高级检索

基于LNMR的表面活性剂对高阶煤孔隙润湿效果研究

杨明, 张涛, 张学博, 徐靖, 韩龙祥, 马骥

杨 明,张 涛,张学博,等. 基于LNMR的表面活性剂对高阶煤孔隙润湿效果研究[J]. 煤炭科学技术,2023,51(S2):111−120

. DOI: 10.12438/cst.2022-1974
引用本文:

杨 明,张 涛,张学博,等. 基于LNMR的表面活性剂对高阶煤孔隙润湿效果研究[J]. 煤炭科学技术,2023,51(S2):111−120

. DOI: 10.12438/cst.2022-1974

YANG Ming,ZHANG Tao,ZHANG Xuebo,et al. Study on the effect of NMR-based surfactants on pore wetting of high-order coal[J]. Coal Science and Technology,2023,51(S2):111−120

. DOI: 10.12438/cst.2022-1974
Citation:

YANG Ming,ZHANG Tao,ZHANG Xuebo,et al. Study on the effect of NMR-based surfactants on pore wetting of high-order coal[J]. Coal Science and Technology,2023,51(S2):111−120

. DOI: 10.12438/cst.2022-1974

基于LNMR的表面活性剂对高阶煤孔隙润湿效果研究

基金项目: 

国家自然科学基金资助项目(52274186,52274187);河南省高校基本科研业务费专项资金资助项目(NSFRF200317)

详细信息
    作者简介:

    杨明: (1982—),男,安徽怀宁人,教授,博士。E-mail:yming@hpu.edu.cn

    通讯作者:

    张学博: (1981—),男,河南民权人,副教授,博士。E-mail:zhxbhpu@163.com

  • 中图分类号: TD714

Study on the effect of NMR-based surfactants on pore wetting of high-order coal

Funds: 

National Natural Science Foundation of China(52274186,52274187); Basic Research Funds for Universities in Henan Province (NSFRF200317)

  • 摘要:

    高阶煤微小孔发育但具有弱吸水性的特征。从微小孔隙角度出发研究不同类型表面活性剂对高阶煤润湿性的改善效果,对高阶煤防尘降尘具有重要意义。以山西赵庄矿、贵州糯东矿高阶煤为研究对象,利用低场核磁共振测定系统(LNMR),开展煤样沉降试验、煤样−溶液渗吸孔隙水分布测定试验,分析表面活性剂溶液在不同复配比例条件下对高阶煤样的微小孔隙润湿性改善规律。结果表明:8种表面活性剂单体溶液沉降中,煤样在表面活性剂溶液中的沉降速率随着质量分数的增加逐步增加,在质量分数0.5%时各溶液的煤样沉降速率趋于平衡,其中曲拉通X-100(X-100)、脂肪醇聚氧乙烯醚(JFC-U)和十二烷基苯磺酸钠(SDBS)的沉降效果较其他表面活性剂溶液要快。基于低场核磁共振试验T2谱煤样润湿双定量评价方法,研究发现3种优选的表面活性剂溶液在质量分数均为0.5%的条件下,采取体积比为1∶1、1∶2、2∶1的复配方式时,复配溶液对高阶煤微小孔隙润湿性均起到了协同增效作用,且复配表面活性剂溶液的润湿改善效果均高于表面活性剂单体溶液;非离子表面活性剂JFC-U溶液与阴离子表面活性剂SDBS溶液进行体积比为2∶1复配时对于改善高阶煤润湿的效果较为明显;非离子型与非离子型表面活性剂的复配溶液中,复配表面活性剂溶液对煤样的润湿改善效果与JFC-U的含量呈正相关。研究结果可为煤矿湿式防尘时表面活性剂类型的选取以及煤样润湿性的研究方法提供参考。

    Abstract:

