基于组合权-改进灰色关联度理论的矿井突水水源识别

朱赛君1,姜春露1,2,毕 波3,谢 毫3,安士凯3

(1.安徽大学 资源与环境学院,安徽 合肥 230601;2.安徽省矿山生态修复工程实验室,安徽 合肥 230601;

3.平安煤炭开采工程技术研究院有限责任公司,安徽 淮南 232001)

摘 要:基于组合权和改进灰色关联理论,针对潘谢矿区4个含水层中提取的35个学习样本,建立了矿井突水水源识别模型,并利用该模型对7个检验样本进行了水源识别。结果表明:相同含水层的学习样本和检验样本中等6项化学指标值的含量变化趋势更为接近,符合灰色关联理论。组合权重综合考虑了主客观权重,避免人为因素的干扰,同时考虑了识别指标的实际情况。组合权方法计算的6项识别因子中,的权重分别为0.231,0.383,0.203,且3者的权重值相加占总值的81.7%,说明3项指标在矿井突水水源识别中起主要作用。采用建立的组合权-改进灰色关联度模型对7个检验水样进行识别,除1个水样外,其余均与实际结果一致,识别准确率达到86%,表明该模型在矿井水源识别中具有一定的适用性。

关键词:矿井突水;突水水源识别;组合权法;改进层次分析法;熵权法;改进灰色关联度理论

中图分类号:TD742

文献标志码:A

文章编号:0253-2336(2022)04-0165-08

移动扫码阅读

朱赛君,姜春露,毕 波,等.基于组合权-改进灰色关联度理论的矿井突水水源识别[J].煤炭科学技术,2022,50(4):165-172.

ZHU Saijun,JIANG Chunlu,BI Bo,et al.Identification of mine water inrush source based on combination weight - theory of improved grey relational degree[J].Coal Science and Technology,2022,50(4):165-172.

收稿日期:2021-10-02

责任编辑:常 琛

DOI:10.13199/j.cnki.cst.2020-0687

作者简介:朱赛君(1995—),女,安徽安庆人,硕士研究生。E-mail:1012116392@qq.com

通讯作者:姜春露(1984—),男,安徽阜阳人,副教授,博士。E-mail:cumtclj@cumt.edu.cn

Identification of mine water inrush source based on combination weight-theory of improved grey relational degree

ZHU Saijun1,JIANG Chunlu1,2,BI Bo3,XIE Hao3,AN Shikai3

(1.School of Resource and Environment EngineeringAnhui UniversityHefei 230601,China;2.Anhui Engineering Laboratory of Mine Ecological RestorationHefei 230601,China;3.Pingan Mining Engineering Technology Research Institute Co.Ltd.Huainan 232001,China)

Abstract:Based on combination weights and improved grey relational theory, a model for identifying water sources of mine water inrush was established for 35 learning samples extracted from 4 aquifers in Panxie Mining Area, and the model was used to identify water sources for 7 test samples. The results show the content changes of six chemical index values, such as Na++K+, Ca2+, Mg2+, Cl-, in the learning samples and test samples of the same aquifer are more similar, which conforms to the grey relational theory. The combined weight comprehensively considers the subjective and objective weights, avoids the interference of human factors, and considers the actual situation of the identification indicators. Among the six identification factors calculated by the combined weight method, the weights of Ca2+, Mg2+ and are 0.231, 0.383 and 0.203, respectively, and the combined weight values of the three factors account for 81.7% of the total value, indicating that these three indicators have a great impact on the identification result of mine inrush water source. The established combination weight-improved grey relational degree model was used to identify the test water samples of 7 different aquifers. Except for one water sample, the others were consistent with the actual results, and the recognition accuracy rate reached 86%, indicating that the model has certain accuracy and applicability in mine water source identification.

