吐哈盆地位于新疆北部东天山地区,是西北重要含煤和油气盆地,煤炭资源极为丰富[1]。沙尔湖煤田位于吐哈盆地南缘沙尔湖凹陷内,有关吐哈盆地的文献中多处论述了沙尔湖煤田的古地理、古构造、聚煤作用等,但对煤质、煤岩特征及煤相分析的研究较少。煤质、煤岩、煤相特征研究是确定煤在工业利用和评价开采利用过程中对环境影响的基础性研究[2]。
Teichmuller M提出煤相是指煤的原始成因,它取决于泥炭形成的环境,煤相研究是煤炭地质学研究领域的重要内容,在煤层形成机理、煤层气勘探开及煤的地球化学等领域广泛应用[3-7]。国外学者提出了多种煤相参数,这些参数成为经典煤相学研究方法的基础。比如DIESSEL C F K[8-9]提出了凝胶化指数(GI)和组织保存指数(TPI)已经被广泛的应用于确定沉积环境和煤相的煤岩学研究;CALDER J H等[10]提出了搬运指数(TI)以判别水体活动强度来反映泥炭沼泽水动力强弱;M. Marques[11]提出了地下水流动指数(GWI)反映沼泽覆水程度和植被指数(VI)表明森林木本亲缘显微组分和水生亲缘显微组分的比率;Kalkreuth W D等[12]在讨论加拿大Stellarton盆地McLeod煤层煤岩类型的岩石学特征时,提出了用矿物资料分析煤的形成环境,并确定了浅沼相(A)、湖沼-浅沼相(B)、湖沼相(C)3个显微组分组合;Harvey R D[13]提出了镜惰比(V/I)反映煤泥炭遭受氧化程度。
国内学者许福美等[14]研究兖州矿区太原组16号煤层时提出了骨基比(F/M),并依据镜惰比(V/I)将煤层的覆水深度划分为4类;代世峰等[15]研究乌达尔矿区的煤层时分析煤中自生矿物对煤层成因参数和水介质酸碱度的影响,提出了(自生高岭石+结构镜质体+均质镜质体)/(自生黄铁矿+碎屑惰性体)参数,对煤层煤相类型的演化规律进行了分析;代世峰等[16]研究内蒙古准格尔黑岱沟煤层时对现有的GI和TPI、GWI和VI煤相参数的计算公式进行修订,目前GI-TPI相图和GWI-VI相图等已经广泛应用于煤相的划分。本文以现代煤岩学、煤化学、煤相学理论为指导,以沙尔湖煤田KS118ZK10钻孔的煤样分析结果为基础,研究其煤岩、煤质特征,进行煤相分析,为分析煤田聚煤环境、煤层对比、煤质评价、煤炭开采利用等提供依据。
吐哈盆地位于新疆东部天山地区,大地构造位于哈萨克斯坦板块东南角,处于哈萨克斯坦、西伯利亚和塔里木板块的拼贴交汇部位,受多期构造运动的影响,盆地内部被分隔成吐鲁番坳陷-了敦隆起-哈密坳陷总体上按东西向展布的空间格局。在此基础上,了敦隆起划分出了沙尔湖和大南湖2个凹陷[17],其中沙尔湖凹陷内分布有2个大型煤田,以脐山隆起为界,西部为库姆塔格煤田,东部为沙尔湖煤田(图1)。
图1 吐哈盆地沙尔湖煤田构造位置
Fig.1 Tectonic location of Shaerhu coalfield in Turpan-Hami Basin
吐哈盆地早-中侏罗世处于伸张发育阶段,主要发育冲积扇、三角洲、湖泊沉积体系[18],是重要的聚煤期。沙尔湖凹陷经过西山窑早期扇三角洲及前缘发育阶段后,西山窑中期该区转化为三角洲平原上的冲积扇-扇前洪泛洼地、湿地。此阶段泥炭沼泽的长期发育,形成了巨厚及特厚煤层,煤层分布较集中[19]。
研究区位于东部的沙尔湖煤田,为近东西向的宽缓向斜,大部被新近系覆盖,局部可见侏罗系地层的出露。据钻孔资料显示,勘查区地层由古生界二叠系构成盆地基底,中生界有侏罗系,新生界有古近系、新近系(图2)。
1—第四系;2—古近-新近系;3—侏罗系;4—二叠系; 5—泥盆系;6—侵入岩;7—火烧区;
8—取样钻孔位置;9—煤田边界
图2 沙尔湖煤田地质图
Fig.2 Geology of in Shaerhu Coalfield
含煤地层为中侏罗统西山窑组,其岩性为滨湖相-泥炭沼泽相沉积的泥岩、粉砂岩、细砂岩、粗粒砂岩、炭质泥岩和煤层。研究区中生代以来构造运动微弱,褶皱、断层都不发育,属于简单构造类型。
研究区煤系地层总厚69.61~589.87 m,含煤系数为2%~62%。共见>0.30 m煤层有46层,见可采煤层1~33层。煤层累计厚度为5.58~198.77 m,平均厚度119.50 m。最大单孔累计煤层厚度198.77 m,可采厚度179.54 m。单煤层最大厚度150.24 m,可采厚度148.57 m。全区累计可采煤层平均厚度117.64 m,平均可采厚度110.78 m。
