移动扫码阅读
煤矿矿井常见的灾害有瓦斯、突水和顶板灾害等,水害是煤矿的第二大灾害,一旦发生突水,将会造成严重的人员伤亡和巨大的经济损失[1-2]。因此,快速准确地识别突水事件所涉及的水源,是解决和预防矿井水灾害的关键手段之一[3]。
针对矿井突水水源识别的方法较多,邓清海[4]、张好等[5]基于Bayes识别准则,结合主成分分析法对不同含水层进行了有效的识别;张淑莹等[6]运用独立性权系数对含水层水质指标进行赋权,再通过灰色关联度理论对水质数据进行水源识别;WANG等[7]将PCA主成分分析和熵权法对水化学数据进行提取和赋权,再采用层次聚类分析法建立了突水水源识别模型;胡伟伟[8]、陈建平等[9]基于矿区的水位地质条件建立了以同位素分析为基础的矿井水源识别模型;闫志刚[10]、王亚等[11]采用极限学习机算法建立计算机水源识别模型,该模型可以快速识别煤矿突水水源;周孟然[12]、闫鹏程等[13]将激光诱导荧光技术结合智能算法建立突水水源识别模型,可以快速地检测出突水水源的类型。这些方法在水源识别中都有良好的应用性,但仍然存在不足。
一方面是各水化学离子的权重不够合理,主观赋权法会因为个人偏好和主观随意性造成权重结果具有一定的偏向性,客观组合权能够从原始数据中提取信息,充分考虑了指标权重的真实重要程度,避免了主观赋权法带来的人为因素的影响。另一方面建立的水源识别模型多是以各个含水层水样数据的平均值为依据,根据突水水样数据与平均值间的关系来识别水源;或是根据不同含水层的水样数据建立数学函数,通过计算函数来确定水源,这些方法容易受到个别极大值或极小值的影响而降低识别效率。改进的集对分析模型通过水化学数据的上下四分位数建立各个突水水源的属区,将水样数据与属区进行计算从而确定各水样与各个含水层的集对势,根据集对势来识别矿井突水水源,降低了极大值或极小值对识别效率的影响。目前,集对分析已经在水质评价[14]、风险评估[15]、旱灾预测[16]和人工智能[17]等领域成功应用,在突水水源识别应用中次邻左值可能会为负值从而导致次邻左区间无法确定,为克服上述不足使用极值法对集对分析模型进行改进。利用客观组合权和集对分析理论相结合,建立客观组合权-改进集对分析模型的突水水源识别模型,能够提高识别模型的准确性,为矿井突水水源识别提供新的思路。
集对分析是处理事物确定与不确定关系的一种数学理论,是以集对与联系度来研究系统中的确定与不确定性及其转化规律的系统分析技术,可以定量处理模糊、随机、不确定性问题[18-19],其核心思想是将事物中客观存在的不确定性,以辩证分析(同、异、反)表示,即以某种联系度来描述事物的不确定性[20]。基本思路为:对集合构成集对M(X,Y),若集对M中有N个特征,其中S个特征为集合X和集合Y共同具有的,P个特征为集合X和集合Y对立的,其余F=N-S-P个特征不属于两者,采用联系度μ来表示集对的辩证关系:
(1)
其中:μ为集对的具体联系度;i和j分别为差异度系数和对立度系数;a=S/N为同一度;b=F/N为差异度;c=P/N为对立度,a+b+c=1并且N=S+F+P,同时a,b,c∈[0,1],a+b+c=1。
在实际问题分析中,仅将研究对象作一分为三的划分不够细化,若将式(1)中的bi进一步展开为bi=b1-i+b1+i,cj=c1-j+c1+j,即可得到五元联系度公式[21]为
(2)
式中:a+b1-+b1++c1-+c1+=1,对于突水水源识别,b1-和b1+为所属水源类型相邻的邻左区和邻右区系数,c1-和c1+为所属水源类型次相邻的次邻左区和次邻右区系数。
由图1所示,将各类水源的各水化学指标按图中分类分为5个区域。
图1 改进集对分析水源识别分区
Fig.1 Zoning of water source identification with improved set pair analysis
(3)
确定权重系数的方法有很多种,以主观赋权法和客观赋权法为主,主观赋权法是根据专家或学者的主观认知来判断各个指标的权重大小,例如层次分析法等[23];客观赋权法是利用统计学方法对原始数据的各个指标进行赋权,例如熵权法、基尼系数法等[24]。客观赋权法能够使得权重的分配不受个人偏好,最大程度地减少了主观确定权重带来的人为干扰。
熵权法通过计算某个指标的信息熵,将待评价指标的信息进行量化,可以反映该指标提供的信息量的多少及信息的效用,从而确定该指标在综合评价中的作用大小[25-26]。其确定权重步骤如下:
将每一个评价指标进行标准化,消除不同量纲的影响,公式如下:
(4)
其中:pk为各指标的标准化值;k为不同的水化学指标;为不同水源各指标的平均值;n为样本个数。其熵值Ei为:
(5)
若式中pk=0时,则Ek=0。其熵值权重λk公式为:
