高级检索

不同镜惰比低阶煤燃烧特性及动力学分析

王小令, 王绍清, 陈昊, 赵云刚, 沙吉顿, 邓金松

王小令,王绍清,陈 昊,等. 不同镜惰比低阶煤燃烧特性及动力学分析[J]. 煤炭科学技术,2023,51(9):302−309

. DOI: 10.12438/cst.2021-1477
引用本文:

王小令,王绍清,陈 昊,等. 不同镜惰比低阶煤燃烧特性及动力学分析[J]. 煤炭科学技术,2023,51(9):302−309

. DOI: 10.12438/cst.2021-1477

WANG Xiaoling,WANG Shaoqing,CHEN Hao,et al. The combustion characteristics and kinetic analysis of low-rank coals with different vitrinite/inertinite ratio[J]. Coal Science and Technology,2023,51(9):302−309

. DOI: 10.12438/cst.2021-1477
Citation:

WANG Xiaoling,WANG Shaoqing,CHEN Hao,et al. The combustion characteristics and kinetic analysis of low-rank coals with different vitrinite/inertinite ratio[J]. Coal Science and Technology,2023,51(9):302−309

. DOI: 10.12438/cst.2021-1477

不同镜惰比低阶煤燃烧特性及动力学分析

基金项目: 

国家自然科学基金资助项目(42030807);山西省重点研发计划资助项目(201903D321084)

详细信息
    作者简介:

    王小令: (1994—),男,重庆梁平人,博士研究生。E-mail:1021736917@qq.com

    通讯作者:

    王绍清: (1979—),男,辽宁朝阳人,教授,博士。E-mail:wangzq@cumtb.edu.cn

  • 中图分类号: TQ533

The combustion characteristics and kinetic analysis of low-rank coals with different vitrinite/inertinite ratio

Funds: 

National Natural Science Foundation of China(42030807); Key Research and Development Program of Shanxi Province (201903D321084)

  • 摘要:

    为解释显微组分对低阶煤燃烧特性的影响,以一系列不同镜惰比低阶煤为研究对象,利用热重−质谱−差热(TG-MS-DTA)联用技术,研究了样品在空气气氛下的燃烧特性、热量变化过程以及气体逸出行为。结果表明:煤的显微组分含量对煤燃烧达到最大反应速率时的温度影响不大,但对反应最大速率的大小有影响,富惰质组煤燃烧的反应最大速率更大。同时,煤中较多矿物使得反应达到最大速率时温度更高。燃烧过程呈现出明显的两个阶段,第一阶段(400 ℃之前)缓慢放热,对应脱挥发分过程,第二阶段(400 ℃之后)快速放热,对应固定碳燃烧过程,燃烧放热特征呈现出缓慢到快速放热的转变。不同镜惰比煤在燃烧过程中主要释放CO2、CO、H2O等气体,但释放的相对含量不同,脱挥发分阶段,有较少的CO2、CO气体释放,H2O的释放相对量较多。而在固定碳燃烧阶段,CO2大量释放,CO释放量略低,H2O最少。其中,富惰质组煤在燃烧过程中释放相对更多的CO2,在相同条件下,燃烧更加充分。此外,还借助Coats-Redfern积分法对煤燃烧过程进行动力学计算,得到随着镜惰比含量减小,反应活化能增加的趋势,但这并不影响富惰质组煤在固定碳燃烧阶段能快速燃烧的特性,这可能是由于惰质组中大量丝质体形成的细胞胞腔结构,增大了与O2的接触面积,燃烧反应充分。

    Abstract:

