黔西地区龙潭组煤系泥页岩孔隙结构及分形特征研究

邓恩德1,姜秉仁1,2,高 为1,2,付 炜1

(1.贵州省煤层气页岩气工程技术研究中心,贵州 贵阳 550081;2.贵州省煤田地质局,贵州 贵阳 550081)

摘 要:为了研究煤系泥页岩微观孔隙结构特征,以黔西地区龙潭组煤系泥页岩为研究对象,基于扫描电镜及低温氮气吸附实验测试手段,定性和定量表征页岩孔隙特征,同时运用分形理论分析了其分形特征,并探讨了孔隙结构影响因素。结果表明:黔西地区龙潭组煤系泥页岩扫描电镜下观察到粒间孔、粒内孔、微裂缝及有机质孔4类,微裂缝大量发育,为烃类气体运移提供通道,仅见少量有机质孔隙;泥页岩氮气吸附等温线与Ⅳ型等温线相近,曲线均呈反“S”型,反映出主要为中孔,在高比压区(0.45<P/P0<1.0)形成滞后回线,表现为H2型的细颈广体的墨水瓶孔和H4型的狭缝型孔;孔径平均值为8.36 nm,以中孔为主,比表面积较大,平均为12.03 m2/g,总孔体积较大,平均为0.017 379 m3/g;采用FHH模型对低比压区(0<P/P0<0.45)和高比压区(0.45<P/P0<1.0)2个阶段进行计算分形维数(D1D2),分形维数较大,D1平均为2.576 3、D2平均为2.703 2;总有机碳含量对泥页岩BET比表面积和平均孔径影响较小,与BJH总孔体积呈一定的负相关性;矿物成分对泥页岩的孔径和比表面积有较大的影响,黏土矿物含量越低、石英含量越高,平均孔径越大,石英含量越高,比表面积越小;泥页岩比表面积越大、平均孔径越小,泥页岩黏土矿物含量越高、石英含量越低,分形维数越大,煤系泥页岩孔隙结构复杂,连通性较差,非均质性较强。

关键词:煤系泥页岩;氮气吸附;孔隙结构;分形理论;黔西地区

0 引 言

页岩作为一种非均质多孔介质,发育大量的纳米级孔隙,其生成的烃类气体大部分以吸附态形式赋存在有机质生烃过程形成的气泡孔或黏土矿物形成的微孔或中孔表面,或以游离态赋存于大孔或裂缝当中[1-3],页岩孔隙结构复杂、非均质性较强[4],孔隙结构参数主要包括孔隙形态、孔径大小、比表面积及总孔体积等[5],精确测量这些参数对页岩气的富集机理有着重要的指导作用。

目前海相页岩气在四川长宁-威远、重庆涪陵、云南昭通等地区成功实现工业开发[6],陆相页岩气也获得发现,在鄂尔多斯盆地延长组数十口页岩气井获得工业气流[7]。煤系泥页岩进展较缓慢,国内学者针对煤系泥页岩开展了一些页岩气储层特征、成藏条件、聚集规律及含气性等方面工作[8-11],而对煤系泥页岩的孔隙结构及分形特征研究工作较小。煤系泥页岩差异性较大,储层非均质性较强[9-10],研究孔隙结构特征有助于全面了解煤系泥页岩特征。

研究泥页岩孔隙结构的方法较多,主要有场发射扫描电镜、聚焦离子束扫描电镜及CT成像等定性表征手段和高压压汞、气体吸附法等定量表征手段[12]。此次研究以黔西地区龙潭组煤系泥页岩为研究对象,笔者采用氩离子抛光-场发射扫描电镜试验定性分析孔隙结构特征;利用低温氮气吸附试验获取孔隙结构定量参数,结合FHH分形理论[12]分析微观孔隙分形特征,并探讨了分形维数与孔隙结构参数的关系、孔隙结构参数与TOC及矿物成分的关系、分形维数与TOC及矿物成分的关系,以期丰富煤系页岩气在微观孔隙中赋存与运移的地质理论,为研究区海陆交互相煤系页岩气勘探开发提供参考。

