沁水盆地霍州矿区石炭-二叠纪煤中微量元素地球化学特征及沉积环境分析

车青松,黄文辉,久 博,郝睿林,孙启隆,雷 涵

(中国地质大学(北京) 能源学院,北京 100083)

摘 要:利用工业分析及光学显微镜对沁水盆地石炭-二叠系煤中水分、灰分、挥发分、全硫以及显微组分进行测定,运用电感耦合等离子体质谱(ICP-MS)分析了沁水盆地霍州矿区石炭-二叠系煤中微量元素包括稀土元素的含量、分布特征和地球化学特征。利用元素地球化学参数探究了研究区的煤系地层的沉积环境,古盐度,氧化还原环境和古气候。结果表明:沁水盆地中南部煤的灰分产率、水分含量、挥发分以及含硫量分别为11.19%、1.02%、14.02%及1.27%,为低中灰-中硫煤,镜质体反射率为1.14%,为低变质程度烟煤。与中国煤相比,煤中微量元素含量整体处于亏损状态,仅有Cu(Cc=1.39)、Sr(Cc=1.35)和Zr(Cc=1.04)轻微富集(Cc为浓集系数),太原组煤中微量元素含量略大于山西组煤中微量元素。稀土元素分布范围2.44~164.11 μg/g,平均为73.28 μg/g,小于中国煤,略高于世界煤,煤中稀土元素Yb(Cc=2.81)轻微富集,Y(Cc=7.19)富集,其余都相对亏损。稀土元素配分模式呈右倾“V”字型,为轻稀土富集型,存在Eu负异常,Ce微弱负异常,说明稀土元素的物源来自陆源碎屑,海水并没有造成Ce的亏损。w(Sr)/w(Ba)、w(V)/w(V+Ni)和w(Sr)/w(Cu)平均值分别为6.50、0.74和7.57,表明了沁水盆地霍州矿区石炭-二叠系整体属于海相沉积环境,水体环境呈现缺氧环境,石炭-二叠系成煤环境处于温湿气候。山西组CaO/(MgO×Al2O3)平均值为0.055,明显低于太原组平均值1.55,表明从太原组到山西组气温有所降低。

关键词:沁水盆地;石炭-二叠系煤;煤中微量元素;地球化学特征;沉积环境

0 引 言

煤中平均丰度小于0.1%且赋存在矿物或者被有机质束缚的元素称为微量元素[1]。目前,从煤样以及煤解析出来的气体样品中检测出来的元素有86种[2],这对煤中微量元素的研究具有很大的意义。对于煤中微量元素的研究,重点在于某些有益元素(Ga、Ge、Li和REE(稀土元素)等)的富集程度能否达到工业开采的地步。其次,某些有害元素能够对周围环境产生危害,最后通过某些元素的地球化学特征,可以指示成煤环境和物质来源[3-9]。对于稀土元素的研究同样具有很重要的意义,一方面,稀土元素的化学性质十分相似而且稳定性很高,不易受变质作用等的影响,可以用来指示成煤环境、判断母岩的类型、来源等信息[10-13];另一方面,富集程度达到可供开采的稀土元素矿床,可极大缓解中国稀缺稀土元素的现象,为中国科技和生活等方面的发展提供很大的帮助。

沁水盆地煤炭资源丰富,大多数学者主要致力于对该矿区煤层气的研究,而对煤中微量元素的研究比较少,但是沁水盆地同样是我国重要的煤炭开采基地之一[14-16]。笔者以沁水盆地中南部霍州矿区为研究对象,探讨该区煤中微量元素包括稀土元素的地球化学特征,并根据环境敏感元素对该区成煤环境进行探讨。

1 霍州矿区地质背景

从地理位置上看,霍州矿区位于沁水盆地的中西部,北纬36°30′以及东经111°30′~112°00′。地处霍山与吕梁山之间,地跨霍州、汾西及洪洞三市县,在地貌上以低山和黄土丘陵为主,地形起伏大,总体地势由东北向西南、由山区向河谷逐渐降低。从地质构造上看,霍州矿区被霍西区块、洪河区块和太岳区块所包围,是典型的伸展构造区,区内地质构造发育较多,而且比较复杂,发育有霍云断层、赤峪断层和罗云断层等断层相互交错,发育的大型霍山背斜以及赵成向斜横穿矿区。从地层上来说,沁水盆地含煤地层以石炭系上统太原组和二叠系下统山西组为主,主采煤层是太原组的15号煤层和山西组的3号煤层,霍州矿区的含煤地层同样是太原组和山西组,主采煤层有山西组的1号和2号煤层以及太原组的9号、10号和11号煤层,全区煤变质程度较高,主要为变质烟煤。含煤地层是在奥陶系古风化壳上发育的一套近海海陆过渡相含煤沉积,在本溪组以及太原组主要为障壁-潟湖和滨海碳酸盐陆棚沉积体系,山西组主要为三角洲沉积体系[17-19](图1)。

图1 研究区位置及地层柱状图[20-21]
Fig.1 Location and stratigraphic histogram of the study area[20-21]

