地球科学与测绘
移动扫码阅读
沉积物中元素的地球化学行为不仅和自身元素性质有关,还受到搬运、沉积等外部条件的影响,因此沉积物中元素地球化学特征能够反映古地理环境特征[1]。泥质岩等细粒碎屑岩化学成分接近源岩,相对于其他沉积岩,更容易受到物源、构造演化、沉积环境等因素的影响。因此,通过对泥质岩中元素地球化学特征的研究,对探讨泥质岩物质来源及演化、沉积盆地古环境特征具有一定意义[2-3]。淮北煤田宿州矿区煤炭资源丰富,二叠纪山西组是该地区主要含煤地层。前人对该地区山西组地质特征进行了大量研究。李运山等[4]通过层序地层学对芦岭井田山西组沉积环境进行探讨,宋立军等[5]运用沉积学知识对研究区二叠纪沉积环境及聚煤规律进行了分析,魏尔林等[6]对朱仙庄井田二叠纪含煤岩系垂直层序特征进行了详细研究,取得一致认识:二叠纪山西组沉积环境为河控三角洲。然而,缺少元素地球化学方面的证据。而且这些研究主要侧重于沉积环境方面,缺少对物源及源区构造背景方面的研究。淮北煤田和淮南煤田同位于徐淮地块,属徐淮二级赋煤带。淮北煤田山西组地层岩石元素地球化学特征相关研究较少,但邻区淮南煤田进行了一些研究。范翔[7]在对淮南二叠纪含煤地层泥质岩地球化学特征研究时,通过一些图解将山西组样品分别投落在石英质沉积岩源区及被动大陆边缘并靠近活动大陆边缘的区域;高德燚[8]在对淮南地区煤系地层微量元素地球化学进行研究时,认为山西组物源为长英质岩石,构造背景为大陆岛弧。山西组物源及构造背景在认识上存在一些争议。而淮北煤田与淮南煤田在二叠纪时期物源及构造背景较为相似[9]。
基于此,在淮北煤田宿州矿区二叠纪山西组地层相关研究基础上,以泥质岩为研究对象,对其元素地球化学特征进行分析,从而探讨区域沉积环境、物源及源区构造背景。
研究区位于华北板块东南缘,华北地台自奥陶纪晚期受加里东运动影响,抬升为陆地,遭受剥蚀,缺失上奥陶统、志留系、泥盆系及下石炭统地层。中石炭世晚期,地壳开始沉降,海水逐渐侵入。早二叠世早期,受到翘板式构造运动影响,导致整个华北地区出现北高南低的地势,源区上升,陆源碎屑供应逐渐加强,源区主要为阴山古陆[9]。同时区域内发生自北向南的全面海退,形成障壁-潟湖沉积体系,此时山西组下部形成,此后继而形成河控三角洲沉积、冲积平原。因气候温润,植物繁盛,形成良好的煤层[10]。研究区二叠纪山西组为区域主要含煤层段,该组地层厚度约为110 m,与下伏太原组、上伏石盒子组均为整合接触关系[4]。山西组岩性以砂岩、粉砂岩、泥岩为主。研究区构造及地层如图1所示。
图1 研究区构造及地层图
Fig.1 Structural and stratigraphic map of study area
煤系泥质岩样品采自安徽宿州市东12 km朱仙庄煤矿,通过Z17钻井进行取芯,取样位置为山西组泥质岩段,具体如图1所示。样品采集完后,拿到实验预备室,先进行初步处理,将样品清洗干净,自然风干,然后切除表层,用超纯水清洗,用烘箱烘干后,用机器粉碎并使用玛瑙研钵研磨至过筛200目(0.074 mm),用纸袋包装,送至武汉上谱实验室进行分析。主量元素采用波长色散X射线荧光光谱仪测定,仪器型号为理学ZSX PrimusⅡ,烧失量(LOI)是一定质量样品烘干后于950 ℃反复灼烧直至恒重,通过计算所得;微量元素采用电感耦合等离子质谱仪(ICP-MS)测定,型号为Agilent 7700e,具体流程:将200目样品烘干,加入高纯硝酸高纯氢氟酸消解,之后用稀硝酸稀释上机测试。主微量元素测试精度均优于5%,测试分析结果见表1和表2。
表1 研究区泥质岩主量元素组成
Table 1 Major elements composition of argillaceous rock in study area