    To explain the effect of maceral composition on the combustion characteristics of coal, a series of low-rank coals with different vitrinite/inertinite ratio were collected as the research object, and the combustion characteristics, heat change process and gas escape behavior of the samples under air atmosphere were investigated using thermoanalytical methods (TG-MS-DTA). The results show that the maceral content has little effect on the temperature of the maximum reaction rate. However, it has an effect on the value of the maximum reaction rate, and the maximum reaction rate of the inertinite-rich coal is larger. Meanwhile, higher minerals in coal allow the reaction to reach its maximum rate at a higher temperature. The combustion process shows two obvious stages. The first stage (before 400 ℃) is exothermic slowly, corresponding to the devolatilization process, and the second stage (after 400 ℃) is exothermic rapidly, corresponding to the fixed-carbon combustion process. The exothermic characteristics of coal combustion show a slow to fast exothermic transition. Coal with different vitrinite/inertinite ratio mainly release CO2, CO, H2O during the combustion process, however, the relative content of the released gas is different. In the devolatilization stage, there is less CO2 and CO released, while more H2O release. In the fixed-carbon combustion stage, a large amount of CO2 is released, the amount of CO released is slightly lower, and H2O is the lowest. Among them, the inertinite-rich coal releases relatively more CO2 during the combustion process and burns more completely under the same conditions. In addition, the kinetic calculation of the coal combustion process is carried out with the Coats-Redfern method, and the trend of reaction activation energy increases as the vitrinite/inertinite ratio decreases. However, it does not affect the inertinite-rich coal in the fixed-carbon combustion stage. The ability to burn rapidly may be due to the cell lumen structure formed by a large number of fusinites, which enlarges the contact area between the surface of coal particles and O2, and the combustion reaction is sufficient.

  • 图  1   赵家庄煤中丝质体光学显微镜照片

    Figure  1.   Optical microscope image of fusinite in ZJZ coal

    图  2   XRD图谱分析

    Figure  2.   XRD spectra analysis

    图  3   不同镜惰比煤燃烧TG与DTG曲线

    Figure  3.   TG and DTG curves of coal combustion with different vitrinite/inertinite ratio

    图  4   不同镜惰比煤燃烧过程的DTA曲线

    Figure  4.   DTA curves of coal combustion with different vitrinite/inertinite ratio

    图  5   不同镜惰比煤燃烧过程中气体释放质谱

    Figure  5.   Mass spectrometry of coal combustion with different vitrinite/inertinite ratio

    图  6   不同镜惰比煤燃烧释放的3种主要气体

    Figure  6.   Three main released gases of coal combustion with different vitrinite/inertinite ratio

    图  7   不同镜惰比煤在最大反应速率温度下质谱信号强度

    Figure  7.   Mass spectrum signal intensity of coal with different vitrinite/inertinite ratio at maximum reaction rate temperature

    图  8   基于Coats-Redfern积分法得到的煤燃烧Arrhenius图

    Figure  8.   Arrhenius diagram of coal combustion based on Coats-Redfern

    表  1   煤样煤岩组分分析、工业分析、元素分析[21]

    Table  1   Petrological, proximate and ultimate analysis of coal samples[21]

    样品煤岩分析(体积分数)/%V/I工业分析/%Ro /%元素分析/%
    镜质组惰质组类脂组矿物MadAadVdafCdafHdafOdaf*NdafSt,d
    ZJZ8.888.80.420.108.77.3428.690.5582.083.7813.001.020.12
    MTH40.051.63.64.80.762.7212.1834.950.6883.574.729.391.530.69
    DT62.035.20.42.41.767.32.8538.430.4779.684.7214.121.250.22
    注:Ro为样品最大镜质组反射率;*为差减法计算。
    下载: 导出CSV

    表  2   不同镜惰比煤的燃烧特征参数

    Table  2   Characteristic parameters of coal combustion with different vitrinite/inertinite ratio

    样品Ti/℃Tp/℃Tf/℃Rmax/(%·℃−1)
    ZJZ457.3489.4499.22.23
    MTH461526.4572.30.71
    DT437490514.91.16
    下载: 导出CSV

    表  3   不同镜惰比煤燃烧动力学参数

    Table  3   Kinetic parameters of coal combustion with different vitrinite/inertinite ratio

    样品T10/℃T90/℃方程E/(kJ·mol−1)A/min−1R2
    ZJZ411.4496.3y=−16870x+9.1452140.32.37×1090.9707
    MTH447.0568.7y=−14179x+4.2197117.91.45×1070.9988
    DT385.4517.0y=−11535x+2.021895.91.31×1060.9844
    下载: 导出CSV
  • [1] 李富兵,樊大磊,王宗礼,等. “双碳”目标下“拉闸限电”引发的中国能源供给的思考[J]. 中国矿业,2021,30(10):1−6.