2 样品采集和测试方法

样品采自沁水盆地中南部霍州矿区4个煤矿(团柏、李雅庄、曹村和辛置)共20件煤样(图1)编号依次为山西组CC2-1~CC2-3、XZ2-1~XZ2-3、LYZ2-1~LYZ2-2和太原组XZ10-1~XZ10-4、CC10-1~CC10-4、TB10-1~TB10-4。煤样按煤层剖面自上而下逐层刻槽采取,刻槽深度为5 cm,同时采取煤层的顶底板和夹矸,煤样采取方法严格按照国标GB/T 482—2008执行,样品迅速装入塑料袋中防止污染和氧化。样品经破碎缩分后,粉碎至200目(74 μm)装入塑料袋中,等待后续实验使用。

按照GB/T 212—2001对煤的工业分析(水分、灰分、挥发分)指标进行测定;按照GB/T 212—1999对煤中全硫进行测定。将研磨至40~80目(180~380 μm)的煤样制作成煤岩光片,用于显微煤岩组分的分析。使用电感耦合等离子体质谱(X seriesⅡeries等)分析样品中的微量元素和稀土元素。采用微波消解法对磨碎至200目(74 μm)的煤样进行预处理,按照每0.1 g煤样,需要1 mL 65%的硝酸、4 mL 40%的氢氟酸和2 mL 30%的双氧水的比例,进行消解处理,得到的溶液样品用ICP-MS进行检测。试验测试在中国矿业大学(北京)煤炭资源与安全开采国家重点实验室完成。

3 结果和讨论

3.1 煤质与煤岩特征

沁水盆地中南部煤的灰分平均为11.19%,为低中灰煤,水分含量平均为1.02%,挥发分平均为14.02%,硫分含量平均为1.27%,为中硫煤,因此沁水中南部煤为低中灰中硫煤。山西组煤的灰分为4.2%~18.43%,平均为11.32%。太原组煤的灰分为8.05%~19.20%,平均为13.63%,略大于山西组煤的灰分。山西组煤中水分范围为0.15%~2.63%,平均为0.95%,太原组煤中水分为0.18%~3.86%,平均为1.28%。山西组煤的挥发分为5.59%~25.32%,平均为11.25%,太原组煤的挥发分为3.92%~34.28%,平均为10.53%。山西组和太原组的硫分含量相差较大,山西组煤的硫分为0.34%~0.56%,平均为0.45%,而太原组煤中硫分为1.17%~3.55%,平均为1.68%,山西组为低硫煤,太原组为中硫煤。这是由于研究区太原组受到的海水影响较大导致的[22-23]

沁水盆地中南部镜质体反射率在0.97%~1.25%,平均为1.14%,为低变质程度烟煤,太原组煤的镜质体反射率比山西组略高。煤中显微组分以镜质组为主有64.83%,其次是惰质组为23.79%,由于中南部煤的变质程度比较低,壳质组也被识别出来,平均为5.17%,太原组煤中镜质组比山西组高,但是惰质组与壳质组相对较低。

3.2 煤中微量元素的含量特征

表1为研究区煤中微量元素含量分析测试结果。采用DAI等[26]提出的富集系数(样品中微量元素含量/中国煤均值)来表示煤中微量元素含量特征。由表1可知,与中国煤[21]相比,研究区煤中微量元素含量普遍较低,除了Cu、Sr和Zr的富集系数大于1之外,其余都小于1。与世界煤[25]相比,只有Li、Sc、Cu、Ga、Sr、Pb、Th、Zr和Hf元素含量略大于世界煤均值。对比研究山西组和太原组煤中微量元素,发现山西组和太原组煤中微量元素分布相似,含量差别不大,太原组整体上大于山西组,只有Sc、V、Zn、Cu、Sr和Nb的含量略低于山西组。

表1 样品微量元素含量

Table 1 Mass fraction of trace elements in the sample μg/g

元素最大值最小值山西组太原组山西组太原组总体均值中国煤[21]世界煤[22]富集系数中国世界Li57.4063.206.303.6120.9031.8012.000.681.80Be4.192.630.300.391.372.111.600.660.87Sc47.909.541.471.546.294.383.900.961.08V54.60175.007.296.8423.8735.1025.000.660.92Cr21.7048.504.243.859.6215.4016.000.630.61Co8.142.030.960.972.187.085.100.310.43Ni16.107.012.061.755.3413.7013.000.380.40Cu34.5038.6019.204.3124.5717.5016.001.391.52Zn81.5029.8016.009.0124.1041.4023.000.510.92Ga6.6818.002.033.095.666.555.800.891.01Rb2.501.180.470.330.799.2514.000.080.05Sr118.00681.0059.1070.20185.20140.00110.001.351.72Mo1.853.120.430.721.223.082.200.400.56Cd0.450.420.050.030.170.250.220.670.76In0.050.040.010.010.020.050.030.470.71Sb0.920.450.190.093.580.840.920.380.35Cs0.250.070.030.020.061.131.000.050.06Ba79.1056.8015.7015.5033.64159.00150.000.220.23Lu0.350.510.010.080.24———0.00W11.600.970.260.221.051.081.100.490.48Re0.010.000.000.000.00———0.00Tl0.180.300.020.010.080.470.630.160.12Pb15.1025.206.652.8810.0515.107.800.681.31Bi0.870.510.060.050.290.790.970.340.28Th10.507.580.081.313.725.483.300.711.18U22.301.820.620.402.352.432.400.560.56Nb47.809.761.501.025.639.443.700.370.95Ta5.230.320.110.080.460.620.280.360.80Zr77.00657.008.0822.5088.7489.5036.001.042.58Hf2.377.510.270.411.843.711.200.521.60

