Static-dynamic rockburst risk assessment method in near-vertical coal seams
-
摘要:
现有冲击地压危险评价方法以采掘前揭露的地质条件和开采技术条件为依据,属于静态评价,评价结果与真实情况存在差距,如何与采掘过程中的监测数据相结合得到更加符合实际的评价结果是需要进一步解决的问题。为此,综合地质及开采条件和监测数据,提出了一种冲击地压危险静动态耦合评价方法,并在典型近直立煤层工作面进行了应用。首先,通过改进综合指数法提出工作面采掘前静态评价方法,包括将综合指数法包含的评价指标进行线性归一化得到单指标危险指数,利用层次分析法对各评价指标赋权,通过加权求和分别得到地质因素和开采技术因素确定的危险指数,然后将两个危险指数加权平均得到静态评价危险指数;其次,利用监测数据构建了采掘过程中动态评价方法,包括根据微震和钻孔应力监测特点及其与冲击危险性的关系,构建了微震能量密度和钻孔应力变化率作为动态评价指标,将评价指标线性归一化分别得到震动场评价指数和应力场评价指数,将两者加权平均得到动态评价危险指数;最后,利用加权平均法将静态评价危险指数和动态评价危险指数进行耦合叠加得到耦合评价危险指数,根据该指数来确定危险等级和危险区域。上述方法在乌东煤矿+450B3+6工作面的应用结果显示,静态评价方法在工作面回采前划定4个中等冲击危险区和1个弱冲击危险区,动态评价方法判定工作面回采过程中岩柱侧具有较高冲击危险性,静动态耦合评价将静态评价的部分弱冲击危险区再评价为中等冲击危险区;通过工作面回采过程的支架压力监测数据、数值模拟结果和冲击地压显现事件对评价结果进行了检验,发现静动态耦合评价结果更符合现场实际。研究成果为冲击地压危险评价提供了一种新方法和新思路。
Abstract:The existing rockburst risk assessment methods generally belong to static assessment method which normally depends on the geological and mining conditions that are revealed prior to mining. There is commonly a certain gap between the assessment results and the real situation. How to combine with the monitoring data in the mining process to get more realistic evaluation results is a problem that needs to be further solved. To this end, this work proposes a static-dynamic coupling rockburst risk assessment method taking into account the geological and mining conditions as well as the monitoring data, and the method has been being applied in typical panels in near-vertical coal seams. Firstly, a static evaluation method used before mining based on the improved comprehensive index method is proposed. The evaluation indicators contained in the comprehensive index method are linearly normalized to obtain the single indicator risk index. The AHP method is used to assign weights to each evaluation indicator, and the weighted summation of all indicator risk indexes is calculated to obtain the risk indexes determined by geological factors and mining technology factors, respectively. Then the weighted mean of the two risk indexes is used as the static evaluation risk index. Secondly, a dynamic evaluation method used during mining by utilizing the monitoring data is constructed. According to the characteristics of microseismic monitoring and borehole stress monitoring and their relationship with rockburst risk, the dynamic evaluation indicators are constructed based on the microseismic energy density and borehole stress variation. The evaluation indicators are linearly normalized to obtain two evaluation indexes. The weighted mean of the two indexes is used as the dynamic evaluation risk index. Finally, the two proposed methods are combined to get a static-dynamic coupling evaluation model. The coupling evaluation risk index is obtained by weighted average of the static evaluation risk index and the dynamic evaluation risk index, and then the risk grade and risk area are determined. The method is applied in +450B3+6 panel of Wudong Coal Mine. Results show that the static evaluation method demarcates 4 medium risk areas and 1 weak risk area before the mining of the panel, the dynamic evaluation method determines that the rock pillar side has high risk level in the mining process of the panel, and the static dynamic coupling evaluation re-evaluates the weak risk area of the static evaluation to the medium risk area. By investigating the monitoring data of support pressure, the numerical simulation results and the rockburst occurrence on site during the mining process of the panel, the evaluation results are verified, and it is found that the static and dynamic coupling evaluation results are more consistent with the actual situation. This work provides a new method and a new idea for the risk assessment of rock burst.