主量元素不同取样位置元素质量分数/%Z17-1Z17-2Z17-3Z17-4Z17-5Z17-6SiO260.9962.1064.4462.6963.4462.38TiO20.780.790.890.830.750.72Al2O322.8821.9820.3521.2720.4521.22TFe2O32.692.271.922.062.542.06MnO0.050.060.010.010.030.01MgO0.470.500.670.670.510.76CaO0.200.200.160.180.270.18Na2O0.080.090.130.140.230.13K2O1.511.512.352.422.032.42P2O50.070.070.040.040.100.07LOI10.0310.128.859.699.529.97合计99.7599.6999.8299.9899.8599.91
表2 研究区泥质岩微量元素组成
Table 2 Trace elements composition of argillaceous rock in study area
微量元素不同取样位置元素/10-6Z17-1Z17-2Z17-3Z17-4Z17-5Z17-6Li35.735.756.866.427.539.7Be2.622.732.953.412.322.16Sc16.618.216.317.917.417.3V12812912914081.753.2Cr66.169.091.696.091.765.1Co7.648.3818.118.312.79.86Ni27.127.837.335.425.421.4Cu47.443.539.450.443.053.5Zn66.671.011412776.583.9Ga28.427.724.327.119.325.9Rb59.056.684.094.886.362.1Sr220210184200211248Y39.139.344.345.445.745.0Zr264250408262231199Nb17.716.917.316.617.715.8Sn2.532.422.082.392.191.80Cs4.183.894.325.774.074.15Ba408404445434456527La55.654.764.567.956.650.1Ce110107123128118106Pr12.111.713.814.49.4810.1Nd44.743.751.753.346.841.3Sm8.678.269.489.658.628.48Eu1.681.721.952.041.161.84Gd6.946.818.038.047.316.64Tb1.031.061.161.141.470.99Dy6.796.847.017.026.826.38Ho1.311.321.371.411.501.46Er3.783.764.094.283.544.40Tm0.560.570.640.620.530.62Yb3.543.624.184.313.503.45Lu0.560.550.680.680.630.62Hf6.236.346.156.495.605.69Ta1.081.081.051.030.670.45Tl0.340.350.570.600.480.34Pb25.023.824.026.420.825.3Th14.513.815.016.212.715.6U3.713.433.683.702.933.45ΣREE257251292303266242LREE/HREE9.499.269.7310.09.518.87LaN/YbN11.310.811.111.311.610.4δEu0.640.680.660.690.440.72δCe0.990.990.960.961.141.09
淮北煤田宿州矿区山西组泥质岩样品主量元素测试结果见表1。样品SiO2、Al2O3质量分数较高,均值分别为62.67%(60.99%~64.44%)、21.36%(20.35%~22.88%)。TFe2O3质量分数相对也较高,均值为2.26%(1.92%~2.69%)。K2O质量分数在1.51%~2.42%变化,平均为2.04%,TiO2质量分数在0.72%~0.89%变化,其余元素氧化物质量分数均小于1%。