3.3 煤中稀土元素地球化学特征

3.3.1 煤中稀土元素含量特征

表2是研究区煤中稀土元素的含量,从表中可以发现研究区煤中稀土元素(REY)的含量整体偏低,范围为2.44~164.11 μg/g,平均为73.28 μg/g,该数值明显低于中国煤中稀土元素含量的平均值135.89 μg/g[24],略微大于世界煤中稀土元素含量的平均值68.47 μg/g[25]。研究区煤中稀土元素Yb(Cc=2.81)轻微富集,Y(Cc=7.19)富集,其余都相对亏损,其中δ表示异常程度。

表2 霍州矿区煤中稀土元素含量

Table 2 Rare earth element content in coal in Huozhou Area μg/g

样品(山西组)LaCePrNdSmEuGdTbDyHoErTmYbLuYδEuδCeCC2-113.9026.003.0911.602.180.3572.070.3872.150.4631.050.2451.660.15712.700.510.93CC2-213.4026.603.2512.202.310.3561.710.4361.980.4781.270.1651.60.25813.800.550.94CC2-310.6022.002.6710.102.030.2972.060.3462.320.5291.500.2192.170.35014.600.440.97XZ2-15.349.461.174.550.9580.2361.230.2671.920.4481.590.2072.50.26614.500.660.89XZ2-26.8913.501.696.581.320.2211.070.2151.390.3060.7670.1321.160.1668.540.570.93XZ2-37.8914.801.756.521.310.311.430.3232.140.6011.600.3141.910.34016.000.690.93LYZ2-14.4911.501.465.411.060.2150.8790.160.9840.1920.6070.1060.540.0787.190.681.05LYZ2-25.5512.401.485.491.020.1870.9280.2381.250.2280.8810.1141.150.1408.210.591.01样品(太原组)LaCePrNdSmEuGdTbDyHoErTmYbLuYδEuδCeXZ10-13.107.090.8753.550.860.1790.8420.211.060.2440.6490.0920.8640.1058.860.641.01XZ10-23.056.930.8683.500.8060.1720.720.1811.10.2750.6160.1041.170.0808.770.691.00XZ10-36.8217.602.147.991.510.2851.350.2981.440.2920.7470.110.9540.13210.100.611.08XZ10-421.5033.503.1210.502.420.6252.60.5894.350.8682.920.393.160.46327.500.760.96CC10-17.5316.302.148.251.630.2571.430.3031.30.2530.7730.0920.9390.1537.090.510.95CC10-222.3032.103.2010.701.820.2631.540.3121.550.3041.240.1551.260.2529.060.480.89CC10-337.2063.106.6823.503.430.4813.240.5062.540.6261.830.2692.240.29716.000.440.94CC10-419.3026.802.739.651.710.2531.290.2571.350.3070.7180.1921.620.2378.810.520.87TB10-132.0044.504.1413.101.620.3531.690.3151.930.4851.670.3532.430.27815.200.650.91TB10-213.1023.702.8412.002.140.5041.680.3442.460.5431.930.2992.950.36317.600.810.91TB10-322.6040.304.9120.903.470.752.470.4673.140.7471.780.412.720.49820.300.780.90TB10-417.6035.004.7120.604.941.146.321.467.541.694.940.6122.950.50654.100.620.90总平均值13.7124.162.7510.331.930.371.830.382.190.491.450.231.800.2614.950.610.95中国煤均值22.5046.706.4222.304.070.844.650.623.7418.200.961.790.640.382.08世界煤均值11.0023.003.5012.002.000.472.700.322.108.400.540.930.310.201.00富集系数0.610.520.430.460.470.440.390.610.590.031.510.132.810.677.19

在剖面上,对比山西组与太原组稀土元素含量可以发现,山西组煤中稀土元素含量为2.44~79.81 μg/g,平均为50.22 μg/g,太原组稀土元素含量为28.34~164.11 μg/g,平均为90.58 μg/g,山西组煤中稀土元素含量小于太原组煤中稀土元素含量,这与王文峰等[27]在研究晋北中高硫煤中稀土元素分布规律的认识相同。在平面上,沁水盆地北部山西组煤中稀土元素丰度平均为44.54 μg/g,太原组为62.46 μg/g,都分别小于中南部煤中稀土元素含量。因此,沁水盆地煤中稀土元素含量特征为:山西组小于太原组,同时从北到南,稀土元素含量逐渐增大(图2)。

图2 沁水盆地稀土元素含量对比
Fig.2 Comparison of rare earth element contents in Qinshui Basin

3.3.2 稀土元素地球化学参数

稀土元素的地球化学参数可以很好反映稀土元素特征,能够对煤层成煤环境和成岩环境有很好的指示意义。稀土元素的配分模式则可以反映其物源补给,还可以判断沉积环境的演变等[28-29]。一般情况下,稀土元素分为轻稀土(La-Eu)和重稀土(Gd-Lu+Y)两类,采用Taylor (1985)[30]提出的球粒陨石中稀土元素丰度值进行标准化处理,并用标准化后的数据绘制配分模式图(图3、图4)。