Key words:mine water inrush;identification of water inrush sources; combination weight method; improved analytic hierarchy process; entropy weight method; improved grey relational degree theory

0 引 言

煤矿突水是煤矿灾害之一。快速精确的识别突水水源,是防治突水水害的关键工作之一。针对矿井突水水源识别问题,陈红江[1]、黄平华[2]基于Fisher判别分析理论,对不同含水层的水样进行判别分析;宫凤强[3]、王心义等[4]采用距离判别分析的方法建立了突水水源识别模型;徐星[5-6]、李垣志等[7]依据常规水化学离子浓度,建立以人工神经网络为基础的矿井水源识别模型;张瑞刚等[8]利用水质指标作为判别因子,结合可拓识别方法,建立了突水水源识别模型;DUAN[9]、胡伟伟等[10]基于矿区的水文地质条件建立了以水文地球化学和同位素分析为基础的矿井水源识别模型。此外,判别突水水源的方法还有水温水质识别方法、聚类分析方法、灰色关联理论、支持向量机识别等[11-17]。其中灰色关联度理论主要通过序列的几何关联度来分析各因素之间的关联程度,对于矿井突水水源识别有一定的效果。目前,灰色关联理论已经在灾害预测与评价、工程管理等领域成功运用[18-20]

虽然灰色关联理论的应用取得了一定的成果,但也有不足之处。一方面由于灰色关联度的计算中分辨系数ρ的值通常按照经验取0~1,分辨系数ρ的取值不同会造成灰色关联度的差异;另一方面灰色关联理论一般按照单一赋权法确定各指标权重,无法综合考虑主客观情况,导致赋权结果具有偏向性,从而影响了模型的识别精度。为了克服上述不足,采用方差法对分辨系数ρ进行改进;利用熵权法确定客观权重,改进层次分析法确定主观权重,结合改进灰色关联度理论,建立组合权-改进灰色关联度理论的突水水源识别模型,从而提高水源识别模型的准确性与适用性,为矿井突水水源的识别提供了新的方法。

1 灰色关联理论研究方法

1.1 灰色关联度分析

灰色系统理论所研究的对象是带有不确定性质的系统,可用来处理一些模糊集、概率论难以解决的不确定问题。它通过描述、分析、综合已知的信息,从而确切描述和认识问题[21]。其中灰色关联分析是灰色系统理论的主要内容之一,其基本原理是利用因素之间发展趋势的相似程度来衡量因素间的密切程度,随着相似程度的增大,则因素间关系的密切度增大,关联度就越大。水源识别中的水样化学组分是由多个指标来组成的,每个水样的多个化学指标就构成了一个有序的序列,通过建立模型,构建了一个已知序列,待判的突水样品通过与已知进行比较,从而得到判别效果。

假定学习样本中有n种水样含水层,有m个识别指标,矩阵由各类型含水层的平均值组成。由于含水层背景值中各个指标的数量级差较大,故需进行无量纲化,指标的均值计量变换计算式

(1)

式中:为各类含水层类型的均值(i=1,2,…,nj=1,2,…,m)。

关联系数li(k)的计算公式为

(2)

式中,Δi(k)为kx0xk的绝对差值,Δi(k)=|X0(k)-Xi(k)|;X0(k)为检验水样的标准化序列;为两级最小绝对差值;为两级最大绝对差值。

由于在实际计算过程中,式(2)中的分辨系数ρ的取值一般根据经验取0~1,且关联系数会随着ρ的变化而变化。为了避免分辨系数ρ取值不同而产生的误差,通过方差法对分辨系数进行了改进[22]。将标准化后的背景值作为研究对象,求出每一列水化学指标的标准差σi(i=1,2,…,6)。比较得出标准差最大值σmax以及最小值σmin,利用方差法来确定分辨系数ρ,降低了两级最大绝对差的影响。改进后的关联系数公式为

(3)

式中:Δi(k)的任意一个数。

1.2 组合权值的确定

组合权重方法综合考虑了客观权重与主观权重,使各识别因子的权重更加合理[23]。客观权重由熵权法确定,通过计算某个指标的信息熵,将待评价指标的信息进行量化,可以反映该指标提供的信息量的多少以及信息的效用,从而确定该指标在综合评价中的作用大小[24-25]。熵权法的基本思想[26]是依据各指标所提供的信息量的多少来决定相应指标的权重系数的大小,其优点在于最大程度地减小了主观确定权重带来的人为干扰。

对评价指标进行标准化,消除量纲的影响,标准化公式如下:

(4)

式中,rij为对xij进行标准化之后得出的结果。

计算评价指标的熵值,如果指标的信息熵越小,该指标提供的信息量越大,在综合评价中所起作用越大,权重就应该越高。熵值计算公式如下:

(5)

式中,当rij=0时,Ej=0;Ei为对rij求熵值得出的结果。

熵权法中确定客观权重τi公式为

(6)

主观权重由改进层次分析法确定[27],比较6个识别因子的重要性,得出判断矩阵P

(7)