微量元素分析结果(表2)显示,元素Ba质量分数较高,平均为378.69×10-6;Zr质量分数平均为268.97×10-6;Sr质量分数平均为212.02×10-6;V质量分数平均为110.05×10-6。除此之外其他元素质量分数均小于100×10-6。在蛛网图(图2,样品中元素质量分数与PAAS中元素分数之比)上可以看出元素分配差异较为明显。Li、Sc、Cr、Cu、Ga、Zr、Cs、Th等元素富集,Ba、Ta、Rb、Sr、Nb等元素亏损。富集的元素可能是泥质岩中黏土矿物的吸附作用或离子交换作用及有机质的存在导致。
图2 研究区泥质岩微量元素蛛网图
Fig.2 PAAS-normalized trace element patterns of argillaceous rock in study area
碎屑岩中稀土元素较为稳定,受风化、搬运及沉积等地质作用影响较小,能够反映物源区岩石成分信息[3]。因此,常通过沉积物中稀土元素特征来恢复物源成分及判别沉积环境[11]。从样品稀土元素测试结果(表2)可以看出,研究区泥质岩稀土元素为含量242.4×10-6~302.9×10-6,平均为268.5×10-6,相对于球粒陨石(65.9×10-6 ) 、上地壳(146.4×10-6 ) 和北美页岩(173.2×10-6) ,稀土元素十分富集,质量分数较高。样品δEu值为0.44~0.72,平均值为0.64,明显的负异常,δCe值为0.96~1.14,平均值为1.02,显示为无异常。样品 LaN /YbN值为10.42~11.59,平均为11.08;LREE/HREE值为8.87~10.01,平均为9.48,这2个指标说明稀土元素更为富集,而且分异明显,重稀土分异程度低。在稀土元素配分曲线上(图3,样品中元素质量分数与球粒陨石中元素质量分数之比),稀土元素段斜率大,重稀土斜率小,也能反映轻重稀土的分异特征。稀土元素配分曲线整体模式呈右倾型,相似于后太古宙澳大利亚页岩元素曲线。这些特征均反映研究区泥质岩源岩主要来源于上地壳,从La/Sc-Sc/Th图解(图4a),也能看出泥质岩成分与上地壳成分更为相似。
图3 研究区泥质岩稀土元素配分图
Fig.3 Chondrite-normalized REE patterns of argillaceous rock in study area
图4 研究区泥质岩La/Sc-Sc/Th和Th/Sc-Zr/Sc图解[12]
Fig.4 Diagram showing La/Sc-Sc/Th and Th/Sc-Zr/Sc of argillaceous rock in study area[12]
因为泥质岩均质性较好以及渗透性较低,在物源分析中是最常用的碎屑岩类型。淮北煤田宿州矿区煤系泥质岩m(Th)/m(Sc)值分布范围为0.73~0.92,平均值为0.85,比中国东部地壳界限值(0.6)高[13],接近上地壳值(0.97)[14],在Th/Sc-Zr/Sc图解(图4b)上投落于上地壳附近,反映来源于上地壳源区。
淮北煤田宿州矿区山西组泥质岩中m(Al2O3)/m(TiO2)值为22.77~29.47(平均为27.08),而长英质岩石的m(Al2O3)/m(TiO2)值通常介于19~28[15]。m(Cr)/m(Zr)比值能够反映沉积物主要来自铁镁质组分还是来自长英质组分[16],研究区山西组泥质岩m(Cr)/m(Zr)值为0.22~0.40(平均为0.31)。无论m(Al2O3)/m(TiO2)还是m(Cr)/m(Zr)比值均暗示研究区泥页岩物源是以长英质组分为主。泥质岩Ni质量分数为21.44×10-6~37.3×10-6,平均为29.07×10-6,在TiO2-Ni图解(图5a)上,样品均落在长英质区域附近。Hf质量分数为5.6×10-6~6.49×10-6,m(La)/m(Th)值在3.2~4.45。在La/Th-Hf图解上(图5b),样品全分布在长英质源区。