图3 山西组煤中稀土元素分布模式
Fig.3 REE distribution patterns of coals in Shanxi Formation

图4 太原组煤中稀土元素分布模式
Fig.4 REE distribution patterns of coals in Taiyuan Formation

霍州矿区煤中(La/Yb)N值为1.44~11.96,平均为5.18,(La/Sm)N值为2.24~12.43,平均为4.39,(Gd/Yb)N为0.40~1.74,平均为0.85,说明轻稀土元素相对富集,重稀土元素相对亏损,轻稀土之间较分异,重稀土之间分异不明显;山西组(La/Yb)N、(La/Sm)N和(Gd/Yb)N的均值分别为3.97、3.45和0.80,为轻稀土富集型,轻重稀土元素之间分异中等。太原组(La/Yb)N、(La/Sm)N和(Gd/Yb)N的均值依次为5.98、5.02和0.89,同样表现为轻稀土富集型,轻、重稀土分异明显,轻稀土之间分异较明显,重稀土则分异不明显。

一般认为Eu负异常是由陆源继承而来[31],研究区δEu的范围为0.44~0.81,平均为0.61,为负异常;山西组和太原组δEu均值分别为0.59和0.63,均呈现Eu负异常特征,表明研究区稀土元素只要来源于陆源碎屑,图3和图4均能看出在Eu出处于低谷,配分模式呈现右倾的宽“V”字型。Ce的异常常常代表海相环境[32],研究区δCe的范围在0.89~1.01,平均值为0.95,呈微弱的负异常。山西组δCe的均值为0.96,太原组δCe的均值为0.94,均呈现Ce略微负异常的特征,表明海水的影响并未造成煤中Ce的亏损。

3.4 成煤环境分析

由于微量元素尤其是稀土元素对环境的特殊反应,往往被用作地球化学的指示剂,用来研究沉积来源和沉积环境,例如Sr、Ba、Ni、Co、U、V、Cr、Eu和Ce等元素[33-37]。但是煤中微量元素的富集受多种因素的影响,只有沉积成因的微量元素才能进行古环境分析,而沁水盆地晚古生代煤中微量元素总体上受聚煤古环境的影响,主要来源为陆源碎屑岩矿物[39],太原组为滨外碳酸盐陆棚沉积,山西组主要为三角洲沉积,再结合邵龙义等[42]对桂中晚二叠世碳酸盐岩型煤系高有机硫煤中微量元素富集机制的研究。通过w(Sr)/w(Ba)、w(Ni)/w(V+Ni)、w(Sr)/w(Cu))和w(CaO)/w(MgO×Al2O3)来对成煤环境进行分析判断。

3.4.1 古盐度

古盐度是古代沉积物中水体盐度的记录,可作为分析沉积环境特征的一个重要信息。Sr和Ba由于它们独特的地球化学性质,是目前用来判断古盐度最有效的手段之一。当有咸水注入时,BaSO4会优先沉淀下来,当就导致在迁移过程中,Sr相对Ba的值不断增大,因此利用w(Sr)/w(Ba)可以很好地判断古盐度,并认为到w(Sr)/w(Ba)大于1为海相(咸水)环境,小于1为陆相(淡水)环境[34-37]。研究区样品中w(Sr)/w(Ba)的比值在0.77~19.33,平均为6.5,说明研究区为海相沉积环境,这与邵龙义等[38]得出的沁水盆地太原组形成于滨外陆棚及障壁-潟湖沉积环境,山西组的沉积环境是三角洲平原得出的结论一致。同时,山西组w(Sr)/w(Ba)平均值为2.56,明显低于太原组的13.65,而且从图5中w(Sr)/w(Ba)可以看出,自太原组到山西组w(Sr)/w(Ba)呈下降趋势,反应古盐度逐渐下降,说明山西组受海水影响较小,这与邵龙义等[39]提出的华北地台石炭-二叠系海退的沉积序列相吻合。

图5 霍州矿区煤中w(Sr)/w(Ba)的变化趋势
Fig.5 Ariation trend of w(Sr)/w(Ba) in coal
in Huozhou Mining Area

3.4.2 氧化还原环境

由于受到氧化还原状态控制,氧化还原敏感微量元素往往会向还原性的水体和沉积物中迁移从而富集,V在还原条件下比Ni更容易以络合物的形式沉淀,Ni的优先富集可以指示还原反应,因此w(V)/w(V+Ni)值可以指示水体氧化还原条件。w(V)/w(Ni+V)值为1~0.83时为静海环境,0.83~0.57时为缺氧环境,0.57~0.46为氧化环境,小于0.46为更氧化环境[31,35,40]。对研究区样品数据处理如图6所示,w(V)/w(Ni+V)值在0.54~0.97,平均为0.74,反映研究区石炭-二叠系时期水体环境呈现缺氧环境。