(6)
变异系数法是一种客观计算权重的方法,通过直接各项指标信息得到权重值,能够有效客观地反映各个指标的差距[27-28]。具体计算公式如下:
第k项指标的变异系数Vk为
(7)
其中,S为某项指标数据的标准差;R为某项指标数据的平均值。各指标变异系数权重Mk为
(8)
把变异系数法和熵权法的结果进行组合,组合两种客观赋权法的指标权重ωk为
ωk=(1-a)λk+aMk
(9)
其中,λk为熵权法计算得到的权重;Mk为变异系数法计算得到的权重。a如何合理地取值,有很多专家学者讨论,参照前人研究结果[29]和指标体系的实际情况,本研究取a=0.5。
由式(3)确定联系度μ并组成联系度矩阵A,可与客观组合权矩阵B相乘计算出综合联系度矩阵P,其计算公式为
P=A·B
(10)
P反映出了待判别对象整体的联系度,由l,m,n组成,l为常数项,m为i的系数之和,n为j的系数之和。最后可计算待判别对象的集对势nsp[21],其计算公式为
(11)
东滩煤矿位于山东省邹城市、曲阜市与兖州区之间,矿区内主要河流为白马河(图2)。
图2 研究区地理位置
Fig.2 Geographical location of the study area
研究区自上而下主要含水层为:侏罗系三台组砂岩含水层(红层水)、山西组3煤层顶底板砂岩含水层(砂岩水)、太原组灰岩含水层(太灰水)、奥陶系石灰岩含水层(奥灰水)等。由于太原组三灰、十下灰和太原组十三灰、十四灰的水化学性质差异较大,因此在水源识别中将太原组三灰和十下灰水统称为太灰水上段,和将太原组十三灰和十四灰水统称为太灰水下段。除侏罗系三台组砂岩和奥陶系石灰岩富水性较好外,其余含水层的富水性较差。收集东滩矿区各勘察阶段所取的40个水样,其中红层水10个,砂岩水10个,太灰水上段5个,太灰水下段5个,奥灰水10个作为建模样本(表1)。选用和共6项指标作为识别指标进行突水水源识别,并测定各指标的质量浓度。并收集另外10个矿井水样,作为检验样本用于验证模型。
表1 东滩矿区水样主要水化学成分
Table 1 Main hydrochemical composition of water samples in Dongtan Mining Area
编号含水层水化学成分质量浓度/(mg·L-1)Cl-SO2-4HCO-3Na++K+Ca2+Mg2+1红层水62.34168.72280.83143.1144.1517.732红层水74.2378.276.03105.3216.833.423红层水32.18748.93326.2560.097.0912.88︙︙︙︙︙︙︙︙11砂岩水135.502 636.26501.671 569.4337.8210.9812砂岩水94.852 415.14317.271 373.9124.397.8013砂岩水553.301 283.04978.931 364.921.295.92︙︙︙︙︙︙︙︙21太灰水上段38.5339.98262.45226.1150.7813.1322太灰水上段81.3713.581 174.74541.881.730.84︙︙︙︙︙︙︙︙26太灰水下段124.1085.57307.66144.5781.737.8327太灰水下段103.6690.72358.93118.5386.0320.87︙︙︙︙︙︙︙︙38奥灰水128.882 105.74176.9136.17611.52158.2539奥灰水129.322 016.69193.97130.37643.87152.9540奥灰水150.562 015.70205.11121.34661.17140.64
根据东滩矿区5种主要充水含水层水样,将各个水化学指标的质量浓度绘制成箱形图(图3),图3中空心矩形的上下分别为各水化学指标质量浓度的上、下四分位数,中间的横线和正方形分别为中位数和平均数,两端分别为最大值和最小值[30-31]。由图3可以看出,奥灰水的Ca2+和Mg2+质量浓度明显大于其他含水层,砂岩水和太灰水上段的Na++K+和质量浓度相对其他含水层较高,各含水层的Cl-质量浓度无明显差异,奥灰水和砂岩水的质量浓度相对其他含水层较高。
改进集对分析理论是通过不同含水层阴阳离子的上下四分位数来确定各含水层的邻左区、邻右区和属区。根据图1和图3分析可知,邻左区区值T2和邻右区区值T3分别为下四分位数和上四分位数,次邻左区区值T1和次邻右区区值T4分别为最小值和最大值。其中,每行的区间为各水化学指标Cl-、SO42-、HCO3-、Na++K+、Ca2+和Mg2+,每列代表5种主要充水含水层水样:红层水、砂岩水、太灰水上段、太灰水下段和奥灰水,如式(12)—式(13)所示。
