煤储层孔隙结构指煤储层内孔隙和喉道的类型、大小、分布及其相互连通关系,有关煤储层孔隙结构的研究一直是国内外煤层气勘探开发研究中的热点。与常规油气储层相比,煤储层具有孔隙、裂缝双重孔隙结构的特点。煤储层孔裂缝结构影响着赋存气体的吸附、解吸、扩散及渗流,因而煤储层孔裂缝系统一直是国内外学者研究的重点[1-3]。近年来,对煤储层渗流孔隙的研究逐渐从定性到定量发展[4]。鉴于煤储层孔隙结构的高度非均质性与复杂性,许多学者尝试用分形理论进行研究,发现从纳米级到毫米级的多尺度范围内煤的孔隙结构存在明显的分形特征[5-10]。YAO等[11]采用低温液氮吸附试验数据结合分形FHH模型研究了煤的微、小孔孔隙(小于100 nm)分形特征,并进一步分析了微小孔分形特征对煤的吸附能力的影响规律。傅雪海等[12]基于压汞试验对煤的孔隙分形进行了研究,最早在煤中划分了渗流孔隙(>75 nm)和吸附孔隙(<75 nm),证明压汞孔隙分形是研究中、大孔隙的有效方法。YAO等[13]系统分析了不同煤阶煤的中、大孔(大于1 000 nm)的分形特征,并建立了孔隙分形与渗透率的关系,作为储层物性预测的重要指标。有学者[14-15]也采用岩样CT扫描图像进行了微观孔隙结构的多重分形研究,建立了三维纳米微观孔隙网络模型。最近一些学者基于NMR 的T2谱的分形分析[16],研究了从微孔至大孔范围内的分形特征。前人研究表明,压汞试验数据可用于煤中的中、大孔的分形分析,但在数据分析时需要特别注意对高压段压汞数据的处理,其原因是高压段的分形可能主要反映了煤的基质压缩性而非孔隙发育问题[17];液氮吸附的孔隙分形分析方法主要适用于微、小孔,对中、大孔无效;采用图像分形分析的缺陷在于,这种方法获取的结果中存在大量“死孔隙”或“伪孔隙”,这导致该方法对于指导实际储层孔隙分析具有一定的局限性。整体上,前人针对煤的孔隙分形方法已开展了大量的卓有成效的研究工作,但是分形方法在低煤阶煤储层中的应用研究还相对较少,特别是针对目前勘探开发程度较低的准噶尔盆地南缘河东矿区,已有的关于煤储层物性资料十分有限,对影响煤层气产出的中、大孔隙(统一简称为渗流孔隙)特征研究较为欠缺。
笔者基于压汞试验结合分形数学方法对乌鲁木齐河东矿区煤储层的渗流孔隙特征及其影响因素进行了分析,研究了渗流孔隙的非均质性发育特征,结合支持向量机(SVM)方法,进一步分析了渗流孔隙特征对煤储层渗透率的影响,对河东煤层气产业选区及开发具有一定指导意义。
乌鲁木齐河东矿区位于北天山褶皱带北缘,属准噶尔坳陷次一级构造单元。研究区断层、褶皱较为发育,地层的倾角总体呈现北缓南陡的特点(北部倾角约30°、南部倾角一般为70°~80°),区内构造整体呈现“东西分段、南北分带和上下分层”的特征(图1)。乌鲁木齐河东矿区发育主力煤层为西山窑组43、45号煤层,煤层沉积背景为三角洲平原亚相,主力煤层较厚 [18-19]。与准噶尔盆地南缘其他矿区相比,该区的勘探与研究程度较低,“十三五”期间,新疆煤田地质局在该区实施了10余口煤层气勘探和试排采工作,显示出良好的勘探开发前景。
图1 河东矿区综合构造地质示意
Fig.1 Structural geological map of Hedong mining area
河东矿区主要发育低煤阶烟煤,镜质组反射率为0.6%~0.8%。该矿区煤样孔隙度较高,平均孔隙度在10%左右,43号煤层平均孔径、平均孔隙度较45号煤层高,煤储层孔隙非均质性较强(表1)。
表1 河东矿区43、45号煤层煤样的工业分析、孔隙度测试结果
Table 1 Industrial analysis and porosity test results of samples from No.43 and No.45 seams in Hedong mining area