-
-
表 1 冲击地压危险静态评价危险分级
Table 1 Static evaluation risk classification of rock burst hazard
冲击危险等级 冲击危险状态 综合危险指数Wj I 无 <0.25 II 弱 0.25~0.50 III 中等 0.50~0.75 IV 强 >0.75 表 2 不同区域冲击危险指标因素及权重对照
Table 2 Comparison of factors and weights for each indicator of rockburst in different regions
区域 参数A 参数B 参数 危险性指数 权重 参数 危险性指数 权重 ① A1 0.66 0.14 B1 0 0.24 A2 0.54 0.20 B2 0.50 0.22 A3 0.53 0.19 B3 0.98 0.17 A4 0.98 0.12 B4 1.00 0.13 A5 0.53 0.12 B5 1.00 0.09 A6 0 0.07 B6 1.00 0.15 A7 1.00 0.16 — — — 区域② A1 0.66 0.16 B1 0.33 0.21 A2 0.54 0.18 B2 0.50 0.16 A3 0.53 0.18 B3 0.87 0.17 A4 0.98 0.12 B4 0 0.22 A5 0.53 0.21 B5 1.00 0.12 A6 0 0.07 B6 1.00 0.12 A7 1.00 0.08 — — — 区域③ A1 0.66 0.17 B1 0.33 0.19 A2 0.54 0.12 B2 0.50 0.24 A3 0.53 0.15 B3 0.87 0.08 A4 0.98 0.19 B4 0 0.14 A5 0.53 0.22 B5 1.00 0.13 A6 0 0.07 B6 1.00 0.22 A7 1.00 0.08 — — — 区域④ A1 0.66 0.11 B1 0 0.16 A2 0.54 0.15 B2 0.50 0.18 A3 0.53 0.17 B3 0.98 0.09 A4 0.98 0.09 B4 1.00 0.16 A5 0.53 0.16 B5 1.00 0.19 A6 0 0.14 B6 1.00 0.22 A7 1.00 0.18 — — — 区域⑤ A1 0.66 0.17 B1 0 0.22 A2 0.54 0.07 B2 0.50 0.15 A3 0.23 0.20 B3 0.87 0.24 A4 0.98 0.13 B4 0.50 0.16 A5 0.53 0.14 B5 0.66 0.11 A6 0 0.20 B6 0.33 0.12 A7 1.00 0.09 — — — 表 3 +450B3+6工作面不同区域冲击危险性综合指数
Table 3 Combined index of rockburst for different regions of the +450B3+6 Working Face
区域 地质因素指数 开采技术因素指数 综合指数 冲击危险性 区域① 0.642 0.647 0.64 中等 区域② 0.607 0.537 0.57 中等 区域③ 0.639 0.602 0.62 中等 区域④ 0.597 0.748 0.67 中等 区域⑤ 0.488 0.476 0.48 弱 表 4 微震危险性系数与冲击危险等级对照
Table 4 Comparison between microseismic risk index and rockburst risk level
危险等级 危险状态 微震危险性系数 I 无冲击危险 Rw<0.25 II 弱冲击危险 0.25≤Rw<0.50 III 中等冲击危险 0.50≤Rw<0.75 IV 强冲击危险 0.75≤Rw<1 表 5 应力危险性系数与冲击危险等级对照
Table 5 Comparison between stress risk index and rockburst risk level
危险等级 危险状态 应力危险性系数 I 无冲击危险 Rl<0.25 II 弱冲击危险 0.25≤Rl<0.50 III 中等冲击危险 0.50≤Rl<0.75 IV 强冲击危险 0.75≤Rl<1 表 6 冲击危险性动态评价危险分级
Table 6 Risk classification for dynamic evaluation of rockburst
危险等级 危险状态 冲击危险综合指数Wd I 无冲击危险 <0.25 II 弱冲击危险 0.25~0.50 III 中等冲击危险 0.50~0.75 IV 强冲击危险 >0.75 表 7 静动态耦合冲击危险分级指标
Table 7 Static and dynamic coupling rockburst classification index
危险等级 危险状态 耦合危险性指数 I 无冲击危险 Wz<0.25 II 弱冲击危险 0.25≤Wz<0.50 III 中等冲击危险 0.50≤Wz<0.75 IV 强冲击危险 0.75≤Wz<1 -
[1] LI Zhenlei,HE Xueqiu,DOU Linming,et al. Numerical investigation of load shedding and rockburst reduction effects of top-coal caving mining in thick coal seams[J]. International Journal of Rock Mechanics and Mining Sciences,2018,110:266−278. doi: 10.1016/j.ijrmms.2018.08.005
[2] 于正兴,姜福兴,桂 兵. 冲击地压危险性的宏观评价方法在“孤岛”工作面的应用[J]. 矿业安全与环保,2011,38(5):30−32. doi: 10.3969/j.issn.1008-4495.2011.05.011 YU Zhengxing,JIANG Fuxing,GUI Bing. Application of macroscopic evaluation method of rockburst risk in “isolated island” face[J]. Mining Safety & Environmental Protection,2011,38(5):30−32. doi: 10.3969/j.issn.1008-4495.2011.05.011