    High-order coal has the characteristics of weak water absorption due to the development of micropores. From the perspective of micropores, it is of great significance to study the improvement effect of different types of surfactants on the wettability of high-end coal, which is of great significance for dust prevention and dust reduction of high-end coal. Taking the high-order coal of Zhaozhuang Mine in Shanxi Province and Nuodong Mine in Guizhou as the research object, the low-field nuclear magnetic resonance (LNMR) measurement system was used to carry out the coal sample sedimentation experiment and the coal sample-solution permeation pore water distribution determination experiment, and analyze the improvement law of micropore wettability of surfactant solution on high-order coal samples under different compound ratios. The results show that: In the sedimentation of eight surfactant monomer solutions, the sedimentation rate of coal samples in surfactant solution gradually increased with the increase of mass fraction, and the sedimentation rate of coal samples in each solution tended to balance at 0.5% mass fraction, among which the sedimentation effect of Trolatong X-100 (X-100), fatty alcohol polyoxyethylene ether (JFC-U) and sodium dodecyl benzene sulfonate (SDBS) was faster than that of other surfactant solutions. Based on the low-field NMR experiment T2 spectroscopy, a dual quantitative evaluation method was established, and it was found that when the three preferred surfactant solutions were compounded with volume ratios of 1∶1, 1∶2 and 2∶1 under the condition that the mass fraction was 0.5%, the compound solution played a synergistic role in the wettability of the micropores of high-order coal, and the wetting improvement effect of the compound surfactant solution was higher than that of the surfactant monomer solution. When the volume ratio of the nonionic surfactant JFC-U solution and the anionic surfactant SDBS solution were compounded 2∶1, the effect on improving the wetting of high-order coal was obvious. In the compound solution of nonionic and nonionic surfactants, the wetting improvement effect of compound surfactant solution on coal samples was positively correlated with the content of JFC-U. The research results can provide a reference for the selection of surfactant types and the research methods of coal sample wettability during wet dust control in coal mines.

  • 图  1   不同表面活性剂对GZ煤样的沉降速率变化

    Figure  1.   Changes in sedimentation rate of GZ coal samples by different surfactants

    图  2   不同表面活性剂对ZZ煤样的沉降速率变化

    Figure  2.   Changes in sedimentation rate of ZZ coal samples by different surfactants

    图  3   水量与孔隙信号量之间的关系

    Figure  3.   Relationship between water amount and pore signal amount

    图  4   75~80 μm GZ及ZZ煤样蒸馏水渗吸T2

    Figure  4.   75−80 μm GZ and ZZ coal-like distilled water osmotic T2 spectra

    图  5   75~80 μm GZ、ZZ煤样表面活性剂单体溶液渗吸T2

    Figure  5.   75−80 μm GZ, ZZ coal sample surfactant monomer solution osmosis T2 spectrum

    图  6   75~80 μm GZ煤表面活性剂复配渗吸T2

    Figure  6.   75−80 μm GZ coal surfactant compound osption T2 spectrum

    图  7   75~80 μm ZZ煤表面活性剂渗吸T2

    Figure  7.   75−80 μm GZ coal surfactant compound osption T2 spectrum

    图  8   不同表面活性剂复配溶液作用下ZZ及GZ微小孔的润湿率变化

    Figure  8.   Changes in wetting rate of ZZ and GZ micropores under the effect of different surfactant compound solutions

    图  9   表面活性剂作用下GZ、ZZ的孔隙水流动速率

    Figure  9.   Pore water flow rate of GZ and ZZ under the effect of surfactant

    表  1   煤样基本参数测定结果

    Table  1   Results of determination of basic parameters of coal sample

    煤样 工业分析 最大镜质组反射率/% 接触角/(°)
    Mad/% Aad/% Vdaf/% FCad/%
    GZ 0.65 10.25 10.40 79.83 2.89 75.8
    ZZ 0.77 11.85 13.37 75.7 2.21 71.2
    下载: 导出CSV