1 样品采集与试验方法

1.1 样品采集

黔西地区沉积了一套分布范围广的海陆交互相龙潭组含煤地层,沉积环境主要为潟湖相、潮坪相及三角洲相[13],在此海陆交互相环境下沉积的龙潭组地层厚度普遍较大(150~300 m),岩性多样,泥页岩表现为层数多、单层薄、累厚大的特点。由于野外露头样品风化较为强烈,较难真实反映泥页岩储集空间特征,故此次研究的试验样品均采集于钻井岩心,分别采集于土城向斜的SV-2井、盘关向斜西翼的HV-2井与YV-2井、盘关向斜东翼南段的JV-2井。龙潭组试验样品总有机碳含量(TOC)、镜质体反射率(Ro)及矿物成分基本情况见表1。

表1 龙潭组泥页岩试验样品基本情况

Table 1 Basic parameters of shale samples from Longtan Formation in western Guizhou

样品井号TOC/%Ro/%矿物含量/%黏土石英长石方解石白云石黄铁矿菱铁矿LY-1SV-28.680.6839.156.1—0.70.63.5—LY-2SV-213.70.7734.663.11.10.5—0.7—LY-3SV-22.460.7249.737.71.23.90.96.6—LY-4SV-22.490.8869.617.16.21.2—1.14.8LY-5HV-23.320.7662.229.21.9—0.30.26.2LY-6HV-23.790.8572.912.58.70.5—4.60.8LY-7HV-28.690.9252.323.62.2—0.421.5—LY-8YV-27.030.7562.831.10.70.70.64.1—LY-9YV-26.690.7951.632.32.63.2—7.03.3LY-10YV-22.170.8973.720.11.6—0.92.90.8LY-11JV-29.971.0267.114.94.40.5—12.30.8LY-12JV-26.860.9842.525.42.80.38.420.6—

1.2 试验方法

试验样品氩离子抛光-场发射扫描电镜实验是使用Gatan 697 Ilion Ⅱ抛光仪和Zeiss SIGMA扫描电子显微镜完成的,首先使用抛光仪对样品进行氩离子抛光处理,再在样品表面镀1层约10 nm的金膜,制片完成后使用Zeiss SIGMA扫描电子显微镜观察样品的微观孔隙形态和结构特征。低温氮气吸附实验使用ASAP2020M全自动比表面积及微孔物理吸附分析仪完成的,称取0.35 g样品,在试验前需对样品进行150 ℃、5 h抽真空干燥预处理,再用-196.15 ℃低温液氮进行氮气脱吸附试验,结合BET方程、BJH模型获取孔隙结构参数[14]

2 微观孔隙结构特征

2.1 孔隙类型

近年来,国内外众多学者对页岩储层微观孔隙类型进行了研究,对孔隙类型的划分及成因进行分析探讨[3,15-16],其中孔隙分类方案最具代表性的有Slatt和O′Brien六分法。笔者在结合前人微观孔隙研究成果的基础上,采用氩离子抛光-场发射扫描电镜实验对样品进行观察,定性分析孔隙结构特征,将研究区泥页岩微观孔隙划分为粒内孔、粒间孔、微裂缝及有机质孔4类(图1)。

图1 龙潭组煤系泥页岩样品微观孔隙类型及特征
Fig 1 Micro-pore types and characteristics of coal shale samples from Longtan Formation