本次研究煤样全部采自沙尔湖煤田五勘查区KS118ZK10孔(图2),共采取样品51件。煤心从钻孔中取出后,按先后顺序放入岩心箱内,清洗干净,然后分层、描述、布样、取样。将全部煤心装入样袋内包装、密封、称重,按规定时间送验。对所采煤层煤样在样品制备之前,首先进行了煤的宏观特征描述和宏观煤岩类型划分。
在实验室进行了煤样的显微组分和显微岩石类型的定量分析,煤中的矿物质的X射线衍射半定量分析。样品分析测试由新疆矿产实验研究所完成。煤岩制备按《煤岩分析样品制备方法》(GB/T 16773—2008)进行,煤的显微组分观察和定量分析按《煤的显微组分和矿物测定方法》(GB/T 8899—2013)进行。
煤层水分Mad为5.94%~13.70%,平均值为8.77%,变化系数为22.04%,垂向上自下而上逐渐降低;灰分Ad为4.10%~27.59%,平均值为10.22%,变化系数为53.29%。上部有C14、C12、C10、C9煤层和下部C7煤层Ad产率较高,属中灰分煤,C8煤层Ad低,属特低灰煤。垂向上自下而上逐渐升高;挥发分Vdaf产率为35.54%~46.86%,平均值为42.39%,变化系数为6.27%,各煤层均属高挥发分煤,垂向变化符合希尔特定律,即煤的挥发分随埋藏深度的增加而减低;发热量Qb=19.89~28.92 MJ/kg,平均值为26.15 MJ/kg,变化系数为7.89%。垂向上自上而下Qb明显逐渐增高,C14、C12、C10、C9煤层属中发热量煤;C8、C7煤层属中高发热量煤(图3)。
图3 沙尔湖煤田煤层化学特征垂向变化
Fig.3 Vertical variations of chemistry characteristics in Shaerhu Coalfield
全硫分St,d含量变化在0.12%~2.76%,平均值为0.59%,变化系数为93.68%。上部C14、C12、C10、C9煤层属中等硫煤,下部C7、C8煤层属特低硫煤。煤中的硫分很大程度上取决于泥炭沼泽的还原性,强还原性泥炭沼泽相对形成富硫的煤,煤中的硫含量随着总体水进而增高[19],垂向上煤层自下而上全硫含量明显逐渐升高。说明煤层形成过程总体为水进,覆水程度逐渐加深,泥炭沼泽的还原性也随之变强。
煤灰成分主要为硅质,其次为铝质和铁质。SiO2含量最高,为9.78%~61.80%,平均值为31.12%;Al2O3含量为5.58%~29.16%,平值均为16.35%;Fe2O3含量为1.73%~56.56%,平均值为13.77%;CaO含量为3.73%~37.20%,平均值为16.99%,MgO含量为0.86%~5.46%,平均值为2.44%。
煤的灰分指数AI即AI=[w(SiO2)+w(Al2O3)]/[w(Fe2O3)+w(CaO)+w(MgO)]与泥炭沼泽的还原性有密切关系,泥炭沼泽还原性强,w(Fe2O3)+w(CaO)+w(MaO)的含量高,w(SiO2)+w(Al2O3)的含量低,反之亦然。一般来说在扇三角洲进积建设过程中的泥炭沼泽还原性弱,在扇三角洲退积水进破坏过程中的泥炭沼泽还原性强,而扇间洪泛洼地中持续发育的泥炭沼泽的还原性则与覆水程度有关[19]。
灰分指数垂向上变化显著,由C7到C8煤层AI逐渐减小,到C8中部AI达到最小。由C8中部向上整体为逐渐增大趋势,局部有微弱变化,说明早期扇三角洲进积建设阶段为弱还原环境,到中期扇三角洲退积水进阶段逐步过渡为强还原环境,C8煤层中部达到最强还原环境,晚期搬运指数(TI)明显发生了变化,表明水动力条件发生了强弱变化,流水携带的氧破坏了原有的还原环境。因此,晚期环境变化是与覆水程度和水动力条件有关。
3.2.1 煤的物理性质
研究区煤的颜色均呈黑-褐黑色,条痕色为棕色及棕黑色、褐红色,煤的坚硬程度多为松软状。煤层结构以条带状、线理状、均一状结构为主,弱沥青、沥青光泽,断口呈贝壳状、阶梯状及参差状,裂隙较发育,煤心易风化染手,含星点状黄铁矿薄膜及鲕粒状黄铁矿结核。
3.2.2 宏观煤岩类型