[3] 冀贞文,孙春江,姜福兴. 波兰煤矿冲击地压防治技术现状及分析[J]. 煤炭科学技术,2008,36(1):11−14. doi: 10.13199/j.cst.2008.01.16.jizhw.012 JI Zhenwen,SUN Chunjiang,JIANG Fuxing. Present status and analysis on rock burst prevention and control technology in Poland[J]. Coal Science and Technology,2008,36(1):11−14. doi: 10.13199/j.cst.2008.01.16.jizhw.012
[4] ZHU Z,WU Y,HAN J. A prediction method of coal burst based on analytic hierarchy process(AHP) and fuzzy comprehensive evaluation(FCE)[J]. Frontiers in Earth Science,2022,9:834958.
[5] 舒凑先. 陕蒙接壤矿区深部富水工作面冲击地压机理与防治研究[D]. 北京: 北京科技大学, 2019. SHU Couxian. The mechanism and prevention of rock burst at the water-rich working face in the deep zone of mine in the adjacent area of Shaanxi and Inner Mongolia[D]. Beijing: University of Science and Technology Beijing, 2019.
[6] 宋来智,王同旭,何 勇,等. 基于可能性指数诊断法的半孤岛工作面冲击地压危险评价[J]. 煤矿安全,2015,46(8):209−211,215. SONG Laizhi,WANG Tongxu,HE Yong,et al. Rock burst evaluation of half isolated island face by probability index diagnosis method[J]. Safety in Coal Mines,2015,46(8):209−211,215.
[7] 姜福兴,史先锋,王存文,等. 高应力区分层开采冲击地压事故发生机理研究[J]. 岩土工程学报,2015,37(6):1123−1131. doi: 10.11779/CJGE201506019 JIANG Fuxing,SHI Xianfeng,WANG Cunwen,et al. Mechanical mechanism of rock burst accidents in slice mining face under high pressure[J]. Chinese Journal of Geotechnical Engineering,2015,37(6):1123−1131. doi: 10.11779/CJGE201506019
[8] 张宏伟,荣 海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险评价[J]. 煤炭学报,2015,40(12):2755−2762. ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk assessment of rockburst based on geo-dynamic division method insuberect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755−2762.
[9] 张宏伟,孟庆男,韩 军,等. 地质动力区划在冲击地压矿井中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001 ZHANG Hongwei,MENG Qingnan,HAN Jun,et al. Application of the geological dynamic division in rock burst coal mine[J]. Journal of Liaoning Technical University: (Natural Science),2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001
[10] 陈 蓥,张宏伟,韩 军,等. 基于地质动力区划的矿井动力环境研究[J]. 世界地质,2011,30(4):690−696. doi: 10.3969/j.issn.1004-5589.2011.04.027 CHEN Ying,ZHANG Hongwei,HAN Jun,et al. Research on mine dynamic environment based on geo-dynamic division[J]. World Geology,2011,30(4):690−696. doi: 10.3969/j.issn.1004-5589.2011.04.027
[11] 冯宜语,刘同策,尹增德,等. 多因素耦合法评定工作面冲击地压危险性[J]. 煤矿安全,2013,44(8):196−199. FENG Yiyu,LIU Tongce,YIN Zengde,et al. Coalface rock burst evaluation by multifactor coupling method[J]. Safety in Coal Mines,2013,44(8):196−199.