粒内孔一般形成于矿物颗粒内部,孔隙形态多为不规则,镜下可观察到草莓状黄铁矿晶间孔、黏土矿物粒内孔、长石矿物粒内孔、溶蚀孔(图1a,图1b,图1d,图1e,图1g)。粒间孔一般发育在颗粒间接触处,形状多样,主要有拉长型和多角形[17],镜下可观察到矿物颗粒与有机质粒间孔、黏土矿物絮状物晶间孔、矿物颗粒与矿物颗粒的粒间孔(图1a,图1b,图1d,图1f,图1h,图1i)。在成岩过程、后期改造及有机质生烃过程中会形成微裂缝,镜下可观察到大量的黏土矿物层间缝、有机质边缘的收缩缝、构造作用形成的微裂缝(图1a,图1b,图1e,图1f,图1h,图1i),丰富的微裂缝能够为油气的运移提供通道,有利于后期的改造。有机质在生成烃类气体的过程中由于气体分子突破有机质表面会产生有机质气泡孔,镜下可观察到大量的有机质,有机质表面光滑,仅有部分有机质表面见到少量的有机质孔隙(图1c,图1g,图1h),这可能是由于龙潭组煤系泥页岩干酪根的成分主要结构稳定的镜质组和惰质组,在生烃过程中不利于形成有机质孔[18]

2.2 孔隙形态特征

龙潭组煤系泥页岩微观孔隙特别发育,孔隙结构复杂多样,从纳米级孔隙到微裂缝均有发育。从低温氮气吸附实验获取吸附曲线和脱附曲线图可以看出(图2),煤系泥页岩试验样品吸附等温线在形态上均呈反“S”型,各个样品的形态有些许差别,根据IUPAC对标准吸附等温线类型的划分[19],测试的样品与Ⅳ型等温线相近,反映微观孔隙主要为中孔型。在相对压力较高(P/P0>0.5)时,由于多分子层吸附的加入,吸附和脱附过程不可逆,吸附和脱附曲线发生分离,形成滞后回线。根据IUPAC对滞后回线标准类型的划分[19],试验样品滞后回线类型主要为H2型和H4型,H2型滞后回线宽大,反映的孔隙类型主要为细颈广体的墨水瓶孔,微孔较为发育充当墨水瓶的“瓶颈”;H4型滞后回线狭长平缓,反映的孔隙类型主要为狭缝型孔。此次试验中H2型的样品有8个,分别为LY-3、LY-4、LY-5、LY-6、LY-7、LY-8、LY-9 、LY-10;H4型的样品有4个,分别为LY-1、LY-2、LY-11、LY-12。

图2 典型龙潭组煤系泥页岩样品吸附-脱附曲线
Fig.2 Adsorption desorption curves of typical coal shale samples from Longtan Formation

2.3 孔径分布及孔隙结构参数

运用BJH理论分析龙潭组煤系泥页岩样品的孔径分布特征(图3),从孔径分布曲线图中可以看出存在多个对应不同孔径的峰值,峰值主要集中1.5~9.0 nm ,页岩的平均孔径介于3.04~18.10 nm,平均值为8.36 nm,以中孔为主。泥页岩的比表面积采用BET方程计算、总孔体积采用BJH法[14,20]计算获取,结果表明比表面积介于1.20~23.00 m2/g ,平均为12.03 m2/g,孔隙比表面积较大,总孔体积为0.005 438~0.035 502 m3/g ,平均为0.017 379 m3/g,龙潭组煤系泥页岩大量发育的纳米级孔隙,能够极大的增加比表面积,为页岩气的赋存提供大量的空间。

图3 龙潭组煤系泥页岩样品孔径分布
Fig.3 Pore size distribution of shale samples
from Longtan Formation

