煤是我国现阶段最重要的能源之一,而且将在未来较长一段时间内继续占据我国能源消费的主体地位,这既是由我国富煤、贫油、少气的能源禀赋所决定的,也符合国家能源安全需求。但我国煤炭资源的储采比并不可观,因此需要不断地“开源节流”,保障煤炭资源的合理开发利用。“开源”意味着向深部煤层开发和开采,“节流”则需要不断提高煤炭利用效率,无论“开源”还是“节流”都要求对热变煤进行更深入的研究。
热变煤特指由于岩墙、岩床等侵入体侵入煤层,导致煤层形态、煤的数量和质量发生变化的煤,热变煤并不包括受到区域变质作用的煤。向深部开发势必会遇到更多的侵入体及受其影响的热变煤,而热变煤相比于经历深成变质作用形成的煤,往往具有更高的瓦斯突出风险和自燃风险,带来一系列开发和开采中的安全问题。此外,基于热变煤的特殊性质,对其的开发利用也需要进一步探讨,以期能够合理利用热变煤。因此,对热变煤的研究,既有利于保障深部开发与开采过程中的安全,也能够提高热变煤利用价值。
热变煤在世界范围内分布广泛,中国、美国、波兰、印度、印度尼西亚、澳大利亚、俄罗斯等主要采煤国家均有热变煤的相关报道[1-18]。自19世纪50年代对热变煤的首次报道[19]至今,国内外众多学者对热变煤开展了广泛的研究。尤其是20世纪60年代以来,对热变煤的煤岩学[3,6,16-18,20-25]、煤质学[1,3,14,26-35]、地球化学[14,18,23,26-27,33,36-37]、矿物学[2,6,14,16,28,38-40]等领域进行了大量研究。尽管就热变煤已经开展了大量的研究工作,但还存在一系列的问题没有得到很好地解决。如热变煤化学结构演化与煤岩学特征之间的关系;热变煤中各组分的差异演化;以及多种地质条件要素对热变煤影响等。这些问题阻碍了对热变煤的开发利用,但也正是基于这些亟待解决的问题,对热变煤的归纳和总结显得越发重要,这既有利于保障深部开发和开采的安全有序进行,也有助于提高热变煤的利用价值。
由于与岩浆岩侵入体直接接触,热变煤不可避免地会与侵入体发生能量与物质的交换。一方面,侵入体携带的热量以及快速的加热过程导致煤层变质;另一方面,侵入体自身以及热液中的物质同样会影响煤层。因此,热变煤特殊的元素地球化学特征既是煤变质演化的结果,也是与侵入体物质交换的结果。
热变煤的元素分析表明,碳、氢、氧、氮、硫元素含量明显受到侵入体的影响。碳作为煤中最主要的元素,一般随变质程度升高而逐渐富集,但热变煤中碳元素含量在不同学者的报道中存在着差异,大部分报道指出热变煤中的碳元素含量随变质程度高而升高[14,27,33,36,41],但也有学者研究结果表明碳元素含量降低[26],而造成这种现象的原因是在侵入体带来的高温作用下,煤中部分碳元素与热液反应,以甲烷和二氧化碳的形式逸出,因此出现碳含量降低的现象。同样,在有热液影响时,氧元素的含量会相应升高[26]。相比于碳元素和氧元素,前人研究中氢元素和氮元素受侵入体影响后的变化得到了较为一致的结果,即热变煤中氢含量、氮含量均减少[14,18,23,26,37]。硫元素的情况相对复杂,MASTALER等[18]所做元素分析指出,随着样品靠近侵入体,总硫含量没有明显的变化趋势,但有机硫的含量降低;也有部分学者对热变煤研究发现,总硫含量随靠近侵入体而逐渐降低[14,33]。除单个元素的含量,热变煤的氢碳原子比与氧碳原子比也表现出特殊性,即①热变煤的H/C与O/C原子比的演化轨迹与经典的Van Krevelen图变化不同[42],尤其是烟煤及更高变质程度阶段煤,在相同的O/C条件下,其H/C均降低[3];②相同碳含量条件下,热变煤的O/C更高[40]。
除上述主要元素外,热变煤中其他元素以及矿物同样受到侵入体的影响。热变煤常见的矿物主要有黑云母、金云母、方解石、蛇纹石、绿帘石、铵伊利石、白玉石、金红石、锐钛矿等富含镁、钛、钙、铝、铁等[2,16,40],这与正常变质程度煤中的常见矿物明显不同,且越接近岩浆岩体,白玉石、方解石、铁白云石、菱铁矿等矿物越常见[6]。YOKSOULIAN等[28]在对伊利诺斯5号煤层的研究中发现,热变煤中的碳酸盐矿化明显发育;ZHENG等[38]对京西煤田矿物学特征研究表明煤中铵伊利石、珍珠云母和钠云母的形成与细晶岩侵入体相关;SUSILAWATI等[39]对印尼吉普亚森地区煤中矿物学特征研究表明,未受到侵入体影响的煤中矿物基本是高岭石和石英,但在靠近侵入体的热变煤中,则以混层的伊利石和蒙脱石为主,以及少量的高岭石和钠云母;DAI等[40]在研究大青山煤田阿刀亥煤矿宾夕法尼亚系煤层中矿物学特征时提出,火成岩侵入体侵入过程中,煤中释放的氮元素与高岭石相互作用可能是铵伊利石的形成机理,而且细胞腔和裂隙中充填的方解石和白云石也可能来源于火成岩流体;CHEN等[14]研究认为铁、钙、硫、硅、镁、锌、镉、铅等元素可以随热液流体进入到热变煤中;AN等[43]发现热变煤中黄铁矿相比于非热变煤中黄铁矿含有更多的钴、镍、砷、硒、铅、铜等元素;YAN等[44]指出淮北煤田6、7和10号煤层较高的汞含量与这3个煤层的西南部频繁的岩浆侵入活动有关。