样品孔隙度/%平均孔径/μm孔隙体积百分比/%<0.1 μm0.1~1 μm>1 μm镜质组含量/%水分/%灰分/%挥发分/%W2-43-110.304.7144.0416.1439.8260.083.928.3034.20W2-43-212.105.3348.9216.3934.6948.502.304.7234.18W3-43-37.350.0268.6121.3310.0673.202.983.1230.92W3-43-411.200.0540.3924.2435.3770.502.6218.8014.69W3-43-55.470.0176.6620.992.3568.802.5217.4028.10W3-43-63.680.0173.4513.5013.0565.202.841.4432.83W6-43-716.4011.2062.5410.9826.4840.600.738.4629.85W7-43-87.800.2754.7742.702.5467.700.7236.8042.06W7-43-926.607.4121.2721.1457.59—0.697.3638.57W7-43-1018.602.0126.3632.4841.16—0.7310.8036.45W8-43-118.900.0461.0438.96066.600.2010.2036.62W8-43-1214.600.0738.8133.9727.2269.200.517.3940.05W8-43-137.800.0432.2641.1826.5662.600.401.1934.1443号煤层平均11.602.4049.9325.6924.3863.001.6310.4633.28W2-45-12.400.2488.766.844.4050.602.023.8636.88W2-45-22.800.5389.055.125.8353.302.000.8532.69W3-45-38.200.0362.5510.4926.9677.502.3810.3033.20W3-45-411.400.0720.6411.5067.8676.002.564.2429.20W3-45-518.600.0845.5721.9232.51—2.446.6732.96W3-45-612.400.0643.0922.4234.4982.002.287.5831.55W3-45-712.700.0636.4427.7235.8487.002.144.4427.60W3-45-88.250.0439.3517.6443.0178.002.025.9028.28W6-45-911.806.3970.5010.6718.8355.801.211.9329.07W6-45-108.000.2560.4938.191.3255.801.002.6031.87W6-45-114.305.4372.837.5819.5955.800.295.7636.43W7-45-129.200.5065.0626.238.71—0.439.3635.56W8-45-137.000.0360.5135.214.28—0.763.4936.50W8-45-1415.200.0927.4941.6530.86—0.709.3636.38W8-45-158.200.0423.9318.1357.94—1.257.0631.32 45号煤层平均9.460.9053.9720.7425.2965.821.645.4032.80
注:样品号中43、45指煤层号;“—”指未测得对应数据。
43、45号煤层的渗流孔隙较为发育,渗流孔体积分数约50%。对于具有“双峰孔径”结构的煤储层,煤储层渗透率一般较低,这是因为煤储层中孔含量少而导致孔径分布不连续,继而表现孔隙连通性差。该矿区45号煤层中孔体积分数较43号煤层低,煤储层“双峰孔径”结构较为明显,孔隙间连通性较差,不利于煤层气的渗流采出(图2)。
图2 43、45号煤层煤岩孔径分布及物性特征
Fig.2 Pore size distribution and physical properties of No.43 and No.45 coal seams
43号煤层样品压汞曲线表现进汞饱和度相似,退汞效率较高。由于低、高压下进汞量相对较高,其进汞曲线随毛管压力的增加呈中间陡、两端缓状态上升,说明煤样微小孔及大孔较为发育;45号煤层进汞饱和度为45%~85%,且退汞效率较低,反映45号煤层非均质性较43号煤层强,煤样微小孔隙体积分数具有绝对优势,故43号煤层孔渗性优于45号煤层(图3)。
图3 43号和45号煤层煤样压汞曲线
Fig.3 Mercury curves of No.43 and No.45 coal samples
压汞试验是研究煤岩孔隙空间最常用的试验手段,具有操作、原理相对简单,测试速度快的优点,可准确得出渗流孔孔隙信息。前人研究表明[20],压汞测试的孔隙半径r与进汞压力P满足Washburn方程为