    表  2   试验所用的表面活性剂

    Table  2   Surfactants used in experiment

    表面活性剂 代号 类型
    曲拉通X-100 X-100 非离子型
    脂肪醇聚氧乙烯醚 JFC-U 非离子型
    椰子油脂肪酸二乙醇酰胺 CDEA 非离子型
    烷基糖苷 APG 非离子型
    十二烷基苯磺酸钠 SDBS 阴离子型
    十二烷基硫酸钠 SDS 阴离子型
    仲烷基磺酸钠 SAS-60 阴离子型
    脂肪醇聚氧乙烯醚硫酸钠 AES 阴离子型
    下载: 导出CSV
  • [1] 李仲文. 不同表面活性剂对晋城无烟煤的润湿降尘机制研究[D]. 太原:太原理工大学,2021:5-6.

    LI Zhongwen. Study on the wetting and dust reduction mechanism of different surfactants on Jincheng anthracite [D]. Taiyuan:Taiyuan University of Technology,2021:5-6.

    [2] 金龙哲. 我国作业场所粉尘职业危害现状与对策分析[J]. 安全,2020,41(1):1−6.

    JIN Longzhe. The occupational hazards and strategy analysis of dust exposure in workplace in China[J]. Safety & Security,2020,41(1):1−6.

    [3] 梁慧婷. 中国煤炭产业现状分析[J]. 农村经济与科技,2019,303(14):113-114.

    LIANG Huiting. Analysis of the current situation of China's coal industry [J]. Rural Economy and Science-Technology,2019,303(14):113-114.

    [4] 刘 峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213.

    LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.

    [5] 王东华. 煤矿粉尘危害程度评价方法改进及应用研究[D]. 北京:首都经济贸易大学,2019:9−17.

    WANG Donghua. Improvement and application research on evaluation method of coal mine dust hazard degree[D]. Beijing:Capital University of Economics and Business,2019:9−17.

    [6] 袁 亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1−7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1−7.

    [7] 王道涵,邹佳霖. 表面活性剂复配对煤尘润湿性能的影响研究[J]. 矿业安全与环保,2019,46(2):25−28. doi: 10.3969/j.issn.1008-4495.2019.02.006

    WANG Daohan,ZOU Jialin. Study on the effect of compound surfac-tant on coal dust wettability[J]. Mining Safety & Environmental Protection,2019,46(2):25−28. doi: 10.3969/j.issn.1008-4495.2019.02.006

    [8] 李娇阳,陆银平,赵一星. 表面活性剂对煤润湿性的改性实验[J]. 煤炭技术,2016,35(8):189−191.

    LI Jiaoyang,LU Yinping,ZHAO Yixing. Modification experiment of surfactant on coal wettability[J]. Coal Technology,2016,35(8):189−191.

    [9] 沈笑君,刘元晖. 表面活性剂在煤浮选中应用研究[J]. 中国矿业,2009,18(8):82−83. doi: 10.3969/j.issn.1004-4051.2009.08.023

    SHEN Xiaojun,LIU Yuanhui. Study on the application of surfactant incoal flotation[J]. China Mining Magazine,2009,18(8):82−83 doi: 10.3969/j.issn.1004-4051.2009.08.023

    [10] 杨 静,谭允祯,王振华,等. 煤尘表面特性及润湿机理的研究[J]. 煤炭学报,2007,32(7):737−740. doi: 10.3321/j.issn:0253-9993.2007.07.014

    YANG Jing,TAN Yunzhen,WANG Zhenhua,et al. Study on the coal dust surface characteristics and wetting mechanism[J]. Journal of China Coal Society,2007,32(7):737−740 doi: 10.3321/j.issn:0253-9993.2007.07.014

    [11] 程 燕,蒋仲安,陈仲秋,等. 煤层注水中添加表面活性剂的研究[J]. 煤矿安全,2006,37(3):9−12. doi: 10.3969/j.issn.1003-496X.2006.03.003

    CHENG Yan,JIANG Zhongan,CHEN Zhongqiu,et al. Coal seam water injec-tion adding surfactant research[J]. Safety in Coal Mines,2006,37(3):9−12. doi: 10.3969/j.issn.1003-496X.2006.03.003

    [12] 苟尚旭,刘荣华,王鹏飞,等. 表面活性剂对煤的润湿性影响[J]. 矿业工程研究,2016,31(4):24−27.