图3 各含水层水化学指标箱形图
Fig.3 Box map of water chemical indexes of each aquifer
(12)
(13)
根据表1建模样本数据、式(4)—式(9)及上述的熵权法和变异系数法,得到各含水层识别指标的客观组合权权重,见表2。若只用某一种方法赋权会有一定的片面性如熵权法中Cl-的权重较小,且使用客观组合权法较单一客观权重法的水源识别效果较好,因此客观组合权更能真实反映出水化学离子的真实权重。Ca2+和Mg2+的客观组合权重明显高于其他离子,分别为0.28、0.25,二者的权重之和占整体权重的53%,结合图3也可以看出Ca2+和Mg2+在不同突水水源中有较好的区分度,因此可以推断出这两项指标在突水水源识别中起主要作用。
表2 识别指标客观组合权权重
Table 2 Identification index objective combination of weight
指标权重Cl-SO2-4HCO-3Na++K+Ca2+Mg2+熵权法0.040.140.090.100.330.29变异系数法0.170.150.120.140.220.20组合0.110.140.110.120.280.25
取东滩矿区10个已知含水层水样作为水源识别的检验样本,其主要水化学指标见表3,将其代入客观组合权-改进集对分析模型中,对其识别结果进行验证。下面以水样S1为例,详细介绍利用模型进行突水水源的识别。
表3 检验样本主要水化学成分
Table 3 Main hydrochemical compositions of the test samples
编号含水层水化学成分质量浓度/(mg·L-1)Cl-SO2-4HCO-3Na++K+Ca2+Mg2+S1红层水54.7267.37212.74161.545.151.68S2红层水50.9551.1041.3052.089.234.18S3砂岩水368.65616.84805.45896.9911.621.69S4砂岩水53.50689.15602.53592.7729.795.21S5太灰水上段176.4720.361 356.78670.298.492.58S6太灰水上段151.8645.451 266.19669.674.033.18S7太灰水下段35.08825.64232.77193.64140.4199.78S8太灰水下段121.88306.45301.56211.5281.2010.55S9奥灰水142.441 991.32194.09231.22639.2889.91S10奥灰水147.221 934.59194.92139.61687.87152.99
将水样S1的数据与集对区间进行比较,如Cl-=54.72代入红层水水源类型中,与Cl-的区间[35.58,63.29]和[26.34,76.87]对比,其值位于属区区间,利用式(3)计算出水样S1的Cl-与红层水的Cl-的联系度为1;将水样S1的红层水水源类型中,与SO42-的区间[86.79,608.64]和[71.15,748.93]对比,其值位于邻左区间,计算出其联系度μ为0.96+0.04i-。
同理可以计算出各指标与各主要充水含水层的联系度矩阵AS1为
(14)
结合式(10)将联系度矩阵AS1与客观组合权矩阵B相乘,综合计算得出综合联系度矩阵PS1为
(15)
在利用公式(11)计算出各含水层的集对势nsp,分别是nsp1=15.96,nsp2=10.63,nsp3=10.41,nsp4=2.76,nsp5=1.23,将各集对势用百分数进行归一化处理后,依次为38.94%,25.92%,25.40%,6.74%和3.01%。可以从各集对势百分数看出S1水样与红层水的集对势最高,因此将S1水样判定为红层水。
按照上述方法将S2~S10水样分别代入客观组合权-集对分析模型中,其归一化处理后的集对势结果见表4。
表4 检验样本集对势识别结果
Table 4 Verify the result of potential identification of sample set pairs
编号归一化集对势/%红层水砂岩水太灰水上段太灰水下段奥灰水实际结果识别结果S138.9425.9225.406.743.01红层水红层水S234.8839.3216.956.822.02红层水砂岩水S317.3357.4019.863.571.84砂岩水砂岩水S428.3360.095.754.161.67砂岩水砂岩水S50.352.1397.370.110.05太灰水上段太灰水上段S64.2245.5647.891.530.80太灰水上段太灰水上段S724.7017.846.8227.5423.08太灰水下段太灰水下段S830.3116.416.4740.905.91太灰水下段太灰水下段S98.5112.514.555.2769.16奥灰水奥灰水S104.456.732.433.8482.56奥灰水奥灰水