图5 研究区泥质岩TiO2-Ni图解和La/Th-Hf图解[17]
Fig.5 The diagram showing TiO2-Ni and La/Th-Hf of argillaceous rock in study area[17]
在La/Yb-REE图解(图6)中,研究区泥质岩样品落在花岗岩和玄武岩交合部位,一般玄武岩大多Eu无异常,花岗岩Eu负异常[3],而研究区泥质岩具有明显的负异常,认为淮北煤田宿州矿区煤系泥质岩其母岩以花岗岩为主。宿州矿区山西组为主要含煤地层,在对煤中矿物研究发现,煤中矿物有碎屑石英、高岭石、锐铁矿等[18]。其中高岭石常由长石蚀变而成,锐铁矿主要以副矿物形式在火成岩中产出,而花岗岩主要矿物包含石英、长石、黑云母等。以上表明,山西组煤中矿物来源于花岗岩。以前研究认为淮北煤田宿州矿区煤系物源主要来源于华北地台北源阴山古陆[9]。前人在研究阴山古陆前寒武纪花岗岩时,发现其具有轻稀土富集、重稀土亏损、Eu负异常等特征[19-20],与研究区泥质岩稀土元素特征相似。付奇睿在对孙瞳矿山西组煤中稀有元素研究中同样认为,元素Eu及Ce弱的负异常可能与沉积源区阴山古陆长英质钾长花岗岩有关[18]。综上所述,研究区泥质岩物源主要来自华北地台北缘阴山古陆前寒武纪花岗岩。
图6 研究区泥质岩La/Yb-REE图解[21]
Fig.6 The diagram showing La/Yb-REE of argillaceous rock in the study area[21]
图7 研究区泥质岩Th-Sc-Zr/10和La-Th-Sc图解[12]
Fig.7 Diagram showing Th-Sc-Zr/10 and La-Th-Sc of argillaceous rock in study area[12]
沉积岩形成过程中各个阶段都会影响岩石化学成分组成,而源岩类型及风化作用、搬运作用、沉积作用等因素都受控于沉积盆地构造环境。主要因为岩石中Th、Co、Zr、Sc等元素较为稳定,基本不会受到搬运和沉积过程的影响。因此,可以通过这些特定元素判别沉积盆地的构造环境进行判别。
BHATIA[12]将大洋盆地和大陆边缘划分为大洋岛弧、大陆岛弧、活动大陆边缘和被动大陆边缘4种构造类型。在Th-Sc-Zr/10和La-Th-Sc构造环境判别图中,淮北煤田宿州矿区山西组泥页岩样品基本全部落在大陆岛弧区域。研究区泥质岩物源主要来自华北地台北缘阴山古陆前寒武纪花岗岩。阴山古陆出露的花岗岩主要形成于与大陆岛弧相关的构造环境[19-20],与构造环境判别图所得的构造背景相符合。范翔等[7]在研究华北东南缘二叠纪泥质岩时认为其源区在早二叠世早期可能经历了短暂的大陆岛弧的板块环境,也证实了这一观点。因此,淮北煤田宿州矿区煤系泥质岩物源主要为阴山古陆前寒武纪花岗岩,源区构造背景为大陆岛弧。
沉积岩的化学元素组分、质量分数和某些元素的比值在判别沉积速率、水体盐度、古气候、氧化还原条件等方面具有较好的反映[22-24]。
稀土元素主要赋存在水体中停留的悬浮物或碎屑颗粒中。这些物质在水体中停留时间的长短会导致稀土元素分异程度的差异。快速沉积时,物质中稀土元素与水作用较少,分异较小,沉积物中稀土元素配分图较为平缓;沉积速度缓慢时,物质中稀土元素能够长时间与水作用发生分解,分异较大,沉积物中稀土元素配分图较为陡倾。研究区泥质岩中稀土元素分异较大,轻稀土元素明显富集,配分模式变化明显,说明沉积时期沉积速率较小。Ba、Sr元素质量分数及m(Sr)/m(Ba)比值常被用来判断沉积水体的古盐度参数。Ba元素在海相中质量分数较少,主要因为容易被黏土矿物吸附或与某些离子结合发生沉淀。Sr元素在海相中质量分数较高,因为其具有较强的迁移性。因此,沉积物的m(Sr)/m(Ba)比值能够反映古盐度的情况。