3 孔隙分形特征

泥页岩孔隙的分形特征研究主要基于气体吸附等温线进行计算的,此次龙潭组煤系泥页岩分形特征研究采用FHH数学模型[2],即

式中:D为分形维数;V为氮气吸附量,cm3/g;P0为吸附气体的饱和蒸气压,MPa;P为系统平衡压力,MPa;C为常数。

龙潭组煤系泥页岩样品在相对压力(P/P0)约为0.45时,吸附等温曲线和脱附等温曲线明显的不重合,出现滞后回线,因此以相对压力为0.45为分界点,划分相对压力较低(0<P/P0<0.45)和相对压力较高(0.45<P/P0<1.0)两个比压区阶段,来计算分形维数(图4),在低比压区间内孔隙通常称为小孔隙[2],计算出的分形维数为D1,高比压区间内通常称为大孔隙,计算出的分形维数为D2,计算结果见表2,线性拟合非常好,R2均大于0.96,D1=2.446 0~2.842 9,平均为2.576 3,说明其小孔隙结构复杂;高比压区分形维数D2=2.534 6~2.886 8,平均为2.703 2,同一样品D2均大于D1,且分形维数值较为集中,说明大孔隙结构更为复杂。通过分形维数计算结果可以看出,龙潭组煤系泥页岩孔隙表面粗糙程度较高,孔隙的连通性较差,储层非均质性较强。

图4 典型龙潭组煤系泥页岩样品分形曲线
Fig.4 Fractal curves of typical shale samples
of coal measures from Longtan Formation

表2 基于氮气吸附法的煤系泥页岩微观孔隙分形维数

Table 2 Fractal dimension of micro pores of
coal shale based on nitrogen adsorption

样品0

0.45KR2D2LY-1-0.553 60.982 72.446 4-0.460 50.998 02.539 5LY-2-0.542 80.983 52.457 2-0.465 40.995 42.534 6LY-3-0.397 80.997 62.602 2-0.206 80.978 52.793 2LY-4-0.354 20.997 72.645 8-0.304 70.998 12.695 3LY-5-0.492 00.999 62.508 0-0.374 10.992 02.625 9LY-6-0.414 10.996 82.585 9-0.268 10.970 62.731 9LY-7-0.492 70.983 32.507 3-0.295 00.992 62.705 0LY-8-0.451 70.990 32.548 3-0.319 40.989 62.680 6LY-9-0.490 50.996 52.509 5-0.312 50.987 42.687 5LY-10-0.413 30.991 42.586 7-0.206 80.962 72.793 2LY-11-0.157 10.992 32.842 9-0.113 20.996 62.886 8LY-12-0.325 00.972 12.675 0-0.235 60.997 72.764 4

4 孔隙结构影响因素分析

4.1 分形维数与孔隙结构参数的关系

从龙潭组煤系泥页岩孔隙的分形维数与孔隙结构的关系如图5所示,分形维数与BET比表面积呈较好的正相关性,与平均孔径呈现出较好的负相关性,与BJH总孔体积无明显的相关性,分形维数D1

图5 分形维数与孔隙结构参数的关系
Fig.5 Relationships between fractal dimension and pore structure parameters

D2与比表面积、平均孔径相关性较好且比较接近,说明龙潭组煤系泥页岩比表面积越大、平均孔径越小,分形维数越大,孔隙内表面越粗糙、不规则,孔隙结构越复杂。

4.2 分形维数与TOC及矿物成分的关系

从龙潭组煤系泥页岩孔隙的分形维数与TOC及矿物成分(黏土、石英)的关系分析可以看出(图6),分形维数与TOC无明显的相关性,与黏土矿物含量呈现出较低的正相关性,与石英含量呈现出一定的负相关性。分形维数D1D2与黏土矿物、石英含量有一定的相关性且比较接近,说明龙潭组煤系泥页岩黏土矿物含量越高、石英含量越低,分形维数越大,孔隙结构越复杂,非均质性越强。

4.3 孔隙结构参数与TOC、矿物成分的关系

龙潭组煤系泥页岩的孔隙结构参数与TOC的关系分析可以看出BET比表面积、平均孔径与TOC相关性较低,BJH总孔体积与TOC呈现出一定的负相关性。孔隙结构参数与矿物成分(黏土、石英)的关系分析结果显示(图7),BET比表面积与黏土矿物含量呈现出较低的正相关性,与石英含量呈现出一定的负相关性;BJH总孔体积与黏土矿物含量呈现出较低的正相关性,与石英含量呈现较低的负相关性;平均孔径与黏土矿物含量呈现出一定的负相关性,与石英含量呈现出良好的正相关性。说明煤系泥页岩黏土矿物含量越高、石英含量越低,BET比表面积越大;黏土矿物含量越低、石英含量越高,平均孔径越大。