    LI Fubing,FAN Dalei,WANG Zongli,et al. Thoughts on China's energy supply caused by “power rationing” under the goal of “carbon peak and neutrality”[J]. China Mining Magazine,2021,30(10):1−6.

    [2] 雷 鸣,黄星智,王春波. O2/CO2气氛下CO2和H2O气化反应对煤及煤焦燃烧特性的影响[J]. 燃料化学学报,2015,43(12):1420−1426.

    LEI Ming,HUANG Xingzhi,WANG Chunbo. Effect of CO2 and H2O gasification on the combustion characteristics of coal and char under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology,2015,43(12):1420−1426.

    [3] 胡海华,段伦博,陈晓平,等. 增压O2/CO2气氛下煤燃烧特性实验研究[J]. 燃料化学学报,2014,42(4):408−413.

    HU Haihua,DUAN Lunbo,CHEN Xiaoping,et al. Experimental investigation on pressurized coal combustion characteristics under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology,2014,42(4):408−413.

    [4]

    SU S,POHL J H,HOLCOMBE D. A proposed maceral index to predict combustion behavior of coal[J]. Fuel,2001,80(5):699−706.

    [5]

    QIU J R,LI F,ZHANG C G,et al. Mineral transformation during combustion of coal blends[J]. International Journal of Energy Research,1999,23(5):453−463.

    [6] 王小令,李 霞,曾凡桂,等. 基于HRTEM的煤中不同聚集态结构表征[J]. 煤炭学报,2020,45(2):749−756.

    WANG Xiaoling,LI Xia,ZENG Fangui,et al. Characterization of different aggregate structures in coal based on HRTEM[J]. Joural of China Coal Society,2020,45(2):749−756.

    [7]

    NIU S L,LU C M,HAN K H,et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. Journal of Thermal Analysis & Calorimetry,2009,98(1):267−274.

    [8]

    OTERO M,GOMEZ X,GARCíA A I,et al. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials[J]. Journal of Thermal Analysis & Calorimetry,2008,93(2):619−626.

    [9] 鲜晓红,杜云贵,张光辉. TG-DTG/DTA研究混煤的燃烧特性[J]. 煤炭转化,2011,34(3):67−70.

    XIAN Xiaohong,DU Yungui,ZHANG Guanghui. Combustion characteristics of coal blending by TG-DTG/DTA[J]. Coal Conversion,2011,34(3):67−70.

    [10] 聂其红,孙绍增,李争起,等. 褐煤混煤燃烧特性的热重分析法研究[J]. 燃烧科学与技术,2001,7(1):72−76.

    NIE Qihong,SUN Shaozeng,LI Zhengqi,et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends[J]. Journal of Comnustion Science and Technology,2001,7(1):72−76.

    [11] 刘 倩,钟文琪,苏 伟,等. 基于热重−质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报,2018,69(1):523−530.

    LIU Qian,ZHONG Wenqi,SU Wei,et al. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal,2018,69(1):523−530.

    [12]

    YONG C,MORI S,PAN W P. Studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochimica Acta,1996,275(1):149−158.

    [13] 何 翔,刘建忠,杨雨濛,等. 基于热重红外联用技术的不同煤种燃烧特性研究[J]. 热力发电,2016,45(11):29−35.

    HE Xiang,LIU Jianzhong,YANG Yumeng,et al. Combustion characteristics of different coals based on TG-DSC-FTIR coupled technology[J]. Thermal Power Generation,2016,45(11):29−35.