[12] 窦林名, 何学秋. 冲击矿压防治理论与技术[M]. 徐州: 中国矿业大学出版社, 2001. [13] 姜福兴,刘 懿,翟明华,等. 基于应力与围岩分类的冲击地压危险性评价研究[J]. 岩石力学与工程学报,2017,36(5):1041−1052. doi: 10.13722/j.cnki.jrme.2016.1203 JIANG Fuxing,LIU Yi,ZHAI Minghua,et al. Evaluation of rock burst hazard based on the classification of stress and surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1041−1052. doi: 10.13722/j.cnki.jrme.2016.1203
[14] 曹安业,王常彬,窦林名,等. 临近断层孤岛面开采动力显现机理与震动波CT动态预警[J]. 采矿与安全工程学报,2017,34(3):411−417. doi: 10.13545/j.cnki.jmse.2017.03.002 CAO Anye,WANG Changbin,DOU Linming,et al. Dynamic manifestation mechanism of mining on the island coalface along fault and dynamic pre-warning of seismic waves with seismic tomography[J]. Journal of Mining & Safety Engineering,2017,34(3):411−417. doi: 10.13545/j.cnki.jmse.2017.03.002
[15] 张科学,亢 磊,何满潮,等. 矿井煤层冲击危险性多层次综合评价研究[J]. 煤炭科学技术,2020,48(8):82−89. doi: 10.13199/j.cnki.cst.2020.08.010 ZHANG Kexue,KANG Lei,HE Manchao,et al. Research on multi-level comprehensive evaluation of coal seam rock burst risk in underground mine[J]. Coal Science and Technology,2020,48(8):82−89. doi: 10.13199/j.cnki.cst.2020.08.010
[16] HE Shengquan,SONG Dazhao,LI Zhenlei,et al. Mechanism and prevention of rockburst in steeply inclined and extremely thick coal seams for fully mechanized top-coal caving mining and under gob filling conditions[J]. Energies,2020,13(6):1362. doi: 10.3390/en13061362
[17] 荣 海,张宏伟,陈建强,等. 基于多因素模式识别的急倾斜特厚煤层冲击地压危险性预测[J]. 采矿与安全工程学报,2018,35(1):125−132. doi: 10.13545/j.cnki.jmse.2018.01.018 RONG Hai,ZHANG Hongwei,CHEN Jianqiang,et al. Rockburst-risk prediction in steep-inclined and extremely thick coal seams based on the multi-factor pattern recognition method[J]. Journal of Mining & Safety Engineering,2018,35(1):125−132. doi: 10.13545/j.cnki.jmse.2018.01.018
[18] HE S,SONG D,LI Z,et al. Precursor of spatio-temporal evolution law of MS and AE activities for rock burst warning in steeply inclined and extremely thick coal seams under caving mining conditions[J]. Rock Mechanics and Rock Engineering,2019,52(7):2415−2435. doi: 10.1007/s00603-018-1690-z
[19] 王正义. 急倾斜特厚煤层水平分段开采夹持型冲击失稳机理研究[D]. 徐州: 中国矿业大学, 2019. WANG Zhengyi. Mechanism of clamping rockburst in horizontal section mining of steeply inclined, extra-thick coalseam[D]. Xuzhou: China University of Mining and Technology, 2019.