研究区以暗煤为主,半亮煤、亮煤次之。煤质硬度低,较软,易碎。沿层面保留有植物纤维形态及叶片残痕,镜煤少见,均呈透镜状分布。根据光泽强弱,分为半亮型煤、半暗型煤和暗淡型煤。光亮型煤少见(表1)。
续表
3.2.3 显微煤岩特征
显微煤岩类型为微镜煤、微镜惰煤,其显微煤岩类型深度上呈规律性变化,上部C9、C10、C12、C14煤层为微镜煤,下部C7、C8煤层为微镜惰煤。有机组分以镜质组(70.7%)为主,惰质组(27.2%)次之,少量壳质组(0.6%)。镜质组成分多数为基质镜质体(29.9%),次为结构镜质体(26%),均质境质体(12.7%),少量团块镜质体(2.2%)和碎屑镜质体(0.8%),不含胶质镜质体。惰质组成分多为半丝质体(26.3%),少量丝质体(0.8%),几乎不含粗粒体和碎屑惰质体。壳质组成分主要为孢粉体(0.5%)和少量角质体(0.1%)、沥青质体(0.1%)。
3.2.4 矿物成分
各煤层中矿物含量少,总量变化在0.9%~9.2%,成分多为黏土矿物(1.2%~7.7%)、硫化物(0~0.1%)和碳酸盐(0~0.3%),黏土矿物多充填细胞腔或裂隙中,硫化物主要以黄铁矿和菱铁矿为主,碳酸盐呈粒状集合体分布。
在煤相的研究中,国外学者提出了多种煤相参数,比如DIESSEL(1986)提出了凝胶化指数(GI)和组织保存指数(TPI)[8-9],CALDER等(1991)提出了搬运指数(TI))[10]、MARQUES(2002)提出了地下水流动指数(GWI)和植被指数(VI)[11],KALKREUTH等(1991)提出用矿物资料分析煤的形成环境,确定了浅沼相(A)、湖沼-浅沼相(B)、湖沼相(C)3个显微组分组合[12],Harvey提出了镜惰比(V/I)[13]等。这些参数成为经典煤相学研究方法的基础。根据研究区KS118ZK10钻孔煤层样品显微煤岩组分定量分析结果,计算出各煤层煤相指标参数(表2)。
3.3.1 镜惰比
镜惰比是镜质组与惰质组的比值(V/I),是成煤泥炭遭受氧化程度的参数。许福美等[14]将煤层划分为4种成因类型:①Ⅰ类,V/I>4,强覆水环境;②Ⅱ类,1<V/I<4,极潮湿-覆水环境;③Ⅲ类,1/4<V/I<1,潮湿-弱覆水环境;④Ⅳ类,V/I<1/4,干燥-极干燥环境。依据镜惰比,上部C9、C10、C12、C14煤层及C8顶部煤层为Ⅰ类,V/I>4,强覆水环境;C7、C8煤层中下部为Ⅱ类,1<V/I<4,属极潮湿-覆水环境。
3.3.2 TPI-GI图解
TPI-GI相图中共有51件样品,其中26件样品点落在湿地森林沼泽,7件样品点落在干燥森林沼泽,14件样品点落在较深覆水森林沼泽,4件样品点落在低位泥炭沼泽(图4)。样品总体TPI>1,属较高TPI群体,说明煤岩植物结构保存较好,降解程度低,反映成煤植物以木本植物为主。
图4 沙尔湖煤田煤层TPI-GI相图
Fig.4 Phase diagram of TPI-GI in Shaerhu Coalfield
C7、C8底部煤层GI<1,表明成煤早期为泥炭沼泽地下水位低,沼泽环境较干燥;C8煤层值总体为1<GI<5,仅C8个别样品GI>5,表明其成煤时地下水水位高,沼泽环境较潮湿;C9、C10、C11、C12、C14煤层GI值均在10以上,表明其成煤时覆水深、潮湿的沼泽环境,且发生了较强的凝胶化作用。通过各煤层的GI值变化结合煤质、煤岩垂向变化规律,表明该地区泥炭沼泽类型早期为干燥森林沼泽类型,主要成煤期为湿地森林沼泽类型,晚期逐渐演变为较深覆水森林沼泽类型。
表2 沙尔湖煤田煤层煤相学特征参数
Table 2 Parameters characteristics of coal facies in Shaerhu Coalfield