    [14]

    LIU L,WANG Z,CHE K,et al. Research on the release of gases during the bituminous coal combustion under low oxygen atmosphere by TG-FTIR[J]. Journal of the Energy Institute,2018,91(3):323−330.

    [15] 文 虎,黄 遥,张玉涛,等. 氧气体积分数与升温速率对弱黏煤燃烧特性的影响[J]. 煤炭学报,2017,42(9):2362−2368.

    WEN Hu,HUANG Yao,ZHANG Yutao,et al. Effects of oxygen concentration and heating rate on the characteristics of bituminous coal combustion[J]. Journal of China Coal Society,2017,42(9):2362−2368.

    [16] 赵云鹏,胡浩权,靳立军,等. 矿物质对不同还原程度煤显微组分半焦燃烧特性影响[J]. 化工学报,2019,70(8):2946−2953.

    ZHAO Yunpeng,HU Haoquan,JIN Lijun,et al. Effect of minerals on semi-coke combustion characteristics of maceral with different reducibility[J]. CIESC Journal,2019,70(8):2946−2953.

    [17]

    VALENTIM B. Petrography of coal combustion char: A review[J]. Fuel,2020,277:118271.

    [18]

    CAI H Y,MEGARITIS A,MESSENBOCK R,et al. Pyrolysis of coal maceral concentrates under pf-combustion conditions (I): changes in volatile release and char combustibility as a function of rank[J]. Fuel,1998,77(12):1273−1282.

    [19]

    CHOUDHURY N,BISWAS S,SARKAR P,et al. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal[J]. International Journal of Coal Geology,2008,74(2):145−153.

    [20]

    ROBERTS M J,EVERSON R C,NEOMAGUS H,et al. Influence of maceral composition on the structure, properties and behaviour of chars derived from South African coals[J]. Fuel,2015,142:9−20.

    [21] 王小令,王绍清,陈 昊,等. 不同镜惰比低阶煤的结构特征及其热解行为[J]. 煤炭科学技术,2023,51(5):294−301.

    WANG Xiaoling,WANG Shaoqing,CHEN Hao,et al. The structural characteristics and pyrolysis behavior of low-rank coal with different Vitrinite/Inertinite ratio[J]. Coal Science and Technology,2023,51(5):294−301.

    [22]

    LI Q,ZHAO C,CHEN X,et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1/2):521−528.

    [23] 孔德文,张建良,林祥海,等. 天然矿物添加剂对高炉喷吹煤粉燃烧特性的影响[J]. 北京科技大学学报,2011,33(9):1160−1165.

    KONG Dewen,ZHANG Jianliang,LIN Xianghai,et al. Effects of the natural minerals on pulverized coal combustion characteristics[J]. Journal of University of Science and Technology Beijing,2011,33(9):1160−1165.

    [24]

    CAI Y D,LIU D M,LIU Z H,et al. Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment[J]. Fuel Processing Technology,2017,156:298−309.

    [25]

    YEN F S,LO H S,WEN H L,et al. θ- to α-phase transformation subsystem induced by α-Al2O3-seeding in boehmite-derived nano-sized alumina powders[J]. Journal of Crystal Growth,2003,249(1/2):283−293.

    [26]

    LU G Q,DO D D. A kinetic study of coal reject-derived char activation with CO2, H2O, and air[J]. Carbon,1992,30(1):21−29.

    [27] 胡 英. 物理化学, 第6版[M]. 高等教育出版社, 2014.
  • 期刊类型引用(2)

    1. 陆伟,叶文钢,李金亮,钱冠雨,张青松,李金虎. 输送带温敏改性方法及火灾早期预警指标气体研究. 煤炭科学技术. 2025(01): 170-182 . 本站查看
    2. 王银辉. 基于ReaxFF的不黏煤燃烧过程中自由基及主要燃烧产物生成规律研究. 矿业安全与环保. 2024(04): 80-89 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  9
  • PDF下载量:  18
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-27
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回