图6 霍州矿区煤中w(V)/w(V+Ni)的变化
Fig.6 Changes of w(V)/w(V+Ni) in coal in
Huozhou Mining Area

3.4.3 古气候

基于前人的研究发现,属于喜干型元素的Sr与喜湿型元素Cu对古气候的变化有很好的指示作用,随着气候的变化,从干燥到湿润气候,w(Sr)/w(Cu) 值会逐渐较小[43-45],因此w(Sr)/w(Cu)常被用来用来判断古气候环境,认为w(Sr)/w(Cu)值介于1~10之间为温湿气候,大于10则指示干燥炎热的气候[31,36]。研究区石炭-二叠系煤样中w(Sr)/w(Cu)值平均为7.57,说明研究区石炭-二叠系沉积时期,整体为温暖湿润的气候。山西组样品w(Sr)/w(Cu)的平均为4.72,表示山西组时期的古气候为温湿气候,而明显低于太原组w(Sr)/w(Cu)的平均值9.47,表明研究区从太原组到山西组时期,气温有所下降(图7)。

图7 煤样中ω(Sr)/ω(Cu)比值变化
Fig.7 Variation trend of ω(Sr)/ω(Cu) in coal samples

此外,ω(CaO)/ω(MgO×Al2O3)比值可以反映碳酸钙含量的相对高低,从而可以反映温度的高低,可以间接地反映古气候情况[31,40]。范萌萌[40]在对鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义一文中,通过ω(CaO)/ω(MgO×Al2O3)比值推测纸坊组到延长组环境温度有所降低。因此,通过数据计算得出,山西组ω(CaO)/ω(MgO×Al2O3)平均值为0.055,太原组ω(CaO)/ω(MgO×Al2O3)平均值为1.55,推测从太原组到山西组,气温是降低的。

综合以上分析得出,研究区石炭-二叠系古气候整体处于温湿气候,表现出从太原组到山西组气温有所降低。

4 结 论

1)与中国煤中微量元素相比,研究区煤中微量元素含量水平整体较低,太原组煤中微量元素含量略大于山西组煤中微量元素。

2)研究区煤中稀土元素含量相对亏损,平均值小于中国煤中稀土元素含量,略高于世界煤中稀土元素含量。

3)沁水盆地霍州矿区煤中稀土元素配分模式呈明显右倾宽“V”字型,以轻稀土富集型为主。具有Eu负异常和Ce微弱的负异常的特征,说明稀土元素的物源来自陆源碎屑,海水并没有造成Ce的亏损。

4)ω(Sr)/ω(Ba)、ω(V)/ω(V+Ni)、ω(Sr)/ω(Cu) 和ω(CaO)/ω(MgO×Al2O3)值总体上反映了沁水盆地霍州矿区石炭-二叠纪煤的沉积环境为缺氧、咸水的古水体环境。古气候整体属于温湿气候,具有从太原组到山西组气温逐渐降低的特点。

参考文献(References):

[1] 任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006:99-412.

[2] 唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆.2004.

[3] DAI S F. Geochemistry of trace elements in Chinese coals:A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology,2012,94:3-21.

[4] 赵存良.鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D].北京:中国矿业大学(北京),2015.

ZHAO Cunliang. The distribution and enrichment mechanism of polymetallic elements associated with coal in the Ordos Basin[D].Beijing:China University of Mining and Technology (Beijing),2015.

[5] 赵志根.含煤岩系稀土元素地球化学研究[M].北京:煤炭工业出版社,2002.

[6] 张建强,张恒利,杜金龙,等,内蒙古白音华煤田煤中微量元素分布特征[J].煤炭学报, 2016,41(2):310-315.

ZHANG Jianqiang,ZHANG Hengli,DU Jinlong ,et al.Distribution characteristics of trace elements in coal from Baiyinhua Coalfield, Inner Mongolia[J]. Journal of China Coal Society, 2016,41(2):310-315.

[7] 程 伟,杨瑞东,崔玉朝,等,贵州毕节地区晚二叠世煤质特征及其成煤环境意义[J].地质学报,2013,87(11):1763-1777.

CHENG Wei,YANG Ruidong,CUI Yuchao,et al.Late Permian coal quality characteristics and coal-forming environmental significance inBijie area, Guizhou[J].Acta Geologica Sinica,2013,87(11):1763-1777.

[8] 秦 勇,王文峰,宋党育.太西煤中有害元素在洗选过程中的迁移行为与机理[J].燃料化学学报,2002(2):147-150.

QIN Yong,WANG Wenfeng,SONG Dangyu.Migration behavior and mechanism of harmful elements in Taixi coal during wash-ing process[J].Journal of Fuel Chemistry and Technology, 2002(2):147-150.

[9] WANG J. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel, 2019,258:116062.

[10] 王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989:279-289,310-313.

[11] 代世峰,任德贻,李生盛.煤及顶板中稀土元素赋存状态及逐级化学提取[J].中国矿业大学学报,2002(5):12-16.

DAI Shifeng,REN Deyi,LI Shengsheng.Occurrence and chemi-cal extraction of rare earth elements in coal and roof[J].Journal of China University of Mining & Technology,2002(5):12-16.