煤层样品V/IGITPIVIGWITITFDABCC14H160.0060.000.850.931.530.230.390.020.000.260.520.08C12H258.1958.190.850.871.390.110.410.020.010.190.690.04C11H379.8379.832.492.380.430.020.680.010.010.160.810.02H445.5745.571.832.721.150.350.460.020.000.280.690.00H551.1151.112.322.300.460.010.670.020.000.240.750.00C10H6112.13112.130.701.022.270.270.300.010.000.170.690.07H7489.00489.004.074.080.300.030.760.000.000.300.680.00H8154.50154.501.451.891.150.230.460.010.000.280.620.04C9H9493.50493.503.163.150.340.020.740.000.000.500.490.00H10235.50235.500.860.991.470.160.400.000.000.290.590.06C8H114.794.791.761.710.860.060.440.170.020.510.430.02H122.182.183.002.940.600.010.430.310.000.640.350.01H131.131.133.323.330.810.010.290.470.000.690.300.00H141.731.732.752.700.800.010.360.360.000.600.370.02H153.143.141.932.051.020.050.380.240.000.550.430.02H1622.1022.102.152.160.580.050.600.040.020.340.640.00H17244.50244.501.541.670.790.090.550.000.010.370.610.01H1877.9277.923.483.410.380.030.710.010.010.420.530.04H1913.4913.492.442.430.510.020.610.070.000.420.550.02H2016.5416.541.221.220.960.030.480.060.010.420.560.00H2118.3718.373.503.370.320.020.710.050.010.400.590.00H2214.7314.732.112.110.560.030.600.060.010.350.640.00H232.022.021.521.501.580.010.260.320.010.580.390.02H2410.3810.381.751.690.680.020.530.090.020.330.650.00H254.064.061.671.640.910.030.410.190.020.550.430.00H262.922.922.012.010.850.010.400.250.000.560.430.01H272.222.222.022.040.980.030.350.310.000.630.360.00H282.672.701.301.341.620.040.270.270.010.490.500.00H291.901.904.344.290.420.010.460.340.000.580.410.00H301.511.511.831.851.520.020.240.400.000.560.430.00H310.800.804.334.240.730.000.260.550.000.730.260.00H321.051.053.243.240.900.010.270.490.000.710.280.01H330.640.645.475.330.650.000.240.610.000.800.200.00H341.921.921.911.901.120.010.310.340.000.610.380.00H351.401.412.052.071.350.010.250.410.000.650.340.01H361.021.025.765.680.430.000.360.490.000.830.160.00H372.542.542.152.160.790.000.400.280.000.550.450.00H381.901.902.072.070.990.000.330.350.000.620.380.00H391.181.182.732.670.950.020.280.450.020.700.280.01H400