由集对势识别结果可以明显看出检验样本的集对势的最大比例,即识别矿井突水水源类型。由表4可知水样S1的红层水集对势比例最大,为38.94%,水样识别为红层水;水样S2、S3和S4的砂岩水集对势比例最大,分别为39.32%、57.40%、60.09%,水样识别为砂岩水;水样S5和S6的太灰水上段集对势比例最大,分别为97.37%和47.94%,水样识别为太灰水上段;水样S7和S8的太灰水下段集对势比例最大,分别为27.54%和40.90%,水样识别为太灰水下段;水样S9和S10的奥灰水集对势比例最大,分别为69.16%和82.56%,识别为奥灰水。
运用客观组合权-集对分析模型对10个检验水样样本进行识别,有9个水样与实际完全相符,仅S2水样被误判为砂岩水。经矿井地质资料对比分析发现,S2红层水取样孔位置位于东滩煤矿一号井东断层附近。该断层为一倾角45°、落差35 m的正断层,切割侏罗系红层水含水层与二叠系砂岩水含水层,是具有一定导水能力的天然通道。由于该通道的存在,导致断层附近红层水和砂岩水发生一定程度的混合,给水源识别带来一定的困难,造成模型误判。因此,应特别重视天然导水构造附近地下水的混合作用对水源识别的影响,结合水化学空间分布特征加强混合水源识别模型的研究。此外,客观组合权-集对分析模型依靠大量实际水样建立识别区间,样本越多识别区间越精确,在后续工作中应持续收集各含水层水样数据,为提高模型的识别准确率提供基础。
1)采用客观组合权不仅克服了主观赋权法的主观随意性的缺点,还弥补了单一客观赋权法带来的片面性较强的不足,能合理地赋值权重。客观组合权确定Ca2+和Mg2+的权重之和占整体权重的53%,说明这2项指标对突水水源的识别影响比较大。
2)对10个检验水样样本进行识别,结果表明,9个水样的识别结果与实际情况完全符合,模型的识别准确率达到90%,说明该模型具有较好的准确性。
3)模型出现误判的原因可能是误判水样取样孔位于断层附近,断层切割侏罗系红层水含水层与二叠系砂岩水含水层,是具有一定导水能力的天然通道,导致水样与砂岩水含水层存在一定的水力联系并发生了混合。
4)建议在后续工作中应收集和监测各种含水层的水样数据,建立丰富的水样数据信息库,为提高模型的识别准确率奠定基础。
[1] 周孟然,胡 锋,闫鹏程,等.基于FCM的煤矿突水激光诱导荧光光谱分析[J].光谱学与光谱分析,2018,38(5):1572-1576.
ZHOU Mengran,HU Feng,YAN Pengcheng,et al. Laser induced flourescence spectrum analysis of water inrush in coal mine based on FCM[J]. Spectroscopy and Spectral Analysis,2018,38(5):1572-1576.
[2] 尹尚先,徐 维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术, 2020, 48(1):83-89.
YIN Shangxian, XU Wei, YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology, 2020, 48(1): 83-89.
[3] WANG X Y,JI H Y,WANG Q,et al. Divisions based on groundwater chemical characteristics and discrimination of water inrush sources in the Pingdingshan coalfield[J]. Environmental Earth Sciences,2016,75(10):1-11.
[4] 邓清海,曹家源,张丽萍,等.基于主成分分析的矿井突水水源Bayes判别模型[J].水文地质工程地质,2014,41(6):20-25.
DENG Qinghai,CAO Jiayuan,ZHANG Liping,et al. The Bayesian discrimination mode for sources of mine water inrush based on principal components analysis[J]. Hydrogeology and Engineering Geology,2014,41(6):20-25.
