zhongcheng,et al.The characteristics and dynamic changes of producingwater from coalbed methane wells in Liulin block[J].China’s CBM Technology Progress,2011:336-342.

[30] 朱卫平,唐书恒,吕建伟,等.枣园区块煤层气井产出水化学特征及动态变化规律[J].煤田地质与勘探,2015,43(1):72-75. ZHU Weiping,TANG Shuheng,LYU Jianwei,et al.The characteristics and dynamic changes of produced water from coalbed methanewells in Zaoyuan block[J].Coal Geology and Exploration,2015,43(1):72-75.

[31] 虞鹏鹏.水岩反应及其研究意义[J].中山大学研究生学刊:自然科学,2012,33(4):25-33. YU Pengpeng.Water rock reaction and its significance[J].Journal ofthe Graduates Sun Yat-Sen University:Natural Sciences,2012,33(4):25-33.

[32] LIU Huihu,SANG Shuxun,XUE Junhua,et al.Evolution and geochemical characteristics of gas phase fluid and its response to inter-well interference during multi-well drainage of coalbed methane[J].Journal of Petroleum Science and Engineering,2018,162:491-501.

[33] 杨兆彪,吴丛丛,张争光,等.煤层气产出水的地球化学意义—以贵州松河区块开发试验井为例[J].中国矿业大学学报,2017,46(4):1-8. YANG Zhaobiao,WU Congcong,ZHANG Zhenguang,et al.Geochemical significance of CBM produced water:a case study of developed test wellsin Songhe block of Guizhou province[J].Journal of China University of Mining and Technology,2017,46(4):1-8.

[34] 吴丛丛,杨兆彪,秦 勇,等.贵州松河及织金煤层气产出水的地球化学对比及其地质意义[J].煤炭学报,2018,43(4):1058-1064. WU Congcong,YANG Zhaojun,QIN Yong,et al.Geochemical comparison and its geological significance of CBM produced water in the Songhe and Zhijin Blocks[J].Journal of China Coal Society,2018,43(4):1058-1064.

[35] 王善博,唐书恒,万 毅,等.山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J].煤炭学报,2013,38(3):448-454. WANG Shangbo,TANG Shuheng,WAN Yi,et al.The hydrogen and oxygen isotope characteristics of drainage water from Taiyuancoal reservoir in southern Qinshui Basin,Shanxi Province,China[J].Journal of China Coal Society,2013,38(3):448-454.

[36] Dansgaard W.Stable isotopes in precipitation[J].Tellus,1984,16:436-468.

[37] CRAIG H.Isotopic variation in meteoric waters[J].Science,1961,133:1702-1703.

[38] 田文广,邵龙义,孙 斌,等.保德地区煤层气井产出水化学特征及其控气作用[J].天然气工业,2014,34(8):15-19. TIAN Wenguang,SHAO Longyi,SUN Bin,et al.Chemical behaviors of produced water from CBM wells in the Baode area Shanxi,China,and their control on gas accumulation[J].Natural Gas Industry,2014,34(8):15-19.

[39] DAI Jinxing,LI Jian,LUO Xia,et al.Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin,China[J].Organic Geochemistry,2005,36(12):1617-1635.

[40] SNYDER GT,RIESE WC,FRANKS S,et al.Origin and history of waters associated with coalbed methane:129I,36Cl,and stable isotope results from the Fruitland formation,CO and NM[J].Geochimica Et Cosmochimica Acta,2003,67(23):4529-4544.

[41] Rice CA,Flores RM,Stricker GD,et al.Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane,Fort Union formation,Powder River Basin,Wyoming and Montana U.S.A[J].International Journal of Coal Geology,2008,76(1):76-85.

[42] 郭 晨.多层叠置含煤层气系统及其开发模式优化—以黔西比德-三塘盆地上二叠统为例[D].徐州:中国矿业大学,2015:1-218.

[43] GUO Chen,QIN Yong,XIA Yucheng,et al.Geochemical characteristics of produced water from CBM wells and implications for commingling CBM production:a case study of the Bide-Santang Basin,western Guizhou,China[J].Journal of Petroleum Science and Engineering,2017,159:666-678.

[44] 周孝鑫.川西坳陷中段陆相层系地下水与天然气分布特征[D].杭州:浙江大学,2014:1-104.

[45] 陈陆望,桂和荣,殷晓曦,等.深层地下水~18O与D组成特征与水流场[J].中国矿业大学学报,2008,37(6):854-859. CHEN Luwang,GUI Herong,YIN Xiaoyu,et al.Composing characteristic of18O and D andcurrent field in deep groundwater[J].Journal of China University of Mining and Technology,2008,37(6):854-859.

[46] 陈陆望,桂和荣,殷晓曦.深层地下水氢氧稳定同位素组成与水循环示踪[J].煤炭学报,2008,33(10):1107-1111. CHEN Luwang,GUI Herong,YIN Xiaoyu.Composing characteristic of hydrogen and oxygen stable isotopes and tracing of hydrologicalcycle[J].Journal of China Coal Society,2008,33(10):1107-1111.

[47] WU Congcong,YANG Zhaobiao,QIN Yong,et al.Characterisitics of hydrogen and oxygen isotopes in produced water and productivity response of coalbed methane wells in Western Guizhou[J].Energy & Fuels,2018,32(11):11203-11211.