热变煤的成熟度、生烃潜力、同位素等有机地化特征由于侵入体的侵入有明显改变。LUO等[45]指出由于较高的地热梯度以及快速的升温过程,热变煤的有机质成熟度会达到高成熟和过成熟;RAHMAN [27]同样认为热变煤有极高的成熟度,而且生烃潜力下降,表现为下降的总有机碳、岩石热解参数(S1、S2、S3)、氢指数和氧指数。但在RAHMAN等[23]另一研究中所测的总有机碳显示,其采集的全煤的总有机碳从热变时的77%下降到了热变后的34%,而分离的镜质组组分的总有机碳却从66%上升到93%;HAZRA等[29]认为热变煤生烃潜力降低最主要的原因是热变煤中的类脂组分的含量在受热后明显减少,因此降低了其生烃潜力。热变煤生烃潜力的下降以及成熟度的升高意味着在地质历史中已经有烃类物质产生并可能运移到其他储层中,例如OTHMAN等[46]对澳大利亚冈尼达盆地石油资源的生物标志化合物分析后指出,该盆地内皮利加砂岩中的油产生自受侵入体影响的烃源岩。热变煤的有机质成熟度是增加的,但还存在2点有趣的现象:一是接触带的热变煤的 S2 和氢指数有升高的现象,GOODARZI等[24]将该现象解释为侵入体不仅可以促使固体有机质产生烃类,还可以破坏已经产生的烃类,该现象在温度最高的接触带上最为明显,烃类被高温破坏后重新沉降到固体有机质中,因此造成了氢指数和S2的升高。二是有机质的成熟轨迹与正常变质煤的轨迹是不同的,如RIMMER等[3]提出热变煤样品的氢碳原子比、氧碳原子比等参数相比于正常的深成变质煤是明显不同的。GURBA等[47]同样发现热变煤中碳氧关系的异常,并提出受海水影响的热变煤镜质组中碳含量较多,而同等反射率条件下的未受海水影响的热变煤镜质组碳含量较少。
YOKSOULIAN等[28]对热变煤的碳同位素特征分析发现,虽然其热变煤煤样中有机质受到了强烈的改变,但有机质中的C13同位素并没有明显的改变,而且不同显微组分含量也没有对C13同位素的数值造成影响。SCHIMMELMANN等[5]研究热变煤同位素特征发现,靠近火成岩侵入体的热变煤中氘相对于氕的比例下降,认为这是由于侵入体对煤的烘干以及侵入体的水文封闭作用造成的;同时其提出热变煤中同位素的变化与热变煤中的物质迁移息息相关,例如热变煤孔隙中形成的碳酸盐矿物,C13较少,但O18较多,这是由于有机质热解形成的二氧化碳气体优先富集O18 和C12,因此在沉淀形成碳酸盐矿物时,C12较多,O18较多。热变煤中碳同位素常被用来表征大规模温室气体的释放,并有学者提出大规模侵入体对煤或碳质页岩的热解产生了大量的甲烷等温室气体,可能是造成地质历史中生物大灭绝事件的原因。例如,MCELWAIN等[48]认为侏罗纪早期卡鲁-法拉辉绿岩侵入冈瓦纳煤释放出了大量的甲烷,而甲烷被氧化后形成的二氧化碳造成了侏罗纪早期的海洋酸化事件;GANINO等[49]指出大部分生物灭绝事件在时间上都是与大火成岩省吻合的,如白垩-古近生物灭绝事件与德干火山作用,二叠-三叠生物灭绝事件与西伯利亚火山作用,瓜德鲁普世末期的生物灭绝事件与峨眉山火山省等在时间上都是吻合的,其认为火山作用使煤、富有机质泥岩、蒸发岩、碳酸盐岩等产生大量的温室气体和有毒气体,进而造成全球变暖;文献[50]同样认为,二叠纪末的生物灭绝事件与西伯利亚地盾超级火山喷发的玄武岩与煤的相互作用有关;文献[51-53]同样认为,火成岩侵入体促使有机质产生的甲烷等温室气体在生物灭绝事件中起到了重要作用。
热变煤独特的光学性质表现在以下3个方面:①普遍较高的反射率,②新生成的天然焦组分,③部分组分明显的光学各向异性。
由于热变煤是受火成岩侵入体侵入而形成的,其遭受的地温变化十分剧烈,因此热变煤的变质程度普遍较高,其反射率数值相对比于未受侵入体影响时会有很大幅度的增长。例如,美国伊利诺斯盆地中未受影响的煤中镜质组反射率为0.7%左右,但靠近接触带的煤中镜质组反射率可以超过5%[3,16,18,23,54-55];中国淮北煤田、印度尼西亚南苏门答腊盆地等地的报道中,受侵入体影响后,镜质体反射率也都有明显的增加[12,25,56]。除镜质体反射率升高外,其他组分的反射率同样升高,且不同组分反射率升高的剧烈成度是不同的。不同于常见烟煤中显微组分的反射率由大到小依次为惰质组、镜质组、类脂组,但在热变煤中,由于三组分对热的敏感程度不同,类脂组反射率首先开始增加,然后是镜质组,最后是惰质组[57]。在某阶段类脂组的反射率甚至超过镜质组[58],但由于类脂组受热后易产生挥发分,因此在距离侵入体较近的热变煤中只残留下类脂组形态[3,23]。热变煤中仅通过反射率特征和反射光颜色很难区分(变)镜质组和(变)惰质组[25]。
热变煤中,天然焦组分普遍发育,这些天然焦组分具有独特的光学特征、纹理特征和形态特征,尤其在加石膏试板镜下观察时,具有明显的多色性。许多学者的报道中指出热变煤具有独特的纹理及显微纹理,如“马赛克”状纹理[3,21,22,27,57,59]。这是因为热变煤中有天然焦组分存在,且越靠近接触带的煤中天然焦组分的含量越高[28,36,57,60-61]。天然焦组分是由煤中显微组分演变来的,一般认为镶嵌结构是由镜质组受热后软化形成的中间相小球体固化形成的[60,62],也有学者指出渗出沥青同样可以形成镶嵌结构[22];热解碳是由受热产生的气相挥发分沉积形成的[3,10,63]。