[5] 张 好,姚多喜,鲁海峰,等.主成分分析与Bayes判别法在突水水源判别中的应用[J].煤田地质与勘探,2017,45(5):87-93.
ZHANG Hao,YAO Duoxi,LU Haifeng,et al. Application of component analysis and Bayes discrimination approach in water source identification[J]. Coal Geology & Exploration,2017,45(5):87-93.
[6] 张淑莹,胡友彪,邢世平.基于独立性权-灰色关联度理论的突水水源判别[J].水文地质工程地质,2018,45(6):36-41.
ZHANG Shuying,HU Youbiao,XING Shiping,et al. Identification of water inrush source based on the independence-grey relational degree theory[J]. Hydrogeology and Engineering Geology,2018,45(6):36-41.
[7] WANG Y,SHI L Q,WANG M,et al. Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area,China[J]. Environmental Earth Sciences,2020,79(4):123.
[8] 胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010,32(3):268-271.
HU Weiwei,MA Zhiyuan,CAO Haidong,et al. Application of isotopes and hydrogeochemical methods in the identification of sources of water inrush in mines[J]. Journal of Earth Sciences and Environment,2010,32(3):268-271.
[9] 陈建平,潘光义,吴 丽,等.基于环境同位素和水化学特征识别矿井涌水来源[J].环境化学,2018,37(6):1410-1420.
CHEN Jianping,PAN Guangyi,WU Li,et al. Identifying the source of the groundwater based on the characteristics of environmental isotopes and water chemistry[J]. Environmental Chemmistry,2018,37(6):1410-1420.
[10] 闫志刚,白海波.矿井涌水水源识别的MMH支持向量机模型[J].岩石力学与工程学报,2009,28(2):324-329.
YAN Zhigang,BAI Haibo. MMH support vector machine model for mine inrush water source identification[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):324-329.
[11] 王 亚,周孟然,闫鹏程,等.基于极限学习机的矿井突水水源快速识别模型[J].煤炭学报,2017,42(9):2427-2432.
WANG Ya,ZHOU Mengran,YAN Pengcheng,et al. Rapid identification model of mine water inrush source based on limit learning machine[J]. Journal of China Coal Society,2017.42(9):2427-2432.
[12] 周孟然,宋红萍,胡 锋,等.谱聚类结合LIF在矿井突水水源类型识别中的应用[J].光谱学与光谱分析,2021,41(2):435-440.
ZHOU Mengran,SONG Hongping,HU Feng, et al. Application of spectral clustering and LIF in recognition of mine water inrush source types[J]. Spectroscopy and Spectral Analysis,2021,41(2):435-440.
[13] 闫鹏程,尚松行,周孟然,等.基于激光诱导荧光技术的煤矿水源识别研究[J].光谱学与光谱分析,2020,40(7):2176-2181.
YAN Pengcheng,SHANG Songxing,ZHOU Mengran, et al. Research on identification coal mine water source based on laser induced fluorescence technology[J]. Spectroscopy and Spectral Analysis,2020,40(7):2176-2181.
[14] GIAO NGUYEN THANH,NHIEN HUYNH THI HONG,ANH PHAN
KIM,et al. Classification of water quality in low-lying area in Vietnamese Mekong delta using set pair analysis method and Vietnamese water quality index.[J]. Environmental Monitoring and Assessment,2021,193(6):1-16
[15] 陈 肯,程秋人,潘卫军.基于集对分析的中小机场运行风险水平态势评估[J].安全与环境学报,2019,19(3):743-753.
CHEN Ken,CHENG Qiuren,PAN Weijun,et al. Evaluation of the operational risk level with the small and medium sized airports based on the set pair analysis[J]. Journal of Safety and Environment,2019,19(3):743-753.
[16] 金菊良,李 征,崔 毅,等.基于联系数和马尔可夫链耦合的山东省旱情动态预测评价[J].灾害学,2021,36(2):1-8.
JIN Juliang,LI Zheng,CUI Yi,et al. Dynamic prediction and evaluation of drought in Shandong Province based on connection number and Markov chain coupling[J]. Journal of Catastrophology,2021,36(2):1-8.
[17] 蒋云良,赵克勤.集对分析在人工智能中的应用与进展[J].智能系统学报,2019,14(1):28-43.
JIANG Yunliang,ZHAO Keqin. Application and development of set pair analysis in artificial intelligence:a survey[J]. CAAI Transactions on Intelligent Systems,2019,14(1):28-43.