.850.852.532.491.620.010.180.530.010.700.290.01H410.600.6012.3512.350.250.000.300.620.000.930.080.00H421.161.162.832.830.900.010.280.460.010.740.260.01H431.061.063.633.570.720.000.300.480.000.750.250.00H440.850.852.112.102.450.000.140.530.000.640.330.01H451.591.592.001.971.270.010.270.370.010.610.350.00H460.890.893.203.141.050.010.230.530.010.710.290.00H471.281.283.523.360.860.010.310.410.010.690.240.05H480.830.832.112.102.490.000.130.550.000.680.320.00H491.331.332.102.151.520.030.230.410.010.610.350.02H501.711.711.251.242.460.010.180.360.010.520.450.02C7H510.920.922.492.521.560.020.190.510.010.690.300.01
3.3.3 GWI-VI图解
GWI-VI相图中有18个样品落在VI<2的区域,33个样品落在VI>2的区域,说明成煤植物类型为草木混生型,以木本植物为主。据煤层垂向变化,成煤早期植物类型应主要为木本植物,后期随着覆水程度增大而逐渐转变为草本及水生植物为主。全部样品GWI值均小于0.5,说明沼泽地下水位整体较低,水体流通不畅或相对静止,有利于营养成分富集,为草木本植物的大量繁殖提供了良好的生长环境,为成煤沼泽的持续稳定发育创造了有利条件(图5)。
图5 沙尔湖煤田煤层GWI-VI相图
Fig.5 Phase diagram of GWI-VI in Shaerhu Coalfield
3.3.4 T-D-F图解
从T-D-F相图(图6)可以看出,样品D组分含量低,全部样品点都落在T-F线上及附近,C9、C10、C11、C12、C14煤层样品点集中靠近T区域,从C8上部→C8下部→C7煤层样品点则趋于向F区域靠近,仅少数样品靠近T区域,表明沼泽类型早期应为干燥森林沼泽类型,后期演变为以潮湿森林沼泽类型为主,与TPI-GI相图保持一致。
图6 沙尔湖煤田煤层T-D-F相图
Fig.6 Diagram of T-D-F phase in Shaerhu Coalfield
3.3.5 A-B-C图解
从A-B-C 相图可以看出(图7) ,C端元组分低,最大仅为8%;B端元组分为20%~50%,平均值为44.8%;A端元组分最高,A端元组分为50%~80%,平均值为53.8%。绝大部分样品投点位于浅沼相与湖沼-浅沼相的中间区域,表明沉积环境主要为浅沼相向湖沼-浅沼相转变的过渡相,整体仍处于浅水地带,植物的结构保存较为完好。同时搬运指数TI绝大部分均小于0.1,反映沼泽水动力活动很微弱,沼泽环境十分稳定,有利于形成巨厚的煤层。
图7 沙尔湖煤田煤层A-B-C相图
Fig.7 Diagram of A-B-C phase in Shaerhu Coalfield
据上述煤相分析表明,煤层形成早期沼泽类型为干燥森林沼泽,主要成煤期为潮湿森林沼泽,晚期沼泽类型为较深覆水潮湿森林沼泽。水动力条件微弱,沼泽营养值为富营养,沉积环境由早期的浅沼相逐渐过渡为晚期的湖沼-浅沼相。煤层形成早期为扇三角洲广泛进积期,中期为大面积废弃泥炭沼泽化,晚期随着四周山体的进一步抬升,表现为明显的下沉水进,该期为收缩式水进,即为一个下沉水进过程,而有别于向外扩展式水进,水进过程非常缓慢。
1)研究区煤层化学特征为特低灰-中灰分煤、特低硫-中等硫煤、中-中高发热量煤。煤灰成分主要为硅质,铝质、铁质次之。垂向上Ad、Vdaf、St,d、V/I自下而上均为逐步增高,而Mad和Qd则逐渐降低。St,d含量的变化说明煤层沉积过程总体为水进,覆水程度逐渐加深,泥炭沼泽的还原性也随之变强。