[12] 代世峰,任德贻,李生盛.华北若干晚古生代煤中稀土元素的赋存特征[J].地球学报,2003(3):273-278.

DAI Shifeng,REN Deyi,LI Shengsheng.Occurrence charac-teris-

tics of rare earth elements in some late Paleozoic coals in North China[J].Acta Geosciences,2003(3):273-278.

[13] 代世峰,任徳贻,周义平,等.用煤型稀有金属矿床:成因类型、赋存状态和利评价[J].煤炭学报,2014,39(8):1707-1715.

DAI Shifeng,REN Deyi,ZHOU Yiping ,et al.Coal-type rare metal depo-sits:genetic type,occurrence state and utilization evalua-tion[J].Journal of China Coal Society,2014,39(8):1707-1715.

[14] 吕玉民,柳迎红,陈桂华,等.沁水盆地南部煤层气水平井产能影响因素分析[J].煤炭科学技术,2020,48(10):225-232.

LU Yumin,LIU Yinghong,CHEN Guihua ,et al.Analysis of factors affecting productivity of coalbed methane horizontal wells in the southern Qinshui Basin[J].Coal Science and Technology, 2020,48(10):225-232.

[15] 秦 勇,姜 波,王继尧,等.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报,2008,82(10):1355-1362.

QIN Yong,JIANG Bo,WANG Jiyao,et al.Coupling control effect of coalbed methane structural dynamic conditions in Qinshui Basin[J].Acta Geologica Sinica,2008,82(10):1355-1362.

[16] 王红岩,张建博,刘洪林,等.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(5):33-36.

WANG Hongyan,ZHANG Jianbo,LIU Honglin ,et al.Hydrogeological characteristics of coalbed methane reservoir in southern Qinshui Basin[J].Coal Geology and Exploration,2001,29(5):33-36.

[17] 邵龙义,肖正辉,汪 浩,等.沁水盆地石炭-二叠纪含煤岩系高分辨率层序地层及聚煤模式[J].地质科学,2008(4):777-791.

SHAO Longyi, XIAO Zhenghui,WANG Hao ,et al.High-resolution sequence stratigraphy and coal accumulation model of the Carboniferous-Permian coal-bearing rock series in Qinshui Basin[J].Chinese Journal of Geology,2008(4):777-791.

[18] 刘洪林,李贵中,王广俊,等.沁水盆地煤层气地质特征与开发前景[M].北京:石油工业出版社,2009:11-13.

[19] 顾江海,周长松,张相财,等.霍州矿区地裂缝形成机理及防治措施研究[J].地下水,2012,34(6):155-157.

GU Jianghai, ZHOU Changsong,ZHANG Xiangcai,et al.Resear-

ch on the formation mechanism and prevention measures of ground fissures in Huozhou mining area[J].Groundwater,2012,34(6):155-157.

[20] 宋昌贵,刘东娜,赵峰华,等.霍西煤田不同密度煤中常微量元素地球化学特征[J].煤炭学报,2018,43(S1):253-261.

SONG Changgui,LIU Dongna,ZHAO Fenghua ,et al.The geochemical characteristics of common and trace elements in different density coals in Huoxi Coalfield[J].Jounal of China Coal Society,2018,43(S1):253-261.

[21] 黄操明,周绮峰.霍西煤田霍县矿区沉积环境对煤层厚度及分布的控制[J].煤炭学报,1987,13(3):73-83.

HUANG Caoming,ZHOU Qifeng.Control of sedimentary environment on coal seam thickness and distribution in Huoxian mining area in Huoxi coal field[J].Journal of China Coal Society,1987,13(3):73-83.

[22] 刘大锰,杨 起,汤达祯,等.华北晚古生代煤中硫及微量元素分布赋存规律[J].煤炭科学技术,2000,28(9):39-42.

LIU Dameng, YANG Qi,TANG Dazhen ,et al.Distribution and occurrence of sulfur and trace elements in coals of the Late Paleozoic in North China[J].Coal Science and Technology,2000,28(9):39-42.

[23] 黄文辉,杨 起,汤达祯,等.潘集煤矿二叠纪主采煤层中微量元素亲和性研究[J].地学前缘,2000,7(S2):263-270.

HUANG Wenhui,YANG Qi,TANG Dazhen ,et al.Study on the affinity of trace elements in the main mining coal seams of Permian in Panji Coal Mine[J].Earth Science Frontiers,2000,7(S2):263-270.

[24] DAI S, REN D,CHOU C,et al.Geochemistry of trace elements in Chinese coals:A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012,94:3-21.

[25] KETRIS M P,Yudovich Y E. Estimations of clarkes for carbonaceous biolithes:world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135-148.

[26] DAI S, SEREDIN V V, WARD C R, et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China[J]. Mineralium Deposita, 2015, 50(2):159-186.

[27] 王文峰,秦 勇,宋党育,等.晋北中高硫煤中稀土元素的地球化学特征[J].地球化学,2002,31(6):564-570.

WANG Wenfeng,QIN Yong,SONG Dangyu ,et al.The Geochemical Characteristics of Rare Earth Elements in Middle and High Sulfur Coals in Northern Shanxi[J].Geochemistry,2002,31(6):564-570.