[18] 刘秀梅,赵克勤.集对分析在不确定性智能决策中的应用[J].智能系统学报,2020,15(1):121-135.
LIU Xiumei,ZHAO Keqin. Application of set pair analysis in the uncertainty intelligent decision making[J]. CAAI Transactions on Intelligent Systems,2020,15(1):121-135.
[19] 张 旭,周绍武,林 鹏,等.基于熵权-集对的边坡稳定性研究[J].岩石力学与工程学报,2018,37(S1):3400-3410.
ZHANG Xu,ZHOU Shaowu,LIN Peng,et al. Slope stability evaluation based on entropy coefficient-set pair analysis[J]. Chinese Journal of Rock Mechanics and Engineerin,2018,37(S1):3400-3410.
[20] 赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社,2000.
[21] 林同云,袁兴中,唐清华,等.熵权集对分析模型应用于湖泊富营养化评价[J].环境工程,2014,32(11):141-146.
LIN Tongyun,YUAN Xingzhong,TANG Qinghua,et al. Application of set pair analysis model based on entropy weight in evaluation of lake eutrophication[J]. Environment Engineering,2014,32(11):141-146.
[22] 王甜甜,靳德武,刘 基,等.动态权-集对分析模型在矿井突水水源识别中的应用[J].煤炭学报,2019,44(9):2840-2850.
WANG Tiantian,JIN Dewu,LIU Ji,et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society,2019,44(9):2840-2850.
[23] 殷 欣,刘泉声,王心语,等.基于组合赋权和属性区间识别理论的岩爆烈度分级预测模型[J].煤炭学报,2020,45(11):3772-3780.
YIN Xin,LIU Quansheng,WANG Xinyu,et al. Prediction model of rock burst intensity classification based on combined weighting and attribute interval recognition theory[J]. Journal of China Coal Society,2020,45(11):3772-3780.
[24] 薛彦瑾,王起才,马丽娜,等.高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J].岩土力学,2020,41(9):3109-3118.
XUE Yanjin,WANG Qicai,MA Lina,et al. Expansibility classification of mudstone for high-speed railway ballastless track foundation[J]. Rock and Soil Mechanics,2020,41(9):3109-3118.
[25] 王心义,赵 伟,刘小满,等.基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9):2433-2439.
WANG Xinyi,ZHAO Wei,LIU Xiaoman,et al. Identification of water inrush source in coal mine Wells based on entropy weight-fuzzy variable set theory [J]. Journal of China Coal Society,2017,42(9):2433-2439.
[26] DELGADO A,ROMEROI. Environmental conflict analysis using an integrated grey clustering and entropy-weight method:A case study of amining project in Peru[J]. Environ Modell Softw,2016,77:108-121.
[27] 陈红光,李晓宁,李晨洋.基于变异系数熵权法的水资源系统恢复力评价:以黑龙江省2007—2016年水资源情况为例[J].生态经济,2021,37(1):179-184.
CHEN Hongguang,LI Xiaoning,LI Chenyang. Resilience evaluation of water resource system based on coefficient of variation entropy weight method:a case study of water resource in Heilongjiang province from 2007 to 2016[J]. Ecological Economy,2021,37(1):179-184.
[28] 刘 佳,赵海军,马凤山,等.基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J].中国地质灾害与防治学报,2020,31(4):63-70.
LIU Jia,ZHAO Haijun,MA Fengshan,et al. Risk assessment of G109 Lhasa-Naqu Debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63-70.
[29] 周玲玲,王 琳,刘伟峰,等.基于客观组合赋权法的即墨市水资源可持续利用评价[J].水资源与水工程学报,2014,25(4):50-55.
ZHOU Lingling,WANG Lin,LIU Weifeng,et al. Assessment of sustainable use of water resources based on combination weighting method in Jimo[J]. Journal of Water Resources and Water Engineering,2014,25(4):50-55.
[30] HUANG Xujuan,WANG Guangcai,LIANG Xiangyang,et al. Hy-
drochemical and stable isotope (δD and δ18O)characteristics of groundwater and hydrogeochemical processes in the Ningtiaota Coalfield,Northwest China[J]. Mine Water and the Environment,2018,37(1):119-136.
[31] JIANG Chunlu,AN Yanqing,ZHENG Liugen,et al. Water source discrimination in a multiaquifer mine using a comprehensive stepwise discriminant method[J]. Mine Water and the Environment,2021,40(2):442-455.