m(Sr)/m(Ba)值大于1,说明为盐湖或海相沉积,m(Sr)/m(Ba)值小于0.6为微咸水相沉积,m(Sr)/m(Ba)值在0.6~1.0为半咸水相沉积[25]。淮北煤田宿州矿区煤系泥质岩m(Sr)/m(Ba)值为0.41~0.54,可得知该地层为微咸水相沉积环境。m(Sr)/m(Cu)对气候变化敏感可以良好的记录气候变化的信息,通常,m(Sr)/m(Cu)值大于5,表明为干旱气候,m(Sr)/m(Cu)值在1.3~5.0,指示温湿气候[26]。研究区泥质岩m(Sr)/m(Cu)值为3.96~4.89,平均为4.61,证明当时温暖潮湿气候条件。在古氧化还原条件的判断中,常用m(V)/m(V+Ni) 和m(Ni)/m(Co)值以及m(Ni)/m(Co)和m(Cu)/m(Zn)值等指标来评价。如m(V)/m(V+Ni)>0.54 代表厌氧环境,m(Ni)/m(Co)值大于1.8、m(Cu)/m(Zn)值大于0.3反映还原条件[27-28]。研究区泥质岩m(V)/m(V+Ni)值为0.71~0.82,平均为0.78,大于0.54,表明为厌氧环境,m(Ni)/m(Co)值为1.94~3.55,平均为2.51,m(Cu)/m(Zn)值为0.34~0.71,平均为0.54,也反映了其属于强还原环境。
前人对区域沉积相、化石的研究结果[4-6,10]表明,淮北煤田宿州矿区山西组地层形成于河控三角洲环境,气候条件为温暖湿润,水体为半咸水-咸水。本研究从泥质岩地球化学角度亦验证了上述结论。
1)淮北煤田宿州矿区煤系泥质岩Li、Sc、V、Cr、Ni、Ga、Zr、Th等微量元素相对后太古宙澳大利亚页岩富集,Ba、Ta、Rb、Sr、Nb等元素亏损。LREE/HREE为8.87~10.01,轻重稀土分异大,δEu值为0.44~0.72,有明显的负异常。
2)研究区泥质岩具有高的m(Al2O3)/m(TiO2),相似与上地壳的m(Cr)/m(Zr),S以及Th/Sc-Zr/Sc、TiO2-Ni、La/Th-Hf等图解中数据点的分布,均表明研究区泥质岩源岩主要为上地壳中的长英质岩石,La/Yb-REE图解进一步表明其源岩为花岗岩。
3)从Th-Sc-Zr/10和La-Th-Sc构造环境判别图可知,研究区泥质岩源岩构造背景为大陆岛弧。
4)研究区泥质岩中稀土元素分异较大,轻稀土元素明显富集,反映沉积时期沉积速率较小;泥质岩Sr/Ba表明水体为微咸水环境;m(Sr)/m(Cu)表明了温暖潮湿的气候条件;m(V)/m(V+Ni)和m(Ni)/m(Co)以及m(Ni)/m(Co)和m(Cu)/m(Zn)值反映了沉积水体为厌氧、强还原环境。
[1] 金 军,高 为,孙 键,等.黔西松河矿区煤中元素地球化学特征及成煤环境意义[J].煤炭科学技术,2017,45(12):166-173,204.
JIN Jun,GAO Wei,SUN Jian,et al.Geochemistry characteristics and coal formation environmental significances of elements in coal from Songhe Mining Area in western Guizhou[J].Coal Science and Technology,45(12):166-173,204.
[2] 侯中帅,陈世悦,桑树勋,等.渤海湾盆地上古生界泥岩地球化学特征[J].煤炭学报,2020,45(4):1457-1472.
HOU Zhongshuai,CHEN Shiyue,SANG Shuxun,et al.Geochemical characteristics of Upper Paleozoic mudstone in BohaiBay Basin[J].Journal of China Coal Society,2020,45(4):1457-1472.