图6 分形维数与TOC及矿物成分的关系
Fig.6 Relationships between fractal dimension and TOC and mineral composition

图7 龙潭组泥页岩孔隙结构参数与矿物成分的关系
Fig.7 Relationships between pore structure parameters and mineral composition of shale from Longtan Formation

5 结 论

1)龙潭组煤系泥页岩的微观孔隙发育有粒间孔、粒内孔、微裂缝及有机质孔4种类型,其中大量发育的微裂缝为烃类气体运移提供通道,仅见到少量的有机质孔;氮气吸附等温曲线均呈反“S”型,与Ⅳ型等温线相近,反映主要为中孔;滞后回线类型主要为H2型(细颈广体的墨水瓶孔)和H4型(狭缝型孔)。平均孔径平均值为8.36 nm,以中孔为主,孔隙比表面积较大,平均为12.03 m2/g,总孔体积较大,平均为0.017 379 m3/g。

2)采用FHH模型分低比压区(0<P/P0<0.45)和高比压区(0.45<P/P0<1.0)两个阶段计算分形维数分别为D1(平均为2.576 3)和D2(平均为2.703 2),同一样品D2均大于D1,说明大孔隙结构更为复杂,孔隙的连通性较差,储层非均质性较强。

3)分形维数与BET比表面积呈较好的正相关性,与平均孔径呈现出较好的负相关性;分形维数与TOC无明显相关性,与黏土矿物含量呈较低的正相关性,与石英含量呈一定的负相关性;孔隙结构参数中BJH总孔体积与TOC呈一定的负相关性,BET比表面积与石英含量呈现出一定的负相关性,平均孔径与黏土矿物含量呈一定的负相关性,与石英含量呈现出良好的正相关性。

参考文献(References):

[1] 张 琴,梁 峰,梁萍萍,等.页岩分形特征及主控因素研究:以威远页岩气田龙马溪组页岩为例[J].中国矿业大学学报,2020,49(1):110-122

ZHANG Qin,LIANG Feng,LIANG Pingping,et al.Investigation of fractal characteristics and its main controlling factors of shale reservoir:A case study of the Longmaxi shale in Weiyuan shale gas field[J].Journal of China University of Mining &Technology,2020,49(1):110-112.

[2] 张 岩,刘金城,徐 浩,等.陆相与过渡相煤系页岩孔隙结构及分形特征对比:以鄂尔多斯盆地东北缘延安组与太原组为例[J].石油学报,2017,38(9):1036-1046.

ZHANG Yan,LIU Jincheng,XU Hao,et al.Comparison between pore structure and fractal characteristics of continental and transitional coal measures shale:a case study of Yan'an and Taiyuan formations at the northestern margin of Ordos Basin[J].Acta petrolei Sinica,2017,38(9):1036-1046.

[3] SLATT R M,O′brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.

[4] 张吉振,李贤庆,张学庆,等.煤系页岩储层孔隙结构特征和演化[J].煤炭学报,2019,44(S1):195-204.

ZHANG Jizhen,LI Xianqing,ZHANG Xueqing,et al.Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J].Journal of China Coal Society,2019,44(S1):195-204.

[5] 张 鹏,黄宇琪,杨军伟,等.黔西北龙潭组页岩储层特征研究[J].煤炭科学技术,2019,47(4):174-180.

ZHANG Peng,HUANG Yuqi,YANG Junwei,et al.Study on characteristics of shale reservoirs from Longtan Formation in northwest Guizhou [J].Coal Science and Technology,2019,47(4):174-180.