r= -2σcos θ-P
(1)
式中:σ为液态汞表面张力,取4.8×10-3 N/cm;θ为液态汞与固体表面间的接触角,取140°。
前人已经推导了根据压汞试验数据计算孔隙分形维数的方法[21],即
V=α(P-Pt)3-D
(2)
式中:V为样品进汞量,%;α为常数;Pt为门限压力,MPa;D为分形维数。
将式(2)两边同时取对数,得
ln V=(3-D)ln(P-Pt)+ln α
(3)
对渗流孔进行线性拟合,得出不同孔径段的斜率k,则各段的分形维数为
D=3-k
(4)
由于煤样压汞所得渗流孔包含中孔和大孔,获得的分形维数代表的物理意义不同,本研究中对渗流孔不同孔径段的分形维数分别进行计算,主要计算了煤样大孔分形维数D1和中孔分形维数D2。
河东矿区煤储层渗流孔ln V和ln (P-Pt)压汞分形曲线主要有2种类型:①当样品大孔隙不发育时,双对数坐标中不能展现大孔隙分形拟合段,只表现为中孔分形特征 (图4a);②正常发育大、中孔的煤样双对数坐标呈现明显的“两段式” (图4b),且各段的线性拟合优度非常高。
图4 ln V和ln(P-Pt)分段式压汞分形
Fig.4 Mercury intrusion fractal curves of ln V and ln(P-Pt)
依据建立的渗流孔隙分形段划分方法,分别对河东矿区43、45号煤层的煤样压汞数据进行双对数求取,得出大、中孔的分形维数(表2)。
河东矿区西山窑组煤样渗流孔隙分形维数为2~3,中、大孔隙均存在明显的分形特征。主力煤层煤样的中孔分形维数D2高于大孔分形维数D1。分形维数是表征孔隙结构复杂程度的重要参数,分形维数越大,表现出孔隙结构越复杂、储层非均质性越强的特点,故研究区煤储层中孔较大孔复杂。
表2 河东矿区43、45号煤层大、中孔分形维数
Table 2 Fractal dimension of large and mesopores in No.43 and No.45 coals in Hedong mining area
样品号D2D1K/10-3μm2样品号D2D1K/10-3μm2W2-43-12.8712.4051.22W2-45-22.7802.7980.01W2-43-22.8462.4440.45W3-45-32.8422.8770.11W3-43-32.7102.8080.10W3-45-42.9392.8691.24W3-43-42.8132.4770.78W3-45-52.8562.49510.22W3-43-52.444—0.20W3-45-62.8002.7220.56W3-43-62.6472.5370.01W3-45-72.5932.6930.51W6-43-72.8402.9501.90W3-45-82.8362.0890.11W7-43-82.106—0.44W6-45-92.7962.7450.16W7-43-92.8532.39278.55W6-45-102.259—0.52W7-43-102.7202.07310.44W6-45-112.8702.9250.05W8-43-112.103—0.22W7-45-122.6292.6290.19W8-43-122.6782.2050.85W8-45-132.564—0.10W8-43-132.6772.1370.31W8-45-142.6592.2690.69W2-45-12.8162.8580.04W8-45-152.8882.7670.45
注:D1为大孔分形维数;D2为中孔分形维数;K为渗透率。
镜质组是煤岩最重要的生气组分,一般随着镜质组含量升高,煤储层生气潜能增大。研究区煤样大孔分形维数随镜质组含量的增加而降低(图5a),推测在相同的热演化过程,煤层生气量随着煤岩镜质组含量的增加而升高,大孔之间的连通性增强、孔隙结构趋于简单化,导致大孔分形维数下降。通常煤岩镜质组增加量与惰质组减少量变化幅度基本一致,故在惰质组控制下大孔分形维数与镜质组变化相反(图5b)。
研究发现[22],大孔分形维数随着水分的增加呈现倒“U”型的相关关系。当水分小于2%时,渗流孔分形维数(尤其大孔)随着水分的增加而增大,此时水的存在主要填充孔隙,增强了孔隙的非均质性;当水分大于2%时,渗流孔分形维数随着水分的增加而减小 (图5c),此时水分的存在的作用在于使各个孔隙内水的影响均一化,因此分形维数反而降低。