    GOU Shangxu,LIU Ronghua,WANG Pengfei,et al. Infiltration experiment of surfactant on coal [J]. Mineral Engineering Research,2016,31(4):24−37.

    [13] 葛少成,孙丽英,荆德吉,等. 气液两相喷雾荷质比影响因素实验和预测研究[J]. 中国安全生产科学技术,2018,14(5):61−66.

    GE Shaocheng,SUN Liying,JING Deji,et al. Experimental and prediction study on influence factors of charge mass ratio for gas-liquid two-phase spray[J]. Journal of Safety Science and Technology,2018,14(5):61−66.

    [14] 翁安琦,袁树杰,王晓楠,等. 煤层注水降尘中表面活性剂复配应用研究[J]. 中国安全科学学报,2020,30(10):90−95.

    WENG Anqi,YUAN Shujie,WANG Xiaonan,et al. Study on application of surfactant compound in coal seam water injection for dustreduction[J]. China Safety Science Journal,2020,30(10):90−95.

    [15] 王成勇,邢耀文,夏阳超,等. 离子型表面活性剂对低阶煤润湿性的调控机制[J]. 煤炭学报,2022,47(8):3101−3107.

    WANG Chengyong,XING Yaowen,XIA Yangchao,et al. Regulation mechanism of ionic surfactant on wettability of low rank coal[J]. Journal of China Coal Society,2022,47(8):3101−3107.

    [16]

    TESSUM M W,RAYNOR P C. Effects of spray surfactant and particle charge on respirable coal dust capture[J]. Safety and Health at Work,2017,8(3):296−305. doi: 10.1016/j.shaw.2016.12.006

    [17] 赵 璐,张 蕾,文 欣,等. 表面活性剂润湿低阶煤煤尘的性能及作用机理[J]. 西安科技大学学报,2021,41(2):323−330.

    ZHAO Lu,ZHANG Lei,WEN Xin,et al. Wetting ability of surfactants on low-rank coal and wetting mechanism[J]. Journal of Xi,an University of Science and Technology,2021,41(2):323−330.

    [18] 李皓伟,王兆丰,岳基伟,等. 不同类型表面活性剂对煤体的润湿性研究[J]. 煤矿安全,2019,50(3):22−25.

    LI Haowei,WANG Zhaofeng,YUE Jiwei,et al. Study on wettability of coal by different surfactants[J]. Safety in Coal Mines,2019,50(3):22−25.

    [19]

    GAO Z,FAN Y,HU Q,et al. A review of shale wettability characterization using spontaneous imbibition experiments[J]. Marine and Petroleum Geology,2019,109:330−338. doi: 10.1016/j.marpetgeo.2019.06.035

    [20] 桂 哲,刘荣华,王鹏飞,等. 表面活性剂对煤尘润湿性能的影响[J]. 黑龙江科技大学学报,2016,26(5):513−517.

    GUI Zhe,LIU Ronghua,WANG Pengfei,et al. Experimental study on surfactant effect on coal dust wettability[J]. Journal of Heilongjiang University of Science & Technology,2016,26(5):513−517.

    [21] 翁安琦. 表面活性剂复配对焦煤润湿性的影响研究[D]. 淮南:安徽理工大学,2021:7−46.

    WENG Anqi. Study on effect of surfactant mixture on the wettability of coking coal [D]. Huainan:An Hui University of Science and Techbology,2021:7−46.

    [22]

    Jibardhan M,Debadutta D,Akshaya K,et al. Role of maceral composition on the formulation of concentrated coal-Water slurry using a natural surfactant[J]. Materials Today:Proceedings,2019,9(3):542−550.