[6] 聂海宽,何治亮,刘光祥,等.中国页岩气勘探开发现状与优选方向[J].中国矿业大学学报,2020,49(1):13-15.

NIE Haikuan,HE Zhiliang,LIU Guangxiang,et al.Status and direction of shale gas exploration and development in China[J].Journal of China University of Mining & Technology,2020,49(1):13-15.

[7] 王香增.延长石油集团非常规天然气勘探开发进展[J].石油学报,2016,37(1):137-144.

WANG Xiangzeng.Advances in unconventional gas exploration and development of Yanchang Petroleum Group[J].Acta Petrolei Sinica,2016,37(1):137-144.

[8] 曹代勇,王崇敬,李 靖,等.煤系页岩气的基本特点与聚集规律[J].煤田地质与勘探,2014,42(4):25-30.

CAO Daiyong,WANG Congjing,LI Jing,et al.Basic characteristics and accumulation rules of shale gas in coal measures[J].Coal Geology &Exploration,2014,42(4):25-30.

[9] 王中鹏,张金川,孙 睿,等.西页1井龙潭组海陆过渡相页岩含气性分析[J].地学前缘,2015,22(2):243-250.

WANG Zhongpeng,ZHANG Jinchuan,SUN Rui,et al.The gas-bearing characteristics analysis of Longtan Formation transitional shale in Well Xiye 1[J].Earth Science Frontiers,2015,22(2):243-250

[10] 张吉振,李贤庆,王 元,等.海陆过渡相煤系页岩气成藏条件及储层特征:以四川盆地南部龙潭组为例[J].煤炭学报,2015,40(8):1871-1878.

ZHANG Jizhen,LI Xianqing,WANG Yuan,et al.Accumulation conditions and reservoir characteristics of marineterrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin.Journal of China Coal Society,2015,(8):1871-1878.

[11] 易同生,高 为.六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J].煤炭学报,2018,43(6):1553-1564.

YI Tongsheng,GAO Wei.Reservoir Formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coal-bearing gas in Liupanshui Coalfield[J].Journal of China Coal Society,2018,43(6):1553-1564.

[12] TIAN Hui,PAN Lei,XIAO Xianming,et al.A preliminary study on the pore characterization of Lower Silurian Black shales in the Chuandong thrust fold belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19

[13] 高 为,易同生.黔西松河井田煤储层孔隙特征及对渗透性的影响[J].煤炭科学技术,2016,44(2):55-61.

GAO Wei,YI Tongsheng.Pore features of coal reservoir in Songhe Mine Field of West Guizhou and its impact to permeability[J].Coal Science and Technology,2016,44(2):55-61.

[14] GB/T 19587—2017.气体吸附BET法测定固态物质比表面积[S].

[15] LOUCKS R G,REED R M,Ruppel S C,et al.Spectrum of pore types and networks in mud rocks and a descriptive classification for matrix-related mud rock pores[J].AAPG Bulletin,2012,96(6):1071-1098.

[16] 田忠斌,魏书宏,王建青,等.沁水盆地中东部海陆过渡相页岩微观孔隙结构特征[J].煤炭学报,2017,42(7):1818-1827

TIAN Zhongbin,WEI Shuhong,WANG Jiangqing,et al.Characteristics of micro-scale pore structures of marine-continental transitional shale the mid-eastern area,Qinshui Basin[J].Journal of China Coal Society,2017,42(7):1818-1827.

[17] 邓恩德,金 军,王 冉,等.黔北地区龙潭组海陆过渡相页岩微观孔隙特征及其储气性[J].科学技术与工程,2017,17(24):190-195.

DENG Ende,JIN Jun,WANG Ran,et al.Characteristics of microscopic pore and gas storage on shale in Permian Longtan Formation,northern Guizhou[J].Science Technology and Engineering,2017,17(24):190-195.