2)研究区显微煤岩类型为微镜煤、微镜惰煤,有机组分以镜质组为主,惰质组次之,少量壳质组,C14-C9及C8煤层顶部以为微镜煤,V/I>4,强覆水环境,C8煤层中下部和C7煤层为微镜惰煤,1<V/I<4,属极潮湿-覆水环境。
3)煤相分析TPI-GI相图与T-D-F相图表明煤层形成早期沼泽类型为干燥森林沼泽,主要成煤期为干燥森林沼泽与潮湿森林沼泽过渡阶段,晚期沼泽类型潮湿森林沼泽。 A-B-C相图表明沉积环境由早期的浅沼相逐渐过渡到晚期的湖沼-浅沼相。
4)GWI-VI相图和搬运指数显示沼泽水动力活动微弱,为富营养沼泽,说明营养丰富、受水分补给影响小,沉积环境稳定,非常有利于木本、草本植物大量繁殖以及泥炭的富集,这是形成巨厚煤层的必要条件之一。
[1] 聂浩冈,赵峰华,李玉宏.浅析吐哈盆地侏罗纪煤的煤相特征[J].新疆地质,2016,34(1):144-149.
NIE Haogang,ZHAO Fenghua,LI Yuhong.Analysis on Coal Facies Characteristics of Jurassic Coal in Trpan-Hami Basin,Xinjiang [J].Xinjiang Geology,2016,34(1):144-149.
[2] 陈新蔚,庄新国,周继兵,等.准东煤田煤质特征及分布规律[J].新疆地质,2013,31(1):89-93.
CHEN Xinwei,ZHUANG Xinguo,ZHOU Jibing,et al.Coal quality and its distribution of the eastern Junggar coalfield in Junggar Basin,XinJiang[J].Xinjiang Geology,2013,31(1):89-93.
[3] 王生维,陈钟惠,张明,等.煤相分析在煤储层评价中的应用[J].高校地质学报,2003,9(3):396-401.
WANG Shengwei,CHEN Zhonghui,ZHANG Ming,et al.Application of the technique of coal facies analysis to evaluation of coal reservoir[J].Geological Journal of China University,2003,9(3):396-401.
[4] 李 鑫,庄新国,周继兵,等.准东煤田中部矿区西山窑组巨厚煤层煤相分析[J].地质科技情报,2010,29(5):84-88.
LI Xin,ZHUANG Xinguo,ZHOU Jibing,etal.Coal facies analysisof thick coal seam of middle Jurassic Xishanyao Formation in the middle part of eastern Zhunggar Coalfield,Xinjiang[J].Geological Science and Technology Information,2010,29(5):84-88.
[5] 雷国明,周继兵,张东亮,等.准东煤田五彩湾矿区西山窑组巨厚煤层煤相研究[J].新疆地质,2012,33(3):347-340.
LEI Guolei,ZHOU Jibing,ZHANG Dongling,etal.The coal facies research on the XishanyaoFormation in Wucaiwan Coalfield Junggar Basin,Xinjiang [J].Xinjiang Geology,2012,33(3):347-340.
[6] 周 璋,李守平.基于三道岭矿区含煤性的综合分析[J].科技成果纵横,2011(2):69-70.
ZHOU Zhang,LI Shouping.The comprehensive analysis of coal-bearing property in Sandaoling mining area[J].Perspectives of Scientific and Technological Achievement,2011(2):69-70.