常见的烟煤显微组分往往不具备光学各向异性,但在热变煤中,具有光学各向异性的组分很多。大部分新生成的天然焦组分具有明显的各向异性,如镶嵌结构、基础各向异性体、热解碳等均有明显的各向异性[27,57-58,60,62]。但并非所有的天然焦组分都具有各向异性,例如由低变质镜质组转变而成的各向同性体就不具备各向异性,这是因为低变质煤镜质组在受热后产生、逸出挥发分的过程很快,其大分子结构没有足够的时间重新排列,因此保持各向同性。热变煤中的(变)镜质组、(变)惰质组、(变)类脂组同样也可以具有各向异性,其中(变)惰质组的各向异性较弱,或不具备各向异性。
除光学特征的变化,热变煤的另1个显著特征是明显增加的空腔[3,37,41,56,58,64],这些空腔被认为是挥发分产生和逸出形成的,空腔的存在改变了原有的孔隙特征,进而热变煤作为储层的性质也有明显的改变。部分学者研究认为热变煤孔隙结构的发育使得气体吸附能力增加,加之侵入体往往是渗透性不好的火成岩,可以更好地将气体封存于煤层中[47,59,65-70]。但也有学者指出,虽然侵入体的热变质作用使煤中的孔隙得到很好的发育,但吸附能力却是下降的,究其原因是侵入体的高温使挥发分在较短时间内大量产生,大量的挥发分很难运移和渗流,因此形成的孔隙之间连通性很差[71]。SONG等[71]试验表明,在受到热变后,孔隙的总体积由0.001 8 cm3/g增加到0.180 2 cm3/g,比表面积也0.663 m2/g增加到 194.864 m2/g,但表征其吸附能力的朗格缪尔体积却由26.26 m3/t下降到8.37 m3/t。但孔隙结构的改变并非是简单的线性变化,不同尺寸的孔隙变化不同,不同反射率或距离内的变化也不相同。GUO等[56]指出热变煤的比表面积要小于未受侵入体影响的煤,但在反射率1.2%~2.5%的热变煤,受侵入体影响后微孔提供的比表面积明显增加。MASTALERZ等[18]研究伊利诺斯盆地烟煤的孔隙特征使发现,侵入体对微孔的影响更剧烈,而且随着热变煤靠近侵入体,微孔的总体积先轻微的增加而后剧烈的下降。文献[59,64]认为孔隙的变化具有先增加再减少的阶段性变化。SHI等[72]则认为受侵入体影响后,热变煤的大孔体积和表面粗糙度增加明显。JIANG等[70]认为孔径大于100 nm的渗流孔隙在热变煤中更加发育。接触带孔隙的减少,可能是由于孔隙被充填所致,充填物可能是后生的矿物,也可能是热解碳等沉积的组分[3,18,73]。考虑到前述孔隙的阶段性变化,不同学者得到的不同观点很有可能源于所对比的样品处在不同阶段所致,JIANG等[11]就曾对热变煤的气体吸附能力进行分带,分带结果表明,接触带的气体吸附能力比未受到热变的煤的气体吸附能力还要差,但介于接触带和未热变煤带之间的热变煤气体吸附能力最好。热变煤孔隙特征及储层特征的改变,虽然一方面会有利于煤层气资源的开发,但另一方面也容易诱发瓦斯突出等煤矿灾害[9,11,59,65-67,69,74-75]。例如,SAGHAFI等[9]对南非的瓦斯突出事件调研时发现,高瓦斯逸出的位置主要集中在侵入体周边;JIANG等[59]也指出淮北煤田自20世纪80年代以来的15次瓦斯突出事件都与侵入体有关。
由上述可知热变煤的煤岩学和地球化学特征有诸多的特殊性,归根结底这是由于热变煤的特殊的化学结构特征造成的。
煤的化学结构主要由芳香核、连接在芳香核上的官能团以及芳香核之间的低分子化合物构成,更加紧密的化学结构意味着芳香核之间的低分子化合物减少,芳香结构相对增多,芳香核排列更加紧密。大部分学者的研究结果表明,受侵入体影响后,热变煤的芳香结构是增加的,而脂肪结构和杂原子官能团是减少的。SHI等[76]指出热变煤中的结晶碳含量、芳香度是升高的;SONG等[77]认为热变煤中不稳定的化学结构如侧链、含氢官能团、含氧官能团在快速热变过程中断裂;DUN等[78]指出热变煤化学结构随着热变质程度加深,芳香度逐渐升高,脂肪结构和含氧官能团逐渐减少,这些报道说明热变煤在受侵入体影响后,低分子化合物含量下降,官能团逐渐断裂,而芳香结构所占比例不断上升,使化学结构更加紧密。但需要注意的是,也有学者的研究表明热变煤中依然存在着相当数量的脂肪结构和杂原子结构。例如VALENTIM等[26]指出当有热液流体作用时,热变煤中结晶碳含量是降低的;CAO等[79]指出,随着热变煤向侵入体方向靠近,芳香结构有3个主要变化;①化学结构中的亚甲基官能团优先于甲基官能团断裂,②芳碳上连接的氢原子因为交联作用而被烷基取代,③芳香核的尺寸增加;而脂肪结构即使在距离侵入体很近的热变煤中依然存在,因为过快的加热使得脂肪结构不能完全反应掉;JIANG等[59]同样认为热变煤中虽有部分结晶碳,但依然混杂了大量的无序的无定形碳。
新生成的天然焦组分同样代表了不同的化学结构演化。例如镶嵌结构是中间相小球体固结后的产物,而中间相小球体产生于镜质组热解后的胶质体,由于此时的物态介于液态和固态之间,因此称为中间相,而中间相小球体的化学结构类似于单个的基本结构单元,小球体和小球体之间充斥着具有流动性的小分子结构,如果相邻近的小球体相互融并,不同结构单元的芳香层缩合,可以产生更大的小球体。当具有流动性的小分子化合物逸出后,小球体固化,芳香结构构成的结构单元也不再相互缩聚交联,因此形成镶嵌结构的颗粒。如果流动性很快消失,结构单元来不及融并,形成的镶嵌结构颗粒就小,反之如果结构单元融并的时间充足,形成的镶嵌结构颗粒就大。由于不同小球体中的芳香结构定向性不同,在流体流动产生的作用力影响下其方向也会变化,因此产生的镶嵌结构颗粒并没有统一的定向性,也就可以从其镜下的多色性中观察到“马赛克”纹理。RIMMER等[22]认为带状镶嵌结构就是来源于加热后形成的中间相小球体。热变煤中新生成的热解碳同样代表了特殊的化学结构演化路径。热解碳的成因与石墨烯制备中的碳蒸发沉降法及其相似,都是含碳物质热解产生含碳蒸气,然后气体在高温下发生聚合反应,沉降在孔隙或裂隙周边,形成热解碳。文献[10,22,80]在其研究中都指出热解碳来源于气体挥发分。该热解碳的形成过程在GORNOSTAYEV等[63]进行的焦炭冶炼试验中也得到了证实,其认为焦炉气在焦炭和焦炉壁之间的循环,使焦炉气中的芳香化合物及脂肪化合物在炉壁高温的作用下变得极不稳定,发生相互反应,形成了热解碳。