[3] 涂春霖,郭英海,胡 敏,等.阳泉矿区泥岩地球化学特征及地质意义[J].煤炭科学技术,2015,43(3):115-120.
TU Chunlin,GUO Yinghai,HU Min,et al.Geochemical features of mudstone and geological significance in Yangquan Mining Area[J].Coal Science and Technology,2015,43(3):115-120.
[4] 李运山,魏尔林.淮北煤田芦岭井田二叠纪含煤岩系原生沉积构造序列与沉积环境[J].安徽地质,2002(1):29-34.
LI Yunshan,WEI Erlin.Sequence of primary sedimentary structures and sedimentary environment for the Permian coal measures in the Luling mine of the Huaibei coal field[J].Geology of Anhui,2002(1):29-34.
[5] 宋立军,李增学,吴冲龙,等.安徽淮北煤田二叠系沉积环境与聚煤规律分析[J].煤田地质与勘探,2004(5):1-3.
SONG Lijun,LI Zengxue,WU Chonglong,et al. Analysis of Permian sedimentary environment and regularities of coal accumulation Huaibei coalfield,Anhui Province[J].Coal Geology &Exploration,2004(5):1-3.
[6] 魏尔林.淮北煤田朱仙庄井田二叠纪含煤岩系垂直层序的研究[J].安徽地质,2013,23(3):205-207.
WEI Erlin.Study on vertical sequence of Permian coal measures in the Zhuxianzhuang coal mine of the Huaibei coal field[J].Geology of Anhui,2013,23(3):205-207.
[7] 范 翔,刘桂建,孙若愚,等.淮南二叠纪含煤地层泥质岩地球化学特征及其地质意义[J].地学前缘,2015,22(4):299-311.
FAN Xiang,LIU Guijiang,SUN Ruoyu,et al.Geochemical characteristics of argillaceous rocks in Permian coal-bearing strata in Huainan and their geological implications[J].Earth Science Frontiers,2015,22(4):299-311.
[8] 高德燚.淮南地区煤系地层微量元素地球化学特征及地质意义[D].淮南:安徽理工大学,2017.
GAO Deyi.Trace element geochemical characteristics and geological significance of coal measures strata in Huainan area[D].Huainan:AnHui University of Science and Technology,2017.
[9] 陈世悦,刘焕杰.华北地台东部石炭—二叠纪岩相古地理特征[J].中国区域地质,1997(4):44-51.
CHEN Shiyue,LIU Huanjie.Carboniferous-Permian Lithofacies and Paleogeography in the eastern part of the North China Platform[J].Regional Geology of China,1997(4):44-51.
[10] 吴文金,刘文中,陈克清.淮北煤田二叠系沉积环境分析[J].北京地质,2000(3):21-25.
WU Wenjin,LIU Wenzhong,CHEN Keqing.Analysis of sedimentary environments of Permian strate in Huaibei coalfield[J].Geology of Beijing,2000(3):21-25.
[11] 沈渭洲,舒良树,向 磊,等.江西井冈山地区早古生代沉积岩的地球化学特征及其对沉积环境的制约[J].岩石学报,2009,25(10):2442-2458.
SHEN Weizhou,SHU Liangshu,XIANG Lei,et al. Geochemical characteristics of Early Paleozoic sedimentary rocks in the Jinggangshan area,Jiangxi province and the constraining to the sedimentary environment[J].Acta Petrologica Sinica,2009,25(10):2442-2458.
[12] BHATIA M R,CROOK K A W.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contributions to Mineralogy and Petrology,1986,92(2):181-193.
[13] 高 山,骆庭川,张本仁,等.中国东部地壳的结构和组成[J].中国科学(D辑:地球科学),1999(3):204-213.
GAO Shan,LU Tingchuan,ZHANG Hongfei,et al. Structure and composition of the crust in eastern China[J].Science In China (Series D),1999(3):204-213.