其中,若aij=1,则说明ij重要;若aij=-1,则说明ji重要;若aij=0,则说明两者同样重要。

P的最优传递矩阵A

(8)

式中,

A的判断矩阵为B

(9)

式中,bij=exp(gij)。

识别因子的主观权重值δi

(10)

确定组合权值ωi:

(11)

最后求出灰色加权关联度Wi

(12)

ωi为得出的组合权值;ζij为灰色关联系数,

2 矿井突水水源识别

2.1 研究区概况

潘谢矿区隶属于淮南煤田,位于阜东矿区与淮南矿区之间,自西端阜阳境内延伸,至东部滁州市内,区内主要水系为淮河(图1)。

图1 研究区地理位置

Fig.1 Geographical location of the study area

研究区自上而下主要含水层包括:新生界松散层孔隙含水层、二叠系砂岩裂隙含水层、石炭系太原组灰岩裂隙岩溶含水层、奥陶系灰岩裂隙岩溶含水层等(图2)。其中,二叠系和石炭系的富水性较弱,而奥陶系与寒武系的富水性不均一。收集潘谢矿区的35个水样来自下含水(Ⅰ类水)、砂岩水(Ⅱ类水)、太灰水(Ⅲ类水)、奥灰水(Ⅳ类水),其中包括下含水10个,砂岩水10个,太灰水10个,奥灰水5个作为学习样本(表1)。选用等6项指标作为识别指标进行突水水源识别,并测定各个指标浓度。收集另外7组矿井水样信息作为检验样本,用于检验模型的准确性。

图2 研究区主要含水层

Fig.2 Main aquifers of study area

2.2 突水水源识别模型的建立

将学习样本不同含水层的水样指标浓度均值分别与检验样本的水样指标浓度的均值进行比较。由图3可以看出,相同含水层的学习样本与检验样本的水样指标浓度变化程度更为相近,关联程度也更高。符合灰色关联理论即:在系统发展过程中,如果2个因素变化的趋势具有一致性,两者同步变化程度较高,即可谓2者关联程度较高,两者为一类的几率也越高。

图3 学习样本与检验样本各指标含量变化比较

Fig.3 Comparison of changes in the content of each index between the learning sample and the test sample

以4类水35组潘谢矿区的水样作为学习样本,建立识别区间,水样进行均值变换后的数据见表2。根据式(1)可得学习样本均值计量变换值,结果见表3。

表1 潘谢矿区水样主要水化学成分

Table 1 Main hydrochemical composition of water samples in Panxie mining area

编号含水层水中各离子的质量浓度/(mg·L-1)Na++K+Ca2+Mg2+Cl-SO2-4HCO-31下含水839.0641.423.64292.171 031.9305.42下含水857.635.1517.7229.9571 009.21329.013下含水741.6426.5111.7274.57786.9334.814下含水860.131.9814.23293.43996.34327.43︙︙︙︙︙︙︙︙18砂岩水411.43178.36103.32264.17824.21311.2019砂岩水535.22160.3287.52321.80872.07311.2020砂岩水1 697.128.02012.01528.212 959.4721太灰水914.9125.653.89195.96797.63659.0222太灰水1 078.048.024.860.00553.021 690.25︙︙︙︙︙︙︙︙35奥灰水928.1289.6433.88576.361 144.74200.15

表2 学习样本标准化后背景值

Table 2 Background values after standardization of learning samples

水样类别含水层学习样本标准化后背景值K++Na+Ca2+Mg2+SO2-4Cl-HCO-3Ⅰ类水下含水952.8233.8718.81396.51954.48429.20Ⅱ类水砂岩水832.4071.7439.14190.68635.441 024.22 Ⅲ类水太灰水1 046.30 17.809.53170.99878.10873.50Ⅳ类水奥灰水728.2744.8320.57416.19892.51233.57

表3 含水层学习样本背景值均值计量变换结果

Table 3 Measurement transformation results of mean background values of aquifer learning samples

水样类别含水层含水层学习样本背景值均值K++Na+Ca2+Mg2+SO2-4Cl-HCO-3Ⅰ类水下含水2.050.070.040.852.060.92Ⅱ类水砂岩水1.790.150.080.411.362.20Ⅲ类水太灰水2.100.040.020.341.761.75Ⅳ类水奥灰水1.870.120.051.072.290.60

