川南地区煤层气勘探已有20余年,2010年,古叙矿区大村井田3口排采试验井开始产气,单井日产气800~1 700 m3,率先并推动了南方多、薄煤层煤层气的勘探开发[1-3]。2011年,浙江油田在研究区南面的筠连沐爱页岩气钻探过程中发现上二叠统宣威组含煤地层气测显示强烈,经压裂排采煤层气日产量达1 000 m3以上,浙江油田依托川南地区已有的页岩气地震资料、钻井认识,快速推进煤层气勘探评价和先导试验工作[4-5],2016年提交了筠连沐爱核心区煤层气探明储量93.84亿m3,目前已建成煤层气2.5亿m3产能。2017年,四川省煤田地质局在研究区内实施的川高参1井获得最高日产气量达8 300 m3的高产,创下目前南方地区煤层气直井单井最高日产气量和最高稳定日产气量纪录,再次证实川南地区煤层气资源前景可观[6]。川南宜宾地区作为川南煤层气勘探开发的主战场,近年来在局部地区取得突破,为推进该区煤层气大规模商业开发,优选出煤层气勘探开发有利区显得尤为关键,本文在利用区内大量煤炭勘查取得的煤层厚度、埋深、煤体结构、瓦斯数据等地质资料的基础上,结合页岩气、煤层气勘查取得的岩心、测井、试井、现场解吸及分析测试等资料,同时考虑到川南地区煤层具有层数多、单层厚度薄的特点,首次将“煤层集中度”(反映煤层气主力煤层层间距离的参数,主力煤层间距越小越有利于后期压裂合层排采)纳入煤层气选区评价参数体系,并采用多因素加权求和法优选出煤层气有利区并计算出煤层气资源量,以期为下一步该区煤层气勘探开发提供技术依据。
川南宜宾地区位于四川盆地南缘的叙永-筠连叠加褶皱带,区内以北东向横排褶皱构造为主,主体构造为珙长背斜、罗场向斜和建武向斜(图1)。珙长背斜北陡南缓,北翼地层倾角40°~80°,南翼10°~20°,罗场向斜位于区内西部,该向斜轴线走向为近东西向,向斜南翼地层较陡,倾角较大,除核部的沙溪庙组地层约为10°外,一般在25°~40°;北翼地层较平缓,倾角较小,一般在5°~15°。建武向斜位于区内东部,轴线走向为近东西向,向斜南北两翼地层倾角都很平缓,倾角除个别地方外,一般在5°~10°。区内东部地区存在部分小型断层,总体上,该区构造简单,有利于煤层气保存。
图1 研究区构造纲要
Fig.1 Structural outline map of the study area
该区煤层气目的层位为上二叠统宣威组和龙潭组,宣威组和龙潭组是晚二叠世沉积的同期异相产物[7-8],西部宣威组上段波状层理、脉状层理发育,潮汐层理间断出现,属潮坪沉积环境,宣威组下段见平行层理、交错层理、冲刷构造,为冲积平原河流沉积环境。东部龙潭组含煤地层波状层理、水平层理、平行层理发育,岩性主要为粉-细砂岩,少见粗碎屑岩,以三角洲平原沉积为主。晚二叠世早期(吴家坪期),区内上罗以西为一广阔的冲积平原环境,在峨眉山玄武岩基底上沉积了一套以泥质岩、碎屑岩为主的陆相河流、湖泊沉积,含煤性差,为宣威组下段地层;往东逐渐过渡为三角洲海陆交互相沉积,含煤性变好,具可采煤层,为龙潭组。在晚二叠世晚期(长兴期),由于海岸线由东不断向西推进,使本区九丝城以西处于海陆交互相潮坪沉积环境,沉积了有数层可采煤层的宣威组上段组含煤地层;东部则相变为碳酸盐台地沉积环境,沉积了长兴组灰岩地层,并呈现出长兴组灰岩厚度自西往东逐渐增厚的趋势。由于沉积环境差异的影响,东西部煤层垂向分布差异较大,C1~C10煤层在西部宣威组上段较发育,东部龙潭组不发育,C11~C25煤层在东部龙潭组发育,在西部宣威组下段不发育,中部地区,宣威组上段C6~C10煤层发育且宣威组下段C24~C25煤层也见局部可采。受沉积环境影响,西部宣威组上段潮坪相含煤沉积煤层单层厚度较大,且煤层较为集中,横向发育较为稳定,龙潭组煤层主要发育在三角洲平原河漫沼泽微相,煤层受三角洲沉积变迁影响,垂向分布较为分散且横向连续性相对较差(图2)。
图2 煤层连井剖面对比
Fig.2 Cross section comparison of coal seams