煤的灰分大体上代表了煤中矿物的发育情况,灰分产率越高说明矿物含量越高。高灰分产率的煤,其孔隙易被矿物充填,从而降低煤储层孔渗性。根据渗流孔分形维数及实测灰分数据,发现煤岩大孔分形维数随着灰分的增加呈降低的趋势 (图5d)。推测由于煤体内部吼道结构特征差异,随着煤中赋存矿物含量的增加,矿物胶结与填充作用降低了孔隙的复杂性的缘故。
图5 大孔分形维数与储层参数关系
Fig.5 Relationship between fractal dimension of large pores and reservoir parameters
煤岩渗透率主要受裂缝及渗流孔发育程度控制,选取外生裂缝欠发育的煤样进行压汞试验,煤样总孔隙度与渗透率K呈较明显的线性相关关系(R2=0.450),如图6a所示。
由于渗流孔作为流体渗流的主要通道,将渗流孔孔隙度与渗透率进行拟合,结果更加优化(R2=0.614),如图6b所示。
单从渗流孔孔隙度发育状况对煤岩渗透率进行分析是不全面的,因为煤岩渗流孔孔隙结构特征较为复杂,如孔隙的延展性、连通性、非均质性等对渗透率也有极大的影响,故煤岩渗透率受渗流孔孔隙度和孔隙结构耦合效应的影响。
通过对煤岩渗流孔进一步分析,发现反映渗流孔孔隙结构复杂程度的分形维数与渗流孔孔隙度基本不存在相关关系(图7)。
说明相同的渗流孔孔隙度可能对应着不同复杂程度的孔隙结构,故对于特定煤岩样品,渗流孔孔隙结构是其一个重要的内在特征。
图6 煤岩样品孔隙度与渗透率关系
Fig.6 Relationship between porosity and
permeability of coal samples
图7 煤岩样品孔隙度与分形维数关系
Fig.7 Relationship between porosity and fractal dimension of coal samples
在95%置信区间将渗流孔孔隙度和分形维数与煤岩渗透率进行线性拟合,发现大孔孔隙度与渗透率呈现强相关关系,中孔孔隙度与渗透率呈现中等程度相关,分形维数D1、D2则呈现弱相关关系(图8),体现渗流孔的孔隙度相比于孔隙结构对渗透率的影响程度更高。
基于支持向量机(SVM)[23-24]将渗流孔孔隙度和分形维数作为煤岩渗透率的自变量进行训练,采用7组未参与训练的数据点进行检验,经检验得出的渗透率与试验测试渗透率拟合程度很好(R2=0.887)(图9),说明渗流孔孔隙度与孔隙结构耦合可有效反映煤岩渗透率。值得注意的是,这里选用测试的煤岩样品裂缝发育较差,结果更真实地体现出基质渗流孔孔隙度及孔隙结构对煤岩渗透率的控制作用,若煤岩裂缝十分发育,需考虑渗流孔孔隙特征和裂缝双重特性对渗透率的影响。
图8 煤岩孔隙特征与渗透率关系
Fig.8 Relationship between pore characteristics and permeability of coal samples
图9 预测渗透率与测试渗透率对比
Fig.9 Comparison of predicted permeability and the
tested permeability
1)河东矿区43、45号主力煤层孔隙结构较为复杂,但连通性较好,43号煤层孔渗性优于45号煤层,更有利于煤层气的富集与产出。结合压汞试验数据及分段分形法,煤层渗流孔隙分形维数分布在2~3,中、大型孔隙均存在明显的分形特征,主力煤层煤样呈中孔分形维数D2高于大孔分形维数D1的特点,故研究区煤储层中孔较大孔复杂。
2)结合煤岩物性参数对渗透孔隙分形维数分析,大孔分形维数随着镜质组含量的增加而减小,随惰质组含量的增加而增加、随煤中水分的增加而呈现倒“U”型的相关关系、随灰分产率的增加呈现下降的趋势等。
3)煤岩孔隙渗透率高低是渗流孔孔隙度和孔隙结构耦合而决定的,在95%置信带内大孔孔隙度(P1)与渗透率呈现强相关关系,中孔孔隙度P2与渗透率呈现中等程度相关,分形维数D1、D2则呈现弱相关关系,基于支持向量机(SVM)将渗流孔孔隙度和分形维数作为煤岩渗透率的自变量进行训练,经检验得出的渗透率与实际测试渗透率拟合程度很好(R2=0.887),渗流孔孔隙度与孔隙结构耦合可有效反映煤岩渗透率。
[1] 傅雪海,秦 勇,薛秀谦,等.煤储层孔、裂缝系统分形研究[J].中国矿业大学学报,2001,30(3):11-14.