[28] 崔晓南,黄文辉,敖卫华,等.渭北煤田下峪口矿二叠纪煤中稀土元素地球化学研究[J].地学前缘,2016,23(3):90-96.

CUI Xiaonan,HUANG Wenhui,AO Weihua ,et al.Geochemistry of rare earth elements in Permian coal from Xiayukou Mine, Weibei Coalfield[J].Earth Science Frontier,2016,23(3):90-96.

[29] 秦国红,邓丽君,刘 亢,等.鄂尔多斯盆地西缘煤中稀土元素特征[J].煤田地质与勘探,2016,44(6):8-14.

QIN Guohong,DENG Lijun,LIU Kang ,et al.Characteristics of rare earth elements in coal in the western margin of Ordos Basin[J].Coal Geology and Exploration,2016,44(6):8-14.

[30] TAYLOR S R,MCLENNAN S M. The continental crust:its composition and evolution[M].Oxford:Blackwell,1985:312.

[31] 张天福,孙立新,张 云,等.鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J].地质学报,2016,90(12):3454-3472.

ZHANG Tianfu,SUN Lixin,ZHANG Yun,et al.Trace and rare earth element geochemical characteristics of mudstones of Jurassic Yan’an and Zhiluo formations in the northern margin of Ordos Basin and their significance in paleo-sedimentary environment[J].Acta Geologica Sinica,2016,90(12):3454-3472.

[32] DAI S F, GRAHAM I T, WARD C.R..A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology, 2016,159:82-95.

[33] 金 军,高 为,孙 键,等.黔西松河矿区煤中元素地球化学特征及成煤环境意义[J].煤炭科学技术,2017,45(12):166-173,204.

JIN Jun,GAO Wei,SUN Jian ,et al.Geochemical characteristics of elements in coal in Songhe Mining Area of Qianxi and its coal-forming environmental significance[J].Coal Science and Technology,2017,45(12):166-173,204.

[34] 尘福艳,杨 创,谭富荣,等.微量元素分析在判别沉积介质环境中的应用:以冀中坳陷东北部石炭-二叠系为例[J].中国煤炭地质,2019,31(6):15-22.

CHEN Fuyan,YANG Chuang,TAN Furong ,et al.Application of trace element analysis in discriminating sedimentary medium environment:Taking the Carboniferous-Permian in the north-eastern Jizhong Depression as an example[J].Coal Geology of China,2019,31(6):15-22.

[35] 岳琼申,丁典识,汪文军,等.山西省阳泉新景煤矿15煤微量元素的富集及沉积环境研究[J].中国煤炭地质,2019,31(2):21-25.

YUE Qiongshen,DING Dianzhi,WANG Wenjun ,et al.Study on the enrichment of trace elements and sedimentary environment of 15 coal in Xinjing Coal Mine,Yangquan,Shanxi Province[J].Coal Geology of China,2019,31(2):21-25.

[36] 范玉海,屈红军,王 辉,等.微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J].中国地质,2012,39(2):382-389.

FAN Yuhai,QU Hongjun,WANG Hui ,et al.Application of trace element analysis in discriminating sedimentary medium environment:Taking the Late Triassic in the central area of the western Ordos Basin as an example[J].Chinese Geology, 2012, 39(2):382-389.

[37] 邹建华,刘 东,田和明,等.内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J].煤炭学报,2013,38(6):1012-1018.

ZOU Jianhua,LIU Dong,TIAN Heming ,et al.Geochemical cha-racteristics of trace elements and rare earth elements in Late Paleozoic coal from Adaohai Mine,Inner Mongolia[J].Journal of China Coal Society,2013,38(6):1012-1018.

[38] 邵龙义,郑明泉,侯海海,等.山西省石炭-二叠纪含煤岩系层序-古地理与聚煤特征[J].煤炭科学技术,2018,46(2):1-8,34.

SHAO Longyi, ZHENGMingquan, HOU Haihai ,et al.The Carboniferous-Permian coal-bearing rock series sequence paleogeography and coal accumulation characteristics in Shanxi Province[J].Coal Science and Technology,2018,46(2):1-8,34 .

[39] 邵龙义,肖正辉,何志平,等.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究[J].古地理学报,2006,8(1):43-52.

SHAO Longyi,XIAO Zhenghui,HE Zhiping,et al.Palaeogeography and coal accumulation of the Carboniferous Permian coal-bearing rock series in the Qinshui Basin,Southeast Shanxi[J].Journal of Palaeogeography,2006,8(1):43-52.

[40] 范萌萌,卜 军,赵筱艳,等.鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J].西北大学学报(自然科学版),2019,49(4):633-642.

FAN Mengmeng,BU Jun,ZHAO Xiaoyan,et al. Geochemicalcharacteristics of trace elements in the Yanchang Formation in the southeast of Ordos Basin and their environmental indicators[J].Journal of Northwest University(Natural Science Edition),2019,49(4):633-642.

[41] 刘 贝.沁水盆地晚古生代煤中微量元素和稀土元素地球化学特征[D].北京:中国地质大学(北京),2015.

LIU Bei. Geochemical characteristics of trace elements and rare earth elements in coals of the Late Paleozoic in Qinshui Basin[D]. Beijing:China University of Geosciences (Beijing), 2015.