平面上,宣威组和龙潭组可采煤层总厚度变化较大,总体呈现出从西到东可采煤层总厚度减薄趋势,在孝儿-九丝城一带厚度最厚,达8.00 m以上,九丝城以东,总厚度普遍低于5.00 m。宣威组含可采煤层3~7层,煤层总厚3.68~10.02 m,平均厚6.28 m,龙潭组含可采煤层10余层,煤层总厚3.61~6.42 m,平均厚5.06 m。区内宣威组上段C7和C8煤层较集中,且单层厚度较大,有利于后期合层压裂排采,为区内煤层气开发的主要目的层,C7和C8煤层一般垂向间距1~5 m,局部地区两煤层合并,形成厚度大于5.00 m的厚煤层,C7和C8两层煤总厚1.05~6.00 m,孝儿镇-上罗镇地区两层煤层总厚最大,达4.00 m以上(图3),其中C7煤层单层厚度0.61~3.30 m,平均厚度1.64 m。平面上在上罗和文江地区该层煤厚度最大,达3.00 m以上;C8煤层单层厚度0.72~4.02 m,平均厚度1.80 m。总体上,本区C7和C8煤层总厚度较筠连沐爱地区厚度5 m左右偏薄,但差距不大。区内煤层埋深受构造控制明显,罗场向斜、符江向斜、相岭向斜和东部叙永向斜核部,埋深大于2 000 m,最深处达3 500 m,中部建武向斜、腾龙背斜、筠连背斜等地区,煤层埋深小于2 000 m,为目前煤层气重点勘探区域。
图3 C7+C8煤层厚度平面分布
Fig.3 Plane distribution of C7 and C8 coal seam thickness
煤储层宏观煤岩类型以光亮-半亮型为主,半暗-暗淡型煤次之,煤体结构以原生-碎裂结构为主,成分可辨,结构完整,裂隙未错开层理,无揉皱及构造滑面。在断层发育和构造复杂区见碎粒-糜棱结构煤,宏观煤岩类型界限整体不可分辨,原生结构遭受破坏,层理难辨,较疏松,极易捻成煤粉或细小碎粒,不利于储层压裂改造[9-11]。煤储层显微组分总含量41.80%~90.00%,平均73.43%,以镜质组为主,惰质组次之,无壳质组组分。镜质组以基质镜质体为主,次为均质镜质体,呈条带状,透镜状分布;惰质组以氧化丝质体为主,次为火焚丝质体及真菌体;常见矿物总含量10.00%~58.20%,平均26.57%,以黏土矿物和石英为主,碳酸盐类和硫化物类含量较少。黏土矿物多呈浸染状分布于胞腔、基质体及裂隙中。碳酸盐类矿物多呈薄膜状分布在层面或裂隙中;硫化物类硫铁矿呈浸染状,星散状分布在基质体中或富集成层。煤层干燥无灰基挥发分一般小于10%,镜煤最大反射率平均2.5%,为高煤阶无烟煤,处于有利的生气阶段。
煤层气主要以吸附态存储于煤储层吸附孔隙中,割理是沟通裂隙和孔隙的桥梁,构造缝和压裂缝是气体运移产出的通道[12]。根据低温液氮吸附测试,该区煤储层BET比表面积20.5 m2/g,平均孔径6.31 nm,吸附孔隙发育。扫描电镜观察煤储层储集空间类型多样,主要发育有胞腔孔、气孔、粒间孔等。丝质体在丝炭化作用下,植物胞腔孔保存较好,椭圆状胞腔孔发育,部分被黏土矿物充填;基质镜质体在温压作用下生成大量的烃类气体,发育较多气孔。煤层镜煤条带中割理发育,裂隙密度达4条/cm2,局部被方解石充填(图4),经岩心测试,该区煤储层孔隙度3.62%~18.91%,平均孔隙度7.31%,渗透率0.008 3~7.867 2×10-15 m2,平均渗透率1.55×10-15 m2,为有利的煤储层。经注入压降试井测试,区内C7+C8煤层储层压力7.88 MPa,压力梯度1.14×10-2 MPa/m,属于异常高压煤储层,储层能量较高,为地面煤层气井排水降压及吸附态甲烷解吸创造了有利条件,有利于后期长期稳产[13]。
图4 煤储层孔裂隙发育特征
Fig.4 Characteristics of pore and fracture in coal reservoir
煤层岩心现场解吸含气量1.03~18.11 m3/t,平均10.53 m3/t,主要目标煤层C7和C8煤层含气量平均12.88 m3/t,与筠连沐爱地区煤层含气量相当。煤层解吸气气体组分主要为CH4,N2次之,含少量C2 H6,CO2和H2,煤层气CH4含量69.63%~99.30%,平均92.18%。根据等温吸附试验,该区煤层兰氏体积11.11~32.09 cm3/g,平均25.17 cm3/g,其中主力煤层C7和C8兰氏体积平均26.03 cm3/g,反映煤储层吸附能力较强。总体上,该区煤层含气性较好(图5),普遍大于10.00 m3/t,超过高煤阶煤层气资源含气量8 m3/t下限标准。根据注入压降试井测试、等温吸附和现场解吸结果计算,主力煤层C7和C8含气饱和度平均值68%,区内煤储层平均含气饱和度较沁水盆地南部(平均65.00%)和鄂尔多斯东南缘(平均58.00%)偏高[14-15],有利于煤储层快速解吸产气。平面上,煤层含气量受煤层埋深和断层破坏影响较大,在煤层埋深较大,构造简单地区煤层含气量较高,埋深较浅和断层发育地区煤层含气量较低。