根据表1学习样本的数据及上述的熵权法、层次分析法,得出了各含水层水样判别指标对应的组合权重,见表的权重明显高于其他离子,分别为0.231,0.383,0.203,且3者的权重值相加占总值的81.7%,说明该3项指标对突水水源的识别中起主要作用。

2.3 突水水源识别结果

取潘谢矿区的7个已知含水层水样作为水源识别模型的检验样本,其主要的水化学指标见表5,检验样本的均值计量变换结果见表6。

表4 学习样本判别指标权重

Table 4 Learning sample discriminant index weights

指标K++Na+Ca2+Mg2+SO2-4Cl-HCO-3客观权重0.0180.2400.2550.1670.0200.295主观权重0.3760.1240.1930.0790.1390.09组合权值0.0530.2310.3830.1030.0260.203

表5 检验样本水化学信息及识别结果

Table 5 Water chemical information and identification results of test samples

序号水中各离子质量浓度/(mg·L-1)Na++K+Ca2+Mg2+Cl-SO42-HCO-3水样识别结果水样实际结果1982.6830.6614.88644.6659.75642.22Ⅰ类水Ⅰ类水2923.848.184.96272.00621.23265.54Ⅰ类水Ⅰ类水3830.5255.2318.662193.21680.081 000.78Ⅱ类水Ⅱ类水41 023.6311.956.21326.48800.09863.03Ⅲ类水Ⅲ类水5982.6830.6614.88644.60659.75642.22Ⅲ类水Ⅲ类水6868.369.8512.14126.79472.06499.10Ⅲ类水Ⅳ类水7982.6830.6614.88644.6659.75642.22Ⅳ类水Ⅳ类水

表6 检验样本背景值均值计量变换结果

Table 6 Measurement transformation results of sample mean background values

序号含水层检验样本背景值K++Na+Ca2+Mg2+SO2-4Cl-HCO-31下含水1.980.060.031.301.331.302下含水2.640.020.010.781.780.763砂岩水1.790.120.040.421.472.164太灰水2.030.020.010.651.581.715太灰水2.410.020.020.102.211.246奥灰水2.760.030.040.311.601.267奥灰水1.670.120.050.882.600.69

按照灰色关联度理论,对表1中的学习样本与检验样本进行关联度分析,计算得出各个含水层不同指标的关联系数li(k):

(13)

由表2可知含水层各个指标的权重,利用式(12)可以得出不同类型含水层的加权关联度结果(表7),综合计算和分析可知,7个检验样本的加权关联度最高分别是0.920,0.941,0.975,0.967,0.915,0.922,0.963,即判别结果显示检验样本分别属于Ⅰ、Ⅰ、Ⅱ、Ⅲ、Ⅲ、Ⅲ、Ⅳ类水。

表7 学习样本与检验样本关联度

Table 7 Correlation degree between learning samples and test samples

注:a~g为不同的7组检验样本。

水样类别加权关联度abcdefgⅠ类水0.9200.9410.8610.8950.9020.9040.943Ⅱ类水0.8500.8180.9750.8880.8410.8610.842Ⅲ类水0.8950.8770.9190.9670.9150.9220.847Ⅳ类水0.8930.9150.8480.8530.8590.8610.963

应用组合权-改进灰色关联度理论水源识别模型对7组检验样本进行识别,有6组与实际完全相符,只有检验样本6被误判为太灰水,其准确率为86%。导致水样识别不准的原因可能是奥灰水与太灰水含水层相近,水样在天然导水通道发生了混合,且两个含水层的水化学特征相似,从而导致了模型产生误判。因此在后续工作中应该进一步丰富水样的数据资料,增强模型在奥灰水和太灰水识别方面的适用性,提高模型的识别精度。

3 结 论

1)在6项水化学指标中,组合权法所确定的的权重分别是0.231、0.383、0.203,远大于其他化学指标的权值值,且3者的权重值相加占总值的81.7%,说明这3项指标对突水水源识别影响的效果比较大。

2)引用新的样本对模型进行检验,结果表明,7组检验样本中,有6组水样的识别结果与实际情况完全相同,该水源识别模型的准确率达到86%,说明该模型具有一定的准确性、适用性。

3)模型出现误判的原因可能是由于奥灰水和太灰水的含水层相近,水样在天然导水通道发生了混合,且两组水样的水化学特征较为相似,模型难以区分。因此在后续工作中应该丰富水样信息,提高模型的精度。

参考文献(References):

[1] 陈红江,李夕兵,刘爱华,等.用Fisher判别法确定矿井突水水源[J].中南大学学报,2009,40(4):1114-1120.