[20] 曹民远,陈建强,闫瑞兵,等. 基于数据分析的近直立煤层冲击地压致灾因素研究[J]. 煤炭科学技术,2019,47(12):32−37. doi: 10.13199/j.cnki.cst.2019.12.005 CAO Minyuan,CHEN Jianqiang,YAN Ruibing,et al. Study on factors affecting rock burst of sub-erect coal seam based on data analysis[J]. Coal Science and Technology,2019,47(12):32−37. doi: 10.13199/j.cnki.cst.2019.12.005
[21] 何学秋,陈建强,宋大钊,等. 典型近直立煤层群冲击地压机理及监测预警研究[J]. 煤炭科学技术,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002 HE Xueqiu,CHEN Jianqiang,SONG Dazhao,et al. Study on mechanism of rock burst and early warning of typical steeply inclined coal seams[J]. Coal Science and Technology,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002
[22] 许振浩,李术才,李利平,等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学,2011,32(6):1757−1766. doi: 10.3969/j.issn.1000-7598.2011.06.027 XU Zhenhao,LI Shucai,LI Liping,et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. Rock and Soil Mechanics,2011,32(6):1757−1766. doi: 10.3969/j.issn.1000-7598.2011.06.027
-
期刊类型引用(19)
1. 王龙伟,杨亦浩. 寺河矿区煤层气穿采空区水平井技术应用. 能源与节能. 2025(01): 35-39 . 百度学术
2. 张学博,王攀,王豪. 小断层影响下的采空区瓦斯运移规律研究. 煤炭科学技术. 2024(04): 214-230 . 本站查看
3. 徐影,李亚辉,杨樱花,刘卫娟. 穿采空区煤层气水平井井眼与管柱相容性分析及应用研究. 煤. 2024(09): 28-31 . 百度学术
4. 李延河,倪小明,贾晋生. 平顶山矿区多煤层卸压立体抽采模式与工程示范. 煤炭科学技术. 2024(09): 162-172 . 本站查看
5. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 本站查看
6. 苏善博,张培河,李林,降文萍,王正喜. 寺河井田穿煤柱下组煤煤层气水平井钻井技术研究. 煤炭工程. 2023(03): 78-83 . 百度学术
7. 徐华龙. 煤与煤层气协调开发三维仿真设计研究. 中国煤炭. 2023(05): 87-93 . 百度学术
8. 甄少杰. 井下煤层气抽采工艺的优化研究. 山西化工. 2023(11): 177-178+181 . 百度学术
9. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 . 百度学术
10. 孟召平,李国富,田永东,王宇红,李超,陈浩越,吴迪. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展. 煤炭科学技术. 2022(01): 204-211 . 本站查看
11. 石雷雷,张辉,闫丰. 晋城煤层气产业示范基地建设存在的质量问题和发展路径研究. 中国石油和化工标准与质量. 2022(04): 21-23 . 百度学术
12. 周显俊,李国富,李超,王争,李江彪. 煤矿采空区煤层气地面开发技术及工程应用——以沁水盆地晋城矿区为例. 煤田地质与勘探. 2022(05): 66-72 . 百度学术
13. 张江华,秦勇,李国富,孟召平,李国庆,李军军,季长江,陈召英. 煤炭采空区下伏煤层气资源潜力及抽采效果——以山西省晋城西部矿区为例. 天然气工业. 2022(06): 146-153 . 百度学术
14. 崔晓松,周瑞,张凯. 沁水盆地寿阳西部地区煤层气资源潜力评价. 煤炭科学技术. 2022(07): 224-232 . 本站查看
15. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看
16. 姚红生,杨松,刘晓,申建,张占龙. 低效煤层气井多次压裂增效开发技术研究. 煤炭科学技术. 2022(09): 121-129 . 本站查看
17. 李国富,张遂安,季长江,李军军,王朝帅. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系. 煤炭科学技术. 2022(12): 14-25 . 本站查看
18. 降文萍,柴建禄,张群,张培河,姜在炳. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展. 煤炭科学技术. 2022(12): 50-61 . 本站查看
19. 降文萍,张培河,刘娜娜,王晶,杜新锋,杨刚,何庆宏. 我国煤层气标准体系构建. 煤炭工程. 2021(08): 1-6 . 百度学术
其他类型引用(3)