FU Xuehai,QIN Yong,XUE Xiuqian,et al. Research on fractals of pore and fracture st ructure of coal reservoirs [J]. Journal of China University of Mining & Technology,2001,30(3):11-14.
[2] 姚艳斌,刘大锰,汤达祯,等.沁水盆地煤储层微裂缝发育的煤岩学控制机理[J].中国矿业大学学报,2010,39(1):6-13.
YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Influence and control of coal petrological composition on the development of microfracture of coal reservoir in the Qinshui basin [J]. Journal of China University of Mining & Technology,2010,39(1):6-13.
[3] YANG S Y,CAI Y D,WEI R,et al. A new fracture permeability model of CBM reservoir with high-dip angle in the southern Junggar basin,NW China [J]. Energy Exploration & Exploitation,2019,37(1):125-143.
[4] 姚艳斌,刘大锰.基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J].煤炭科学技术,2016,44(6):14-22.
YAO Yanbin,LIU Dameng. Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis [J]. Coal Science and Technology,2016,44(6):14-22.
[5] 李菊花,郑 斌.微观孔隙分形表征新方法及其在页岩储层中的应用[J].天然气工业,2015,35(5):52-59.
LI Juhua,ZHENG Bin. A new method for fractal characterization of microscopic pores and its application in shale reservoirs [J]. Natural Gas Industry,2015,35(5):52-59.
[6] 黄 婷,刘 正.榆社-武乡区块煤储层孔隙结构特征及其影响因素分析[J].煤炭科学技术,2019,47(7):227-233.
HUANG Ting,LIU Zheng. Analysis on pore structure characteristics and influencing factors of coal reservoir in Yushe-Wuxiang Block [J]. Coal Science and Technology,2019,47(7):227-233.
[7] YAO Y B,LIU D M,CHE Y,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J].Fuel,2010,89:1371-1380.
[8] 郭 威,姚艳斌,刘大锰,等.基于核磁冻融技术的煤的孔隙测试研究[J].石油与天然气地质,2016,37(1):141-148.
GUO Wei,YAO Yanbin,LIU Dameng,et al.Research on measurement of pores in coals with NMRC Thechnique [J]. Oil & Gas Geology,2016,37(1):141-148.
[9] 高 为,易同生,金 军,等.黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J].煤炭学报,2017,42(5):1258-1265.