图5 主力煤层含气量平面分布
Fig.5 Plane distribution of main coal seam gas content
基于煤层含气量、煤层厚度、含气面积、煤层密度数据,应用体积法计算出区内二叠系上统煤层气资源量为3 465.22×108 m3,资源丰度1.87×108 m3/km2,与筠连沐爱地区(煤层气资源丰度1.91×108 m3/km2)相近。按煤层埋藏深度来分,区内煤层埋深1 000 m以浅的煤层气资源量782.14×108 m3,占煤层气资源总量的22.57%,埋深1 000~2 000 m煤层气资源量1 511.83×108 m3,占煤层气资源总量的43.63%,埋深大于2 000 m煤层气资源量1 171.25×108 m3,占煤层气资源总量的33.80%。C7和C8煤组煤层气资源量2 239.15×108 m3,占煤层气资源总量的64.62%。目前,行业内多用灰色关联分析法、多层次模糊数学等方法对煤层气有利区进行定量优选[16-20],针对区内煤层气勘探程度较低,技术可采性参数缺乏特点,本次选用煤层埋深、煤系顶底板岩性、煤层厚度、含气量、煤层集中度、煤体结构6个关键参数,利用多因素加权求和法对煤层气进行选区评价,并参考《煤层气地质选区评价方法》(NB/T 10013—2014)确定选区评价参数隶属度函数和权重值(表1),根据各参数隶属度函数和权重系数加权求和计算出结果,其值越大则煤层气地质条件越有利。 经计算表明,区内白胶-底洞、腾达-仙峰、曹营地区可采煤层总厚度5~9 m,含气量11~24 m3/t,煤层埋深600~1 500 m。地层倾角较小,绝大部分小于20°,构造简单,断层不发育,煤系顶板为飞仙关组泥质岩,底板为峨眉山玄武岩,煤系顶底板岩性条件有利于煤层气保存,煤体结构为原生结构煤为主,煤层较为集中,C7-C8煤层间距小于5 m,属于最有利区;焦村-九丝城、文江-底洞、白腊、巡场北等地区煤层气地质条件达到规范最低要求,为次有利区,因现有煤层气勘探技术限制,煤层埋藏2 000 m以深地区本次不作评价,视作潜在有利区(图6)。建议下一步在最有利区内,充分利用现有煤田勘查和油气勘探资料,加快煤层气勘探开发,推动川南宜宾地区煤层气商业开发进程,为实现“十四五”煤层气开发目标增储上产。
表1 煤层气评价参数隶属度及权重参数
Table 1 The membership and weight coefficient of CBM evaluation parameter system
评价参数隶属度权重系数埋深H/m0(H<300)1(300≤H<1 000)1-(H-1 000)/2 000(1 000≤H<1 500)1-(H-1 000)/2 000(1 500≤H<2 000)0.5(>2 000)0.10煤系顶底板岩性1(顶板泥岩底板玄武岩)0.8(顶板泥岩+灰岩底板玄武岩)0.6(顶板泥岩+灰岩底板灰岩)0.4(顶板灰岩底板灰岩)0.15煤厚D/m0(D<2.0)1-(6-D)/4(2.0≤D<6.0) 1(D≥6.0)0.20含气量G/(m3·t-1)0(G<8.0)1-(15-G)/7(8.0≤G<15.0)1(G≥15.0)0.25煤层集中度1(C7和C8间距≤5 m)0.8(5 m
图6 煤层气有利区分布
Fig.6 Distribution of favorable areas for coalbed methane
1)川南宜宾地区煤层总厚度3.61~10.02 m,平均6.05 m,宣威组C7和C8煤层较集中,为该区煤层气开发主力煤层,受沉积环境差异影响,西部宣威组上段潮坪相含煤沉积煤层单层厚度较大,且煤层较为集中,横向发育较为稳定,东部“同层异相”的龙潭组三角洲平原河漫沼泽微相煤层受三角洲沉积变迁影响,垂向分布较为分散且横向连续性相对较差。
2)区内煤储层宏观煤岩类型以光亮-半亮型为主,储集空间类型多样,主要发育有胞腔孔、气孔、粒间孔等,煤层镜煤条带中割理发育,煤层含气量、渗透率较高,C7+C8煤层储层压力7.88 MPa,压力梯度1.14 MPa/100 m,属于异常高压煤储层,煤层气开发储层地质条件优势明显。
3)基于煤层含气量、煤层厚度、含气面积、煤层密度数据,应用体积法计算出区内二叠系上统煤层气资源量3 465.22×108 m3,资源丰度1.87×108 m3/km2,煤层气含气带选区评价属Ⅰ类级别,白胶-底洞、腾达-仙峰、曹营地区煤层厚度、埋深、含气量、煤体结构、煤层集中度等地质参数具有良好的协调匹配性,为下一步煤层气勘探开发最有利区域。