光学各向异性意味着化学结构的定向性发展,不同方向上的化学结构排列方式不同,因此才表现为光学各向异性。文献[81-83]通过拉曼光谱分析热变煤指出,热变煤的D峰/G峰强度明显下降,表明热变煤的芳香结构有序性得到了增强;DUN等[78]指出越靠近侵入体的热变煤中,芳香层片的延展长度越大,芳香结构单元的堆叠厚度越高,芳香层片的层间距越小,向石墨渐进;LI等[25]指出煤中离散的芳香层片在热变过程中向石墨晶格结构转变。如上述镶嵌结构中的每个颗粒,都有着不同定向性的芳香结构,如果这些颗粒都朝着某一方向定向性排列,就会形成类似石墨的化学结构。再如上述的热解碳,由于其往往沉积在孔隙或裂隙的边缘,其定向性也会根据沉积的基底不同和排列不同,沉积于气孔的热解碳常见球状的,而沉积于裂隙壁上的则呈条带状,虽然这些不同形状的热解碳还缺少其结构排列的直接证据,但从其在正交偏光下的消光特征可以推断,球状的热解碳其化学结构应该为同心圆状,而条带状的热解碳应该为直线状排列。
不仅热变煤的化学结构影响其煤岩学特征,化学结构的改变更是直接影响其诸如碳、氢、氧等元素的含量与分布、挥发分产率、同位素特征、成熟度等煤化学特征。SHI等[76]对热变煤的X射线光电子能谱分析指出热变煤中碳氧键减少;VALENTIM等[26]指出热变煤中的含氮结构减少,因为侵入体的热量使吡咯和吡啶发生热裂解;DIANSHI等[33]则认为在靠近侵入体的样品中,氮原子的主要存在形式是“石墨”型氮,这是由于吡啶中的氮在热解后随缩聚作用进入了煤的芳香结构中。现有的热变煤化学结构可以为热变煤部分特殊的煤岩学、煤化学特征提供解释。例如,热变煤中表现出光学各向异性的组分,这就是化学结构定向排列的结果;而热变煤中增多的孔隙结构,即为脂肪族等不稳定结构受热断裂后形成气态烃类的结果。
由上述煤岩学、地球化学及化学结构特征不难发现,热变煤的特殊性不只体现在热变煤与其他非热变煤的对比中,不同研究者、不同采样点的热变煤性质也有明显差异,这主要是由于多种影响因素共同作用引起的。
1)侵入体的影响。侵入体的温度[16-18,21]、产状[47,84]、尺寸[18,24]、压力[17,85]、热液流体[26,84]等因素势必会对煤层产生影响。前人报道侵入体的最高温度可达300~600 ℃[16,18]、700~800 ℃[21],甚至更高温度[86],明显高于正常深成变质煤所经历的最高温度,而且热变煤经历的升温过程更迅速。侵入体的产状有岩床、岩墙等形式,但即使都是岩床侵入体,顺底板侵入与顺顶板侵入也是有差异的。YAO等[12]总结了5种常见的岩浆与煤接触类型,指出不同接触类型影响的热变煤的反射率变化轨迹不同。受岩墙影响反射率样式呈递减式,且最大反射率出现在岩体最厚处,而岩床影响的反射率样式呈缓慢式,且数值比较高[87]。侵入体侵入过程中,对煤层施加了除水平静压、构造应力外的额外压力,而压力已经被证实对煤的结构演化,尤其是对分子排列有重要的改造作用。MATUSZEWSKA等[88]认为压力对光学各向异性的产生也有着重要的影响,其对比了受侵入体影响的热变煤以及实验室热模拟的煤样,指出侵入体侵入过程中对煤层的压力有利于光学各向异性的发展。如果侵入体侵入过程中有热液流体参与,热液流体既会成为输送元素与矿物的媒介,也会与煤发生反应,影响煤的性质。如前文中提及的碳、氧元素异常以及铁、钙、硫、硅、镁、锌、镉、铅等元素的输入都与高温热液流体有关。
2)煤层的初始性质。侵入体侵入时煤层的初始状态,如煤级、显微组分差异等因素对热变煤的性质也至关重要。以热变煤的煤岩学特征为例,镜质组是煤中最常见的显微组分,而不同变质程度的镜质组在形成天然焦组分时也是不同的,镜质组变质程度由低到高依次可形成光学各向同性组织,镶嵌结构,基础光学各向异性等不同光性特征的天然焦组分[25,57,58,60-62];类脂组组分在热变煤中或者变为变类脂组,或者受热热解以挥发分的形式逸出[3,23,27,29,57-58];惰质组在热变煤中演化中多表现为惰性,被新形成的天然焦组分胶结,并保留光学各向同性[61]。
课题组近期对热变煤的化学结构演化研究表明,热变煤的化学结构演化具有明显的阶段性。通过利用透射电镜、核磁共振等一系列表征手段发现,所采热变煤样品随反射率升高(或随样品逐渐靠近侵入体),其化学结构经历3个主要的化学变化阶段,依次为:原有芳香结构缩合阶段,形成新芳香结构的芳构化阶段以及新形成芳香结构再次缩合阶段[89]。