GAO Wei,YI Tongsheng,JIN Jun,et al.Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability [J].Journal of China Coal Society,2017,42(5):1258-1265.
[10] 余恩晓,马立涛,周福双,等. 煤岩孔隙结构分形特征表征方法研究[J].煤炭科学技术,2018,46(11):8-12.
YU Enxiao,MA Litao,ZHOU Fushuang,et al. Study on method to characterize fractal features of pore structures in coal and rock mass [J].Coal Science and Technology,2018,46(11):8-12.
[11] YAO Y B,LIU D M,TANG D Z,et al.Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology,2008,73:27-42.
[12] 傅雪海,秦 勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005(S1):51-55.
FU Xuehai,QIN Yong,ZHANG Wanhong,et al. Fractal classification and natural classification of coal pores based on coalbed gas migration [J]. Science China Press,2005(S1):51-55.
[13] YAO Y B,LIU D M,TANG D Z,et al. Fractal characterization of seepage-pores of coals from China:an investigation on permeability of coals [J]. Computer & Geosciences,2009,35:1159-1166.
[14] 谢淑云,何治亮,钱一雄,等.基于岩石CT图像的碳酸盐岩三维孔隙组构的多重分形特征研究[J].地质学刊,2015,39(1):46-54.
XIE Shuyun,HE Zhiliang,QIAN Yixiong,et al. Multifractality of 3D pore structures of carbonate rocks based on CT images [J]. Journal of Geology,2015,39(1):46-54.
[15] HU D. Micro-CT imaging and pore network extraction [D]. London:Imperial,2007.
[16] ZHENG S J,YAO Y B,LIU D M,et al. Characterizations of full-scale pore size distribution,porosity and permeability of coals:a novel methodology by nuclear magnetic resonance and fractal analysis theory [J]. International Journal of Coal Geology,2018,196:148-158.
[17] YAO Y B,LIU D M. Comparison of low-field NMR and mercury intrusionporosimetry in characterizing pore size distributions of coals [J].Fuel,2012,95:152-158.
[18] 杨师宇,魏 韧,袁学浩,等.新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J].天然气地球科学,2019,30(11):1-9.
YANG Shiyu,WEI Ren,YUAN Xuehao,et al. Analysis of coal reservoir gas characteristics and main controlling factors in Hedong mining area,Urumqi city,Xinjiang Uygur Autonomous Region [J]. Natural Gas Geoscience,2019,30(11):1667-1675.
[19] 王 刚,杨曙光,舒 坤,等.新疆乌鲁木齐河东矿区煤系气的地质特征及气测录井评价方法[J].地质科技情报,2018,37(6):148-153.
WANG Gang,YANG Shuguang,SHU Kun,et al. Geological features and gas logging evaluation method of the unconventional gas in coal measures in Hedong coal district,Urumqi,Xinjiang [J]. Geological Science and Technology Information,2018,37(6):148-153.
[20] FALLICO C,TARQUIS A M. Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry [J]. European Journal of Soil Science,2010,61(3):425-436.
[21] 姜 文,唐书恒,张静平,等.基于压汞分形的高变质石煤孔渗特征分析[J].煤田地质与勘探,2013,41(4):9-13.
JIANG Wen,TANG Shuheng,ZHANG Jingping,et al. Characteristics of pore permeability of highly metamorphic bone coal [J]. Coal Geology & Exploration,2013,41(4):9-13.
[22] 姚艳斌,刘大锰.煤储层精细定量表征与综合评价模型[M].北京:地质出版社,2013.
[23] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
DING Shifei,QI Bingjuan,TAN Hongyan. An overview on theory and algorithm of support vector machines [J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
[24] 顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版)2010,50(7):1063-1066,1071.
GU Yanping,ZHAO Wenjie,WU Zhansong. Least squares support vector machine algorithm [J]. Journal of Tsinghua University (Science & Technology),2010,50(7):1063-1066,1071.