CHEN H J,LI X B,LIU A H,et al. Fisher discriminant method for determination of water source of mine inrush [J]. Journal of Central South University,2009,40(4):1114-1120.

[2] 黄平华,陈建生.基于多元统计分析的矿井突水水源Fisher识别及混合模型[J].煤炭学报,2011,36(1):131-136.

HUANG P H,CHEN J S. Fisher identification and hybrid model of mine inrush water source based on multivariate statistical analysis [J]. Journal of China Coal Society,2011,36(1):131-136.

[3] 宫凤强,鲁金涛.基于主成分分析与距离判别分析法的突水水源识别方法[J].采矿与安全工程学报,2014,31(2):236-242.

GONG F Q,LU J T. Identification method of inrush water source based on principal component analysis and distance discriminant analysis [J]. Journal of Mining and Safety Engineering,2014,31(2):236-242.

[4] 王心义,徐 涛,黄 丹.距离判别法在相似矿区突水水源识别中的应用[J].煤炭学报,2011,36(8):1354-1358.

WANG X Y,XU T,HUANG D. Application of distance discrimination in identification of water inrush sources in similar mining areas [J]. Journal of China Coal Society,2011,36(8):1354-1358.

[5] 徐 星,郭兵兵,王公忠.人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1):182-185.

XU X,GUO B B,WANG G Z. Application of artificial neural network in multi-source identification of mine [J]. Journal of Safety Science and Technology,2016,12(1):182-185.

[6] 徐 星,田坤云,王公忠,等. Elman神经网络在矿井突水水源判别中的应用[J].安全与环境学报,2017,17(4):1257-1261.

XU X,TIAN K Y,WANG G Z,et al. Application of Elman neural network in identification of water inrush source in mine[J]. Journal of Safety and Environment,2017,17(4):1257-1261.

[7] 李垣志,牛国庆,刘慧玲.改进的GA-BP神经网络在矿井突水水源识别中的应用[J].中国安全生产科学技术,2016,12(7):77-81.

LI Y Z,NIU G Q,LIU H L. Application of improved GA-BP neural network in identification of mine water inrush source [J]. Journal of Safety Science and Technology,2016,12(7):77-81.

[8] 张瑞刚,钱家忠,马 雷,等.可拓识别方法在矿井突水水源判别中的应用[J].煤炭学报,2009,34(1):33-38.

ZHANG R G,QIAN J Z,MA L,et al. Application of extension identification method in identification of mine water inrush source [J]. Journal of China Coal Society,2009,34(1):33-38.

[9] DUAN X L,MA F S,ZHAO H J,et al. Determining mine water sources and mixing ratios affected by mining in a coastal gold mine,in China[J]. Enviroment Earth Science,2019,78(10):1-16.

[10] 胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010,32(3):268-271.

HU W W,MA Z Y,CAO H D,et al. Application of isotopes and hydrogeochemical methods in the identification of sources of water inrush in mines [J]. Journal of Earth Sciences and Environment,2010,32(3):268-271.

[11] 袁文华,桂荣和.任楼煤矿地温特征及在水源判别中的应用[J].安徽理工大学学报,2005,25(4):9-11.

YUAN W H,GUI R H. Characteristics of ground temperature in Renlou coal mine and its application in water source identification[J]. Journal of Anhui university of Science and Technology,2005,25(4):9-11.

[12] 徐楼英.基于水化学特征的聚类分析对矿井突水水源判别[J].煤炭科学技术,2010,38(3):97-100,124.

XU L Y. Cluster analysis based on hydrochemical characteristics to distinguish mine water inrush source[J]. Coal Science and Technology,2010,38(3):97-100,124.

[13] 钱家忠,潘 婧,赵卫东,等.基于SVM的潘三矿B8组与C13组媒开采中突水水源判别模型[J].系统工程理论与实践,2011,31(12):2425-2430.

QIAN J Z,PAN J,ZHAO W D,et al. SVM based identification model of water inrush source in Pansan mine group B8 and group C13 coal mining [J]. Systems Engineering-Theory & Practice,2011,31(12):2425-2430.

[14] 马 雷,钱家忠,赵卫东.基于GIS和水质水温的矿井突水水源快速判别[J].煤田地质与勘探,2014,42(2):49-53.