已研究热变煤中显微组分受热后芳香结构演化存在差异,但具体差异如何?还需定量化表示。热变煤中的石墨化结构特征对于其作为碳源制备碳材料有重要启示,但其与正常石墨化结构有何异同,所受的地质作用差异如何也需进一步研究。热变煤是特殊地质条件下形成的煤,其性质受侵入体、成煤环境的共同影响,热变煤性质、结构演化与地质条件之间的控制关系如何,对于开发和利用热变煤都有重要意义,还需要深入探讨。
热变煤特殊的性质决定了其在利用过程中的特殊性。相比于深成变质作用形成的煤,热变煤的灰分产率明显增加,有毒有害元素以及多环芳烃等有毒有害物质的含量也更高,这并不利于以现有的常见方法转化利用热变煤。但从另一角度出发,热变煤往往具有丰富的孔隙结构,相对更容易富集煤层气,而且煤系石墨以及热解碳等碳元素的同素异形体也常与热变煤相伴生,这也意味着热变煤可能是碳材料潜在的原材料。课题组近期研究发现,在所采热变煤样品中已经存在少量的类石墨状的碳纳米结构[90],进一步证实了热变煤作为碳材料原料的可能性。
已有大量研究表明,侵入体侵入会使煤层产生大量的烃类物质和丰富的孔隙结构,加之岩浆岩侵入体渗透性普遍较差,在适当的地质条件下会形成煤层气资源赋存在煤层中。但正如2.2节中所述,热变煤的储层特征在不同研究中存在明显差异,因此需要进一步探讨。
热变煤特殊的形成条件决定了其特殊的性质及特殊的利用价值。尽管前人对热变煤的煤岩学、地球化学、化学结构等方向进行了大量的研究,但由于影响热变煤的地质因素众多,关于热变煤的诸多问题并未得到统一的结论。考虑到热变煤是潜在的煤层气资源富集区以及潜在的碳材料原料,因此对热变煤的研究需要进一步深入。基于目前研究成果, 笔者认为还应重点注重以下3个方面的研究:
1)分析不同地质条件因素对热变煤的影响,探讨地质条件对热变煤性质的影响机理,并寻找主控因素。
2)加强热变煤清洁高效利用研究,尤其是结合热变质特殊性质,进行制备碳材料方面的研究。
3)分析热变煤中孔隙变化特征,进而探讨其在煤层气储层方面的贡献。
[1] SHI Q, QIN B, LIANG H, et al. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: a case study of bituminous coal in Daxing Mine,China[J]. Fuel,2018,216:181-189.
[2] DAI S,REN D. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng Handan Coalfield,Hebei,China[J]. Energy and Fuels,2007,21(3):1663-1673.
[3] RIMMER S M,YOKSOULIAN L E,HOWER J C. Anatomy of an intruded coal,I:effect of contact metamorphism on whole-coal geochemistry,Springfield(No.5)(Pennsylvanian) coal,Illinois Basin[J]. International Journal of Coal Geology,2009,79(3):74-82.
[4] RAHMAN M W,RIMMER S M,ROWE H D,et al. Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin:no isotopic evidence for thermogenic methane generation[J]. Chemical Geology,2017,453:1-11.
[5] SCHIMMELMANN A,MASTALERZ M,GAO L,et al. Dike intrusions into bituminous coal,Illinois Basin:H,C,N,O isotopic responses to rapid and brief heating[J]. Geochimica et Cosmochimica Acta,2009,73(20):6264-6281.
[6] FINKELMAN R,BOSTICK N,DULONG F,et al. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado[J]. International Journal of Coal Geology,1998,36:223-241.
[7] ZHAO L,WARD C,FRENCH D,et al. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin,Australia[J]. International Journal of Coal Geology,2011,94:94-110.
[8] MURCHISON D,RAYMOND A. Igneous activity and organic maturation in the Midland Valley of Scotland[J]. International Journal of Coal Geology,1989,14:47-82.