[1] 尹中山,李茂竹,徐锡惠,等.四川古叙矿区大村矿段煤层气煤储层特征及改造效果[J].天然气工业,2010,30(7): 120-124,142.
YIN Zhongshan, LI Maozhu, XU Xihui, et al. Characteristics of calbed methane gas reservoirs and fracturing results of pilot test wells in the dacun zone of the guxu coal field, South Sichuan[J]. Natual Gas Industry,2010,30(7):120-124,142.
[2] 尹中山,肖建新,汪 威.四川古蔺DCMT-3井排采曲线特征及开发前景分析[J].中国煤炭地质,2012,24(1):13-16.
YIN Zhongshan, XIAO Jianxin, WANG Wei. Analysis of DCMT-3 well drainage curve characteristics and exploitation prospect, gulin, Sichuan[J]. Coal Geology of China,2012,24(1):13-16.
[3] 尹中山,魏文金,肖建新.四川煤层气勘探开发的现状、关键问题与建议[J].中国煤炭地质,2019,31(1):66-69.
YIN Zhongshan, WEI Wenjin, XIAO Jianxin. CBM exploration and exploitation status, key issues and proposals in Sichuan Province[J]. Coal Geology of China,2019,31(1):66-69.
[4] 王维旭,贺满江,王希友,等.筠连区块煤层气产能主控因素分析及综合评价[J].煤炭科学技术,2017,45(9):194-200.
WANG Weixu, HE Manjiang, WANG Xiyou, et al. Analysis on main controlling factors and comprehensive evaluation of coalbed methane production capacity of Junlian Block[J]. Coal Science and Technology,2017,45(9):194-200.
[5] 韩永胜,黄小青,尹开贵,等.筠连煤层气气藏地质特征及产气规律[J].中国煤层气,2020,17(4):19-23.
HAN Yongsheng, HUANG Xiaoqing, YIN Kaigui, et al. Geological characteristics and gas production rules of CBM reservoir in Junlian area[J]. China Coalbed Methane,2020,17(4):19-23.
[6] 毕彩芹,单衍胜,朱韩友,等.四川南部地区川高参1井获煤层气高产工业气流[J].中国地质,2018,45(5):1076-1077.
BI Caiqin, SHAN Yansheng, ZHU Hanyou, et al. Industrial gas production of CBM obtained by well CCC1 in southern Sichuan[J]. Geology in China,2018,45(5):1076-1077.
[7] 朱志敏,陈 岑,尹中山.川南煤田晚二叠世含煤系统分析[J].煤炭科学技术,2010,38(7):104-108.
ZHU Zhimin, CHEN Cen, YIN Zhongshan. Analysis on upper permian coal systerm in chuannan coalfield [J]. Coal Science and Technology, 2010,38(7):104-108.
[8] 张廷山,何映颉,伍坤宇,等.筠连地区上二叠统宣威组沉积相及聚煤控制因素[J].岩性油气藏,2017,29(1):1-10.