MA L,QIAN J Z,ZHAO W D. Rapid identification of mine water inrush source based on GIS and water quality and temperature [J]. Coal Geology & Exploration,2014,42(2):49-53.

[15] 张淑莹,胡友彪,邢世平,等.基于独立性权-灰色关联度理论的突水水源识别[J].水文地质工程地质,2018,45(6):36-41.

ZHANG S Y,HU U B,YAN S P,et al. Identification of water inrush source based on the independence-grey relational degree theory[J]. Hydrogeology and Engineering Geology,2018,45(6):36-41.

[16] 闫志刚,白海波.矿井涌水水源识别的MMH支持向量机模型[J].岩石力学与工程学报,2009,28(2):324-329.

YAN Z G,BAI H B. MMH support vector machine model for mine inrush water source identification [J]. Chinese Journal of Rock Mechanics and Engineerin,2009,28(2):324-329.

[17] 李 锋,杨胜利,李政岱,等.薄基岩顶板工作面突水溃砂及切顶灾害试验研究[J].煤炭科学技术,2021,49(11):125-133.

LI Feng,YANG Shengli,LI Zhengdai,et al.Experimental study on disaster of water-sand inrush and roof cutting in working face with thin bedrock roof [J].Coal Science and Technology,2021,49(11):125-133.

[18] 吕擎峰,李军鹏,赵本山,等.基于灰色关联度法的可拓理论在霍尔古吐水电站坝址区泥石流危险性评价中的应用[J].工程地质学报,2016,24(2):211-219.

LYU Q F,LI J P,ZHAO B S,et al. Application of the extension theory based on the grey relational degree method in the debris flow risk assessment of the dam site area of holgutu hydropower station [J]. Journal of Engineering Geology,2016,24(2):211-219.

[19] 浦 海,郭世儒,刘德俊,等.基于LBM-DEM耦合方法的突水溃砂运移规律研究[J].煤炭科学技术,2021,49(2):206-216.

PU Hai,GUO Shiru,LIU Dejun,et al.Study on laws of water inrush and sand burst migration based on LBM-DEM coupling method[J].Coal Science and Technology,2021,49(2):206-216.

[20] 尹尚先,徐 维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术, 2020, 48(1):83-89.

YIN Shangxian, XU Wei, YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology, 2020, 48(1):83-89.

[21] 苏 欣.基于前景理论和灰色关联分析的决策方法[D].南宁:广西民族大学,2016.

SU X. Decision making method based on prospect theory and grey correlation analysis [D]. Nanning:GuangXi University for Nationalities,2016.

[22] 张 妹,刘启蒙,张宇通.基于改进灰色可拓关联法的煤层顶板砂岩富水性评价[J].矿业安全与环保,2018,45(5):64-68.

ZHANG M,LIU Q M,ZHANG Y T. Evaluation of the water richness of coal seam roof sandstone based on the improved grey extension correlation method [J]. Mining Safety & Environmental Protection,2018,45(5):64-68.

[23] 李 聪,申思然,刘 江,等.基于动态权重的土质岸坡稳定性模糊评价方法[J].长江科学院院报,2013,30(1):15-20.

LI Cong,SHEN Siran,LIU Jiang,et al. Application of stepwise regression algorithm to slope safety monitoring[J]. Journal of Yangtze River Scientific Research Instittute,2013,30(1):15-20.

[24] 王心义,赵 伟,刘小满,等.基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9):2433-2439.

WANG X Y,ZHAO W,LIU X M,et al. Identification of water inrush source in coal mine Wells based on entropy weight-fuzzy variable set theory [J]. Journal of China Coal Society,2017,42(9):2433-2439.

[25] DELGADOA,ROMERO I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method:A case study of amining project in Peru[J]. Environ. Modell. Softw.,2016,77:108-121.

[26] 周 薇,李筱菁.基于信息熵理论的综合评价方法[J].科学技术与工程,2010,10(23):5839-5843.

ZHOU W,LI X J. Comprehensive evaluation method based on information entropy theory [J]. Science Technology and Engineering,2010,10(23):5839-5843.

[27] 王甜甜,靳德武,刘 基,等.动态权-集对分析模型在矿井突水水源识别中的应用[J].煤炭学报,2019,44(9):2840-2850.

WANG T T,JIN D W,LIU J,et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society,2019,44(9):2840-2850.