[9] SAGHAFI A,PINETOWN K L,GROBLER P G,et al. CO2 storage potential of South African coals and gas entrapment enhancement due to igneous intrusions[J]. International Journal of Coal Geology,2008,73(1):74-87.
[10] GRÖCKE D R,RIMMER S M,YOKSOULIAN L E,et al. No evidence for thermogenic methane release in coal from the Karoo-Ferrar large igneous province[J]. Earth and Planetary Science Letters,2009,277(1/2):204-212.
[11] JIANG J Y,CHENG Y P,WANG L,et al. Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine,Huaibei Coalfield,China[J]. International Journal of Coal Geology,2011,88(1):55-66.
[12] YAO Y,LIU D,HUANG W. Influences of igneous intrusions on coal rank,coal quality and adsorption capacity in Hongyang,Handan and Huaibei coalfields,North China[J]. International Journal of Coal Geology,2011,88(2/3):135-146.
[13] LI W,ZHU Y,CHEN S,et al. Response of coal reservoir porosity to magma intrusion in the Shandong Qiwu Mine,China[J]. Mining Science and Technology(China),2011,21:185-190.
[14] CHEN J,LIU G,LI H,et al. Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield,Anhui,China[J]. International Journal of Coal Geology,2014,124:11-35.
[15] WANG R,LIU G. Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in eastern China[J]. Organic Geochemistry,2015,83-84:202-214.
[16] STEWART A K,MASSEY M,PADGETT P L,et al. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield(No.5) coal,Harrisburg,Illinois[J]. International Journal of Coal Geology,2005,63(1/2):58-67.
[17] CRELLING J. A petrologic study of a thermally altered coal from the Purgatoire River Valley of Colorado[J]. Geological Society of America Bulletin,1968,79.
[18] MASTALERZ M,DROBNIAK A,SCHIMMELMANN A. Changes in optical properties,chemistry,and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin[J]. International Journal of Coal Geology,2009,77(3/4):310-319.
[19] BLANDFORD W T. On the geological structure and relations of the Raniganj Coal Field,Bengla[M].Government of India,1861.
[20] KISCH H,TAYLOR G. Metamorphism and alteration near intr-usive coal contract[J]. Economic Geology,1966,61:343-361.
[21] SMDOWSKI ,DUBER S,MATUSZEWSKA A. An effect of igneous intrusion on the structure,texture and microtexture of coal from the Sonica coal mine,Upper Silesian Coal Basin,Poland[J]. Geological Quarterly,2015,59(3):507-516.
[22] RIMMER S M,CRELLING J C,YOKSOULIAN L E. An occurrence of coked bitumen,Raton Formation,Purgatoire River Valley,Colorado,U S A.[J]. International Journal of Coal Geology,2015,141-142:63-73.
[23] RAHMAN M W,RIMMER S M. Effects of rapid thermal altera-tion on coal:geochemical and petrographic signatures in the Springfield(No.5) Coal,Illinois Basin[J]. International Journal of Coal Geology,2014,131:214-226.
[24] GOODARZI F,GENTZIS T,GRASBY S E,et al. Influence of igneous intrusions on thermal maturity and optical texture:Comparison between a bituminous marl and a coal seam of the same maturity[J]. International Journal of Coal Geology,2018,198:183-197.
[25] LI K,RIMMER S M,LIU Q. Geochemical and petrographic analysis of graphitized coals from Central Hunan,China[J]. International Journal of Coal Geology,2018,195:267-279.
[26] VALENTIM B,GUEDES A,RODRIGUES S,et al. Case study of igneous intrusion effects on coal nitrogen functionalities[J]. International Journal of Coal Geology,2011,86(2/3):291-294.
[27] RAHMAN M W,RIMMER S M,ROWE H D. The impact of rapid heating by intrusion on the geochemistry and petrography of coals and organic-rich shales in the Illinois Basin[J]. International Journal of Coal Geology,2018,187:45-53.
[28] YOKSOULIAN L E,RIMMER S M,ROWE H D. Anatomy of an intruded coal,II:effect of contact metamorphism on organic δ13C and implications for the release of thermogenic methane,Springfield(No. 5) Coal,Illinois Basin[J]. International Journal of Coal Geology,2016,158:129-136.
[29] HAZRA B,SINGH A K,SINGH P K. et al. Hydrocarbon-generation potential and thermal-maturity of few Indian coals:inferences from organo-petrography and Rock-Eval[J]. Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2019.:1-10.
[30] AMIJAYA H,LITTKE R. Properties of thermally metamorphosed coal from Tanjung Enim Area,South Sumatra Basin,Indonesia with special reference to the coalification path of macerals[J]. International Journal of Coal Geology,2006,66(4):271-295.
[31] JIANG J,ZHANG Q,CHENG Y,et al. Quantitative investigation on the structural characteristics of thermally metamorphosed coal:evidence from multi-spectral analysis technology[J]. Environmental Earth Sciences,2017,76(11):1-14.
[32] MAXWELL K,RAJABI M,ESTERLE J. Automated classification of metamorphosed coal from geophysical log data using supervised machine learning techniques[J]. International Journal of Coal Geology,2019,214:103284.
[33] DING D,LIU G,FU B,et al. Influence of magmatic intrusions on organic nitrogen in coal:a case study from the Zhuji mine,the Huainan coalfield,China[J]. Fuel,2018,219:88-93.
[34] XU C,CHENG Y,WANG L,et al. Experiments on the effects of igneous sills on the physical properties of coal and gas occurrence[J]. Journal of Natural Gas Science and Engineering,2014,19:98-104.
[35] AMIJAYA H,SCHWARZBAUER J,LITTKE R. Organic geoche-mistry of the Lower Suban coal seam,South Sumatra Basin,Indonesia:palaeoecological and thermal metamorphism implications[J]. Organic Geochemistry,2006,37(3):261-279.