ZHANG Tingshan, HE Yingjie, WU Kunyu, et al. Sedimentary facies and controlling factors of coal accumulation of the upper permian Xuanwei formation in Junlian area[J]. Lithologic Reservoirs,2017,29(1):1-10.
[9] 王青川,金国辉,王 琪.浅析煤体结构对压裂的影响[J].中国煤层气,2017,14(5):8-10,27.
WANG Qingchuan, JIN Guohui, WANG Qi. Elementary analysis of the effect of coal structure on fracturing results[J]. China Coalbed Methane,2017,14(5):8-10,27.
[10] 胡秋嘉,李梦溪,乔茂坡,等.沁水盆地南部高阶煤煤层气井压裂效果关键地质因素分析[J].煤炭学报,2017,42(6):1506-1516.
HU Qiuja, LI Mengsi, QIAO Maopo, et al. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in Southern Qinshui Basin[J]. Journal of China Coal Society,2017,42(6):1506-1516.
[11] 贾奇锋,倪小明,赵永超,等.不同煤体结构煤的水力压裂裂缝延伸规律[J].煤田地质与勘探,2019,47(2):51-57.
JIA Qifeng, NI Xiaoming, ZHAO Yongchao, et al. Fracture extension law of hydraulic fracture in coal with different structure[J]. Coal Geology & Exploration,2019,47(2):51-57.
[12] 陈富勇,琚宜文,李小诗,等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.
CHEN Fuyong, JU Yiwen, LI Xiaoshi, et al. Diffusior osmosis characteristics of coalbed methane in tectonically deformed coalsand their mechanism[J]. Earth Science Frontiers, 2010,17(1): 195-201.
[13] 贾 彤,桑树勋,韩思杰.松河井田储层高压形成机制及对煤层气开发的影响叮[J].煤炭科学技术,2016,44(2):50-54.
JIA Tong, SANG Shuxun,HAN Sijie. High pressure formation mechanism of reservoir in Songhe Mine Fild and its impact to coalbed methane development [J]. Coal Science and Technology, 2016,44(2):50-54.
[14] 伊 伟,熊先钺,庞 斌,等.鄂尔多斯盆地东南缘上古生界煤储层非均质性及其意义[J].高校地质学报,2016,22(2):378-384.
YI Wei, XIONG Xianrong, PANG Bin, et al. Heterogeneity and significance of coal reservoir of upper paleozoic in southeast margin of ordos basin[J]. Geological Journal of China Universities,2016,22(2):378-384.
[15] 高和群,韦重韬,申 建,等.沁水盆地南部含气饱和度特征及控制因素分析[J].煤炭科学技术,2011,39(2):94-97.
GAO Hequn, WEI Chongtao, SHEN Jian, et al. Gas content saturation features of seams and control factors analysis in southern part of qinshui basin[J]. Coal Science and Technology,2011,39(2):94-97.
[16] 李贵红.鄂尔多斯盆地东缘煤层气有利区块优选[J].煤田地质与勘探,2015,43(2):28-32.
LI Guihong. Selection of the favorable coalbed methane(CBM) blocks in eastern Ordos basin[J]. Coal Geology & Exploration,2015, 43(2):28-32.
[17] 邵龙义,王学天,张家强,等.滇东北地区煤层气富集特征及勘探目标优选[J].天然气工业,2018,38(9): 17-27.
SHAO Longyi, WANG Xuetian, ZHANG Jiaqiang, et al. CBM accumulation characteristics and exploration target selection in northeastern[J]. Natual Gas Industry,2018,38(9):17-27.
[18] 董维强,孟召平,沈 振,等.基于循环神经网络的煤层气井产气量预测方法研究[J].煤炭科学技术,2021,49(9):176-183.
DONG Weiqiang,MENG Zhaoping,SHEN Zhen,et al.Research on coalbed methane well gas production forecast method based on cyclic neural network[J].Coal Science and Technology,2021,49(9):176-183.
[19] 郭广山.柿庄南区块煤层气储层有利区综合评价研究[J].煤炭科学技术,2019,47(3):200-206.
GUO Guangshan. Comprehensive evaluation study on favorable area of coalbed methane reservoir in southern Shizhuang Block[J]. Coal Science and Technology,2019,47(3):200-206.
[20] 刘大锰,刘正帅,蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术, 2020, 48(10): 1-16.
LIU Dameng, LIU Zhengshuai, CAI Yidong. Research progress on accumulation mechanism and formation geological conditions of coalbed methane[J]. Coal Science and Technology, 2020, 48(10): 1-16.