[18] 付常青,朱炎铭,陈尚斌.浙西荷塘组页岩孔隙结构及分形特征研究[J].中国矿业大学学报,2016,45(1):77-86.

FU Changqing,ZHU Yanming,CHEN Shangbin.Pore structure and fractal features of Hetan Formation shale in western Zhejiang[J].Journal of China University of Mining & Technology,2016,45(1):77-86.

[19] GREGG S J,SING K S W.Adsorption,surface area and porosity[M].London:St Edmundsbury Press,1982.

[20] SING K S W,EVERETT D H,Haul R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(4):603-619.

Study on pore structure and fractal characteristics of shale from coal measures of Longtan Formation in western Guizhou

DENG Ende1,JIANG Bingren1,2,GAO Wei1,2,FU Wei1

(1.Guizhou Provincial CBM and Shale Gas Engineering Research Center,Guiyang 550081,China;2.Guizhou Provincial Coalfield Geological Bureau,Guiyagn 550081,China)

Abstract:In order to study the micro-pore structure characteristics of coal shale,taking the shale from coal measures of Longtan Formation in western Guizhou as the research object,based on SEM and low temperature nitrogen adsorption test,the pore characteristics are characterized qualitatively and quantitatively,meanwhile,using fractal theory analyze its fractal characteristics and the factors influencing the pore structure.The results showed that under scanning electron microscope,intergranular pores,intragranular pores,microfractures and organic pores were observed,there are a lot of microfractures,providing a channel for hydrocarbon gas migration,and only a few organic pores;the nitrogen adsorption isotherm of shale is similar to that of Type Ⅳ,the curves are all inverted S type,reflecting that it is mainly mesoporous,forming hysteresis loop in high specific pressure zone (0.45<P/P0<1.0),showing Type H2 narrow neck wide body ink bottle hole and Type H4 slit hole;average 8.36 nm,mainly mesopores,with larger specific surface area,averaging 12.03 m2/g,and larger total pore volume,averaging 0.017 379 m3/g;FHH Model was used to calculate fractal dimension in two stages:low specific pressure (0<P/P0<0.45) and high specific pressure (0.45<P/P0<1.0),the fractal dimension of D1 is 2.576 3 and D2 is 2.703 2;TOC has little effect on BET specific surface area and average pore diameter of shale,and has a negative correlation with BJH total pore volume;mineral composition has a greater effect on pore diameter and specific surface area of shale,the lower the clay mineral content and the higher the quartz content, the larger the average pore size, the higher the quartz content and the smaller the specific surface area;the larger specific surface area and smaller the average pore diameter of shale,higher quartz content with smaller specific surface area,the higher clay mineral content of shale,the lower the quartz content and the larger the fractal dimension,the pore structure of coal shale is complex,the connectivity is poor,and the heterogeneity is strong.

Key words:shale of coal measures;nitrogen adsorption;pore structure;fractal theory;western Guizhou

中图分类号:P618.11

文献标志码:A

文章编号:0253-2336(2020)08-0184-07

收稿日期:2020-03-22责任编辑:曾康生

基金项目:国家科技重大专项资助项目(2016ZX05034004-007);贵州省地质勘查基金资助项目(2018-01号);贵州省科技支撑计划资助项目(黔科合支撑G[2020]2028号)

作者简介:邓恩德(1990—),男,湖南邵阳人, 工程师,硕士。E-mail:dengende@163.com

移动扫码阅读

邓恩德,姜秉仁,高 为,等.黔西地区龙潭组煤系泥页岩孔隙结构及分形特征研究[J].煤炭科学技术,2020,48(8):184-190.doi:10.13199/j.cnki.cst.2020.08.023

DENG Ende,JIANG Bingren,GAO Wei,et al.Study on pore structure and fractal characteristics of shale from coal measures of Longtan Formation in western Guizhou[J].Coal Science and Technology,2020,48(8):184-190.doi:10.13199/j.cnki.cst.2020.08.023