[36] MISRA S,VARMA A K,HAZRA B,et al. The influence of the thermal aureole asymmetry on hydrocarbon generative potential of coal beds:insights from Raniganj Basin,West Bengal,India[J]. International Journal of Coal Geology,2019,206:91-105.
[37] SINGH A K,SHUKLA N K,SRIVASTAVA S K,et al. Precautionary measures in determining volatile matter in natural coke washability fractions[J]. International Journal of Coal Preparation and Utilization,2019,29(1):34-47.
[38] ZHENG Q,HUANG B,SHI S,et al. Case study of the igneous intrusion effect on the mineralogical composition of the Carboniferous coal from Jingxi Coalfield,North China[J]. Environmental Earth Sciences,2019,78(5):1-11.
[39] SUSILAWATI R,WARD C R. Metamorphism of mineral matter in coal from the Bukit Asam deposit,south Sumatra,Indonesia[J]. International Journal of Coal Geology,2006,68(3-4):171-195.
[40] DAI S,ZOU J,JIANG Y,et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine,Daqingshan Coalfield,Inner Mongolia,China:modes of occurrence and origin of diaspore,gorceixite,and ammonian illite[J]. International Journal of Coal Geology,2012,94:250-270.
[41] LI W,ZHU Y M,WANG H. The effects of igneous intrusions on coal-bed macerals,maturity,and adsorption[J]. Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2017,39(1):58-66.
[42] VAN KREVELEN D W. Coal-typology,physics,chemistry,constitution[M]. Elsevier Scientific Publish. Coupany.,Amsterdam and New York,1993.
[43] AN Y,LIU L,WANG M. et al. Source and enrichment of toxic elements in coal seams around mafic intrusions:constraints from pyrites in the Yuandian Coal Mine in Anhui,Eastern China[J]. Minerals,2018,8(4):164.
[44] YAN Z,LIU G,SUN R,et al. Mercury distribution in coals influenced by magmatic intrusions,and surface waters from the Huaibei Coal Mining District,Anhui,China[J]. Applied Geochemistry,2013,33:298-305.
[45] LUO X,GONG S,SUN F J,et al. Effect of volcanic activity on hydrocarbon generation:examples in Songliao,Qinshui,and Bohai Bay Basins in China[J]. Journal of Natural Gas Science and Engineering,2017,38:218-234.
[46] OTHMAN R,AROURI K R,WARD C R,et al. Oil generation by igneous intrusions in the northern Gunnedah Basin,Australia[J]. Organic Geochemistry,2001,32:1219-1232.
[47] GURBA L W,WEBER C R. Effects of igneous intrusions on coalbed methane potential,Gunnedah Basin,Australia[J]. Intern-ational Journal of Coal Geology,2001,46(2/4):113-131.
[48] MCELWAIN J C,WADE-MURPHY J,HESSELBO S P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals[J]. Nature,2005,435(7041):479-482.
[49] GANINO C,ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology,2009,37(4):323-326.
[50] OGDEN D E,SLEEP N H. Explosive eruption of coal and basalt and the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):59-62.
[51] RETALLACK G J,JAHREN A H. Methane release from igneous intrusion of coal during late permian extinction events[J]. Journal of Geology,2008,116(1):1-20.
[52] KONSTANTINOV K M,BAZHENOV M L,FETISOVA A M,et al. Paleomagnetism of trap intrusions,East Siberia:Implications to flood basalt emplacement and the Permo - Triassic crisis of biosphere[J]. Earth and Planetary Science Letters,2014,394:242-253.
[53] WINGUTH A M E,SHIELDS C A,WINGUTH C. Transition into a Hothouse World at the Permian - Triassic boundary:a model study[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2015,440:316-327.
[54] QUADERER A,MASTALERZ M,SCHIMMELMANN A,et al. Dike-induced thermal alteration of the Springfield Coal Member(Pennsylvanian) and adjacent clastic rocks,Illinois Basin,USA[J]. International Journal of Coal Geology,2016,166:108-117.
[55] PRESSWOOD S M,RIMMER S M,ANDERSON K B,et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin(No. 6) Coal Seam,Illinois Basin[J]. International Journal of Coal Geology,2016,165:243-256.
[56] GUO Q,FINK R,LITTKE R,et al. Methane sorption behaviour of coals altered by igneous intrusion,South Sumatra Basin[J]. International Journal of Coal Geology,2019,214:103250.
[57] SINGH A K,SINGH M P,SHARMA M,et al. Microstructures and microtextures of natural cokes:a case study of heat-affected coking coals from the Jharia coalfield,India[J]. International Journal of Coal Geology,2007,71(2/3):153-175.
[58] MAHESH S,MURTHY S,SINGH V P,et al. Thermally altered coals from bore core EBM-1,East Bokaro coal field,Damodar Valley,India:a petrographic inference[J]. Journal of the Geological Society of India,2015,86(5):535-546.
[59] JIANG J,CHENG Y. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine,China[J]. The Scientific World Journal,2014,2014:1-12.
[60] ZHAO M,YANFEI A N,WANG M,et al. New genesis of natural coke around magmatic intrusion at the Shitai Coalmine of Huaibei City,North China[J]. Acta Geologica Sinica,2019,93(4):1158-1159.
[61] SINGH A K,SHARMA M,SINGH M P. SEM and reflected light petrography:a case study on natural cokes from seam ⅪⅤ,Jharia coalfield,India[J]. Fuel,2013,112:502-512.
[62] SINGH A K,SHARMA M,SINGH M P. Genesis of natural cokes:some Indian examples[J]. International Journal of Coal Geology,2008,75(1):40-48.