[7] 李 晶,庄新国,周继兵,等.新疆准东煤田西山窑组巨厚煤层煤相特征及水进水退含煤旋回的判别[J].吉林大学学报: 地球科学版,2012,42(S2):104-114.
LI Jing,ZHUANG Xinguo,ZHOU Jibing,et al.Coal facies characteristic and identification of transgressive /regressive Coal-bearing ycles in a thick coal seam of Xishanyao Formation in eastern Junggar Coalfield,Xinjiang[J].Journal of Jilin University: EarthScience Edition,2012,42(S2):104-114.
[8] DIESSEL C F K.On the correlation between coal facies and depositional environments[C]/ /Proceedings symposium on advances inthe study of Sydney Basin,Newcastle: Newcastle University,1986:19-22.
[9] DIESSEL C F K.Utility of coal petrology for sequence stratigraphicanalysis[J].International Journal of Coal Geology,2007,70(1/3):3-34.
[10] CALDER J H,GIBBING M R,MUKHOPADHAY P K.Peat formation in a Westphalian B pidemont setting Cumberland Basin,Nova Scotia: implication for the maceralbased interpretation of rheotrophic and raised Paleomires[J].Bull Soc Geol Fr,1991,162(2):283-298.
[11] Marques M.,Coal facies and depositional environments of the Aurora and Cabeza de Vaca Units,Penarroya Belmez Espiel Coalfield (Cordoba,Spain)[J].International Journal of Coal Geology,2002,48:197-216.
[12] KALKREUTH W D,LECKIE D A.Sedimentological and petrographical characteristics of Cretaceous strandplain coals: a model for coal accumulation from the North American western Interior seaway.coal: classification,coalification,mineralogy,trace-elements chemistry,and oil and gas potential.[J].Coal Geol.1989,12(1/4):381-424.
[13] HARVEY R D,DILLON J W.Maceral distributions in Illinoiscoals and their paleoenvironmental implications.[J].Int Coal Geol.1985(5):141-165.
[14] 许福美,方爱民.山东兖州矿区太原组16号煤层煤相研究[J].煤田地质与勘探,2005,33(4):10-13.
XU Fumei,FANG Aimin.Coal facies analysis upon No.16 coal seam in Yanzhou coal mining area of Shandong Province[J].Coal Geology & Exploration,2005,33(4):10-13.
[15] 代世峰,艾天杰,侯惠敏,等.乌达矿区主采煤层煤相特征与煤的可选性[J].煤田地质与勘探,1999,27(1):11-13.
DAI Shifeng,AI Tianjie,HOU Huimin,et al.Characteristics of coal facies and washability of main minable coal seam in Wuda Coal Mining Area[J].Coal Geology & Exploration,1999,27(1):11 -13.
[16] 代世峰,任德贻,李生盛,等.内蒙古准格尔黑岱沟主采煤层的煤相演替特征[J].中国科学:D辑:地球科学,2007,18(S1):119-126.
DAI Shifeng,REN Deyi,LI Shengsheng,et al.The coal facies succession characteristics of the main coal seam in Heidaigou of Jungar,Inner Mongolia[J].Science in China Press D: Earth Science Edition,2007,18(S1):119-126.
[17] 陶明信,论新疆吐哈盆地的两种构造单元体系[J].地质通报,2010,2010,29(2/3):297-304.
TAO Mingxin.The two kinds of tectonic unit systems in Turpan-Hami Basin,Xinjiang,China.Geological Bulletin of China,2010,29(2/3):297-304.
[18] 邵龙义,高 迪,罗 忠,等.新疆吐哈盆地中、下侏罗统含煤岩系层序地层及古地理[J].古地理学报,2009,11(2):215-224.
SHAO Longyi ,GAO Di,et al.Sequence stratigraphy and palaeogeography of the Lower and Middle Jurassic coal measures in Turpan-Hami Basi[J].Journal of Palaeogeography,2009,11(2):215-224.
[19] 新疆地矿局第一地质大队.新疆吐鲁番—哈密聚煤盆地形成演化及聚煤规律[M].乌鲁术齐:新疆科技卫生出版社,1992.