[14] TAYLOR S R,Mclennan S M.The Continental crust:Its Compsoition and Evolution[M].Malden:Blackwell Oxford,1985.
[15] GIRTY G H,HANSON A D,KNAACK C,et al.Provenance determined by REE,Th and Sc analyses of metasedimentary rocks,Boyden Cave roof pendant,central Sierra Nevada,California[J].Journal of Sedimentary Research,1994,64(1):68-73.
[16] WRONKIEWICZ D J,CONDIE K C.Geochemistry and Provenance
of sediments from the Pongola Supergroup,South Africative:Evidence for a 3.0Ga old continental craton[J].Geochim.Cosmochim.Acta,1989,53:1537-1549.
[17] FLOYD P A,Leveridge B E.Tectonic environment of the Devonian Gramscatho basin,south Cornwall:framework mode and geochemical evidence from turbiditic sandstones[J].Journal of the Geological Society,1987,144(4):531-542.
[18] 付奇睿.淮北孙瞳地区早二叠世煤的地球化学特征[D].石家庄:河北地质大学,2018.
FU Qirui.Characteristics of Geochemistry in the Early Permian Coals from Suntong Mine,Huaibei[D].Shijiazhuang:Hebei GEO University,2018.
[19] 罗红玲,吴泰然,赵 磊.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J].岩石学报,2009,25(3):515-526.
LUO Hongling,WU Tairan,ZHAO Lei.Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J].Acta Petrologica Sinica,2009,25(3):515-526.
[20] 刘建辉,刘福来,丁正江,等.乌拉山地区早古元古代花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J].岩石学报,2013,29(2):485-500.
LIU Jianhui,LIU Fulai,DING Zhengjiang,et al.Zircon U-Pb chronology,geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area,North China Craton[J].Acta Petrologica Sinica,29(2):485-500.
[21] ALLEGRE C J,MINSTER J F.Quantitative models of trace element behavior in magmatic processes[J].Earth Planet Science Letter,1978,38(1):1-25.
[22] MUKUL R Bhatia,KEITH A W Crook.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contrib Mineral Petrol,1986,92:181-193.
[23] SONG J,BAO Z,ZHAO X,et al.Sedimentology and geochemistry of Middle-Upper Permian in northwestern Turpan-Hami basin,China:implication for depositional environments and petroleum geology[J].Energy Exploration &Exploitation,2018,36(4):910-941.
[24] 宋明水.东营凹陷南斜坡沙四段沉积环境的地球化学特征[J].矿物岩石,2005(1):67-73.
SONG Mingshui.Sedimentary environment geochemistry in the shasi section of southern ramp,Dongying epression[J] Journal of Mineralogy and Petrology,2005(1):67-73.
[25] 贾泽南,田亚铭,刘 明,等.姬塬北地区延长组长7-长8油层组泥岩地球化学特征与地质意义[J].矿物学报,2019,39(5):549-558.
JIA Zenan,TIAN Yaming,LIU Ming,et al. Characteristics and geological implication of geochemical signature for Chang-7 to Chang-8 Members of Yanchang mudstone in Northern Jiyuan area[J].Acta Mineralogica Sinica,2019,39(5):549-558.
[26] 师 晶,黄文辉,吕晨航,等.鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J].石油学报,2018,39(8):876-889.
SHI Jing,HUANG Wenhui,LYU Chenhang,et al. Geochemical characteristics and geological significance of the upper paleozoic mudstones from Linxing area in Ordos Basin[J].Acta Petrolei Sinica,2018,39(8):876-889.
[27] JONES B,MANNING D A C.Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994.111:111-129.
[28] 王春连,刘成林,胡海兵,等.江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义[J].古地理学报,2012,14(2):165-175.
WANG Chunlian,LIU Chenglin,HU Haibing,et al. Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression,Jianghan Basin[J].Journal of Paleogeography,2012,14(2):165-175.