[63] GORNOSTAYEV S S,HRKKI J J,KERKKONEN O,et al. Carbon spheres in metallurgical coke[J]. Carbon,2010,48(14):4200-4203.
[64] YAO Y,LIU D. Effects of igneous intrusions on coal petrology,pore-fracture and coalbed methane characteristics in Hongyang,Handan and Huaibei coalfields,North China[J]. International Journal of Coal Geology,2012(96/97):72-81.
[65] WANG L,CHENG L,CHENG Y,et al. Characteristics and evolutions of gas dynamic disaster under igneous intrusions and its control technologies[J]. Journal of Natural Gas Science and Engineering,2014,18:164-174.
[66] CHEN M Y,CHENG Y P,ZHOU H X,et al. Effects of igneous intrusions on coal pore structure,methane desorption and diffusion within coal,and gas occurrence[J]. Environmental and Engineering Geoscience,2017,23(3):191-207.
[67] ZHOU B,YANG S,WANG C,et al. Experimental study on the influence of coal oxidation on coal and gas outburst during invasion of magmatic rocks into coal seams[J]. Process Safety and Environmental Protection,2019,124:213-222.
[68] GOODARZI F,CAMERON A R. Organic petrology and elemental distribution in thermally altered coals from Telkwa,British Columbia[J]. Energy Sources,1990,12(3):315-343.
[69] ZHANG X L,CHENG Y P,WANG L,et al. Research on the controlling effects of a layered sill with different thicknesses on the underlying coal seam gas occurrence[J]. Journal of Natural Gas Science and Engineering,2015,22:406-414.
[70] JIANG J,ZHANG Q,CHENG Y,et al. Influence of thermal metamorphism on CBM reservoir characteristics of low-rank bituminous coal[J]. Journal of Natural Gas Science and Engineering,2016,36:916-930.
[71] SONG D,SONG B,LI C,et al. Difference in nanopore structure between bituminous coal and high-grade anthracite caused by magmatic intrusion[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):6692-6699.
[72] SHI Q,QIN B,BI Q,et al. Changes in the surface structure of coal caused by igneous intrusions and their effect on the wettability[J]. Energy and Fuels,2018,32(9):9371-9379.
[73] GOLAB A N,HUTTON A C,FRENCH D. Petrography,carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures,Hunter Valley,Australia[J]. International Journal of Coal Geology,2007,70:150-165.
[74] CHEN A H,LEI D J,ZHANG Y G. Characteristics of coal and gas outburst within gas geological units in Qidong mine[J]. Advanced Materials Research,2013,734/737(9):45-51.
[75] CHENG L,WANG L,CHENG Y. et al. Gas desorption index of drill cuttings affected by magmatic sills for predicting outbursts in coal seams[J]. Arabian Journal of Geosciences,2016,9(1):1-15.
[76] SHI Q,QIN B,BI Q,et al. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine,China[J]. Fuel,2018,226:307-315.
[77] SONG D,YANG C,ZHANG X,et al. Structure of the organic cry-stallite unit in coal as determined by X-ray diffraction[J]. Mining Science and Technology,2011,21(5):667-671.
[78] WU D,LIU G,SUN R,et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray Diffraction[J]. Energy & Fuels,2013,27:5823-5830.
[79] CAO X,CHAPPELL M A,SCHIMMELMANN A,et al. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy[J]. International Journal of Coal Geology,2013,108:53-64.
[80] LI K,LIU Q,CUI X,et al. Investigation on the microstructure evolution of high-rank coal from Xinhua County,Hunan,China[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):6976-6981.
[81] WU D,LIU G,SUN R,et al. Influences of magmatic intrusion on the macromolecular and pore structures of coal:evidences from Raman spectroscopy and atomic force microscopy[J]. Fuel,2014,119:191-201.
[82] PAN J,LV M,BAI H,et al. Effects of metamorphism and deformation on the coal macromolecular structure by laser raman spectroscopy[J]. Energy and Fuels,2017,31(2):1136-1146.
[83] CHEN S,WU D,LIU G,et al. Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield,China[J]. Spectrochimica Acta - Part A:Molecular and Biomolecular Spectroscopy,2017,171(3):31-39.
[84] BARKER C E,BONE Y,LEWAN M D. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes,western onshore Gippsland Basin,Australia[J]. International Journal of Coal Geology,1998:73-111.
[85] PADWYSOCKI M,DUTCHER R. Coal dikes that intrude lamprophyre sills; purgatoire river valley,Colorado[J]. Economic Geology,1971,66:267-280.
[86] WANG X,JIANG Y,ZHOU G,et al. Behavior of minerals and trace elements during natural coking:a case study of an intruded bituminous coal in the Shuoli Mine,Anhui Province,China[J]. Energy and Fuels,2015,29(7):4100-4113.
[87] COOPER J R,CRELLING J C,RIMMER S M,et al. Coal metamorphism by igneous intrusion in the Raton Basin,CO and NM:Implications for generation of volatiles[J]. International Journal of Coal Geology,2007,71:15-27.
[88] MATUSZEWSKA A,PUSZ S,DUBER S. Evaluation of the structure of bituminous coal from Sognica mine in the Upper Silesian Coal Basin(Poland) using reflectance indicating surface(RIS) parameters[J]. International Journal of Coal Geology,2015,152:177-188.
[89] CHEN H,WANG S,ZHANG X,et al. A study of chemical structural evolution of thermally altered coal and its effect on graphitization[J]. Fuel,2021,283:119295.
[90] CHEN H,WANG S,TANG Y,et al. Aromatic cluster and graphite-like structure distinguished by HRTEM in thermally altered coal and their genesis[J]. Fuel,2021,292:120373.