[42] 邵龙义,鲁 静,TIM Jones,等.桂中晚二叠世碳酸盐岩型煤系高有机硫煤的矿物学和地球化学研究[J].煤炭学报,2006,32(6):770-775.

SHAO Longyi,LU Jing,Tim Jones,et al.Mineralogical and geochemical study of high organic sulfur coal in the Late Permian carbonate coal measures in central Guangxi[J].Journal of China Coal Society, 2006,32(6):770-775.

[43] 邓宏文,钱 凯.沉积地球化学与环境分析[M]兰州:甘肃科学技术出版社,1993:95-104.

[44] 梁文君,肖传桃,肖 凯,等.藏北安多晚侏罗世古环境古气候与地球化学元素关系研究[J].中国地质,2015 42(4):1079-1091.

LIANG Wenjun, XIAOChuantao, XIAO Kai,et al. Study on the relationship between paleoenvironmental palaeoclimate and geochemical elements in the Late Jurassic of Anduo, northern Tibet[J].Geology in China,2015 42(4):1079-1091.

[45] 谭 聪.鄂尔多斯盆地上二叠统—中上三叠统沉积特征及古气候演化[D].北京:中国地质大学(北京),2017.

TAN Cong. Sedimentary characteristics and paleoclimatic evolution of the Upper Permian-Middle-Upper Triassic in the Ordos Basin[D]. Beijing:China University of Geosciences (Beijing),2017.

Geochemical characteristics and sedimentary environment analysis of trace elements in Carboniferous-Permian coal in Huozhou Area, Qinshui Basin

CHE Qingsong,HUANG Wenhui,JIU Bo,HAO Ruilin,SUN Qilong,LEI Han

(School of Energy Resources,China University of Geosciences,Beijing 100083,China)

Abstract:The moisture, ash, volatile matter, total sulfur and micro-components of the Carboniferous-Permian coal in Qinshui Basin were determined by industrial analysis and optical microscope, and the Qinshui Basin was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The content, distribution and geochemical characteristics of trace elements including rare earth elements in Carboniferous-Permian coal in Huozhou area of Qinshui Basin were analyzed. The depositional environment, paleo-salinity, redox environment and paleoclimate of coal-measure strata in the study area were explored using elemental geochemical parameters. The results show that the ash yield, moisture content, volatile matter and sulfur content of the coal in the central and southern Qinshui Basin are 11.19%, 1.02%, 14.02% and 1.27%, respectively. The rate is 1.14%, which is low metamorphic bituminous coal. Compared with Chinese coal, the content of trace elements in coal is depleted as a whole, only Cu(Cc=1.39), Sr (Cc=1.35) and Zr (Cc=1.04) are slightly enriched. The content of trace elements in coal of Taiyuan formation is slightly greater than trace elements in Shanxi coal. The distribution range of rare earth elements is 2.44-164.11 μg/g, with an average is 73.28μg/g, which is smaller than that of Chinese coal and slightly higher than that of world coal. The rare earth element Yb (Cc=2.81) in the thin coal is slightly enriched, Y (Cc=7.19) is enriched, and the rest are relatively depleted. The rare earth element distribution pattern is right-leaning "V" shape, which is a light rare earth enrichment type, with Eu negative anomaly and Ce weak negative anomaly, indicating that the source of rare earth elements comes from terrigenous debris, and seawater does not cause Ce loss. The average values of w(Sr)/w(Ba),w(V)/w(V+Ni) and w(Sr)/w(Cu) are 6.5, 0.74 and 7.57, respectively, indicating that the Carboniferous-Permian in the Huozhou area of Qinshui Basin as a whole belongs to a marine sedimentary environment, and the water environment is anoxic environment, the Carboniferous-Permian coal-forming environment is in a warm and humid climate. The average value of CaO/(MgO×Al2O3) in Shanxi Formation is 0.055, which is significantly lower than that of Taiyuan Formation's average of 1.55, indicating that the temperature has dropped from the Taiyuan Formation to the Shanxi Formation.

Key words:Qinshui Basin;Carboniferous-Permian coal; trace elements ;geochemistry; sedimentary environment

移动扫码阅读

车青松,黄文辉,久 博,等.沁水盆地霍州矿区石炭-二叠纪煤中微量元素地球化学特征及沉积环境分析[J].煤炭科学技术,2022,50(9):138-146.

CHE Qingsong,HUANG Wenhui,JIU Bo,et al.Geochemical characteristics and sedimentary environment analysis of trace elements in Carboniferous-Permian coal in Huozhou Area, Qinshui Basin[J].Coal Science and Technology,2022,50(9):138-146.

中图分类号:P595

文献标志码:A

文章编号:0253-2336(2022)09-0138-09

收稿日期:2021-12-27

责任编辑:周子博

DOI:10.13199/j.cnki.cst.2021-0021

基金项目:国家自然科学基金面上资助项目(41972172)

作者简介:车青松(1994—),男,安徽阜阳人,硕士研究生。E-mail:cheqs950713@163.com

通讯作者:黄文辉(1961—),男,福建漳州人,博士生导师,教授。E-mail:huangwh@cugb.edu.cn