    [23]

    MISHRA S K,PANDA D. Studies on the adsorption of Brij-35 and CTAB at the coal-water interface[J]. Journal of Colloid and Interface Science,2005,283:294−299. doi: 10.1016/j.jcis.2004.09.017

    [24] 裴 叶,刘荣华,王鹏飞,等. 表面活性剂复配对煤尘润湿性能影响[J]. 矿业工程研究,2018,33(2):46−50.

    PEI Ye,LIU Ronghua,WANG Pengfei,et al. Effect of surfactant combination on wettability of coal dust[J]. Mineral Engineering Research,2018,33(2):46−50.

    [25] 张京兆,王建国,王延秋,等. 复配型表面活性剂对煤尘润湿效果的优选研究[J]. 矿业研究与开发,2021,41(3):142−146.

    ZHANG Jingzhao,WANG Jianguo,WANG Yanqiu,et al. Optimal study of the wetting effect of compound surfactants on coal dust[J]. Mining Research and Development,2021,41(3):142−146.

    [26] 张文庆,吕 品,吕坤坤. 表面活性剂复配煤尘亲水性实验研究[J]. 煤炭技术,2014,33(9):288−290.

    ZHANG Wenqing,LV Pin,LV Kunkun. Experimental study on compound surfactant with coal dust hydrophilicity[J]. Coal Technology,2014,33(9):288−290.

    [27] 谢然红,肖立志,傅少庆. 饱和水岩石核磁共振表面弛豫温度特性[J]. 中国石油大学学报(自然科学版),2008,32(2):44−46.

    XIE Ranhong,XIAO Lizhi,FU Shaoqing. Temperature effect of NMR surface relaxation in water saturated rocks[J]. Journal of China University of Petroleum(Edition of Natural Science),2008,32(2):44−46.

    [28] 龚国波,孙伯勤,刘买利,等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波谱学杂志,2006,23(3):379−395.

    GONG Guobo,SUN Boqin,LIU Maili,et al. NMR relaxation of fluids in core pore media[J]. Chinese Journal of Magnetic Resonance,2006,23(3):379−395.

    [29] 翟 成,孙 勇,范宜仁,等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报,2022,47(02):828−848.

    ZHAI Cheng,SUN Yong,FAN Yiren,et al. Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore steucture[J]. Journal of China Coal Society,2022,47(02):828−848.

    [30] 夏文成, 毛玉强. 基于低场核磁共振表征的矿物孔隙润湿规律[J]. 煤炭学报, 2021, 46(2): 602−613.

    XIA Wencheng, MAO Yuqiang. Pore wetting law of minerals by 1H LF-NMR characterization.[J]. Journal of China Coal Society, 2021, 46(2): 602−613.

    [31] 孙晓晓. CO2增产煤层过程流体微观动态作用机理研究[D]. 北京:中国地质大学,2018:72−80.

    SUN Xiaoxiao. Study on the Dynamic Microscopic Interactions between Reservoir Fluids during CO2 Enhance Coalbed Methane (CO2-ECBM) Recovery[D]. Beijing:China University of Geosciences,2018:72−80.

    [32] 姚艳斌,刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术,2016,44(6):14−22.

    YAO Yanbin,LIU Dameng. Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J]. Coal Science and Technology,2016,44(6):14−22.

    [33] 孙晓晓,姚艳斌,陈基瑜,等. 基于低场核磁共振的煤润湿性分析[J]. 现代地质,2015,29(1):190−197.

    SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al. Determination of coal wettability by using low-field nuclear magnetic resonance[J]. Geoscience,2015,29(1):190−197.

    [34]

    GUO R. Transport phenomena in coalbeds[D]. Calgary:University of Calgary,2008:246−329.

图(9)  /  表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  2
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2023-12-29

目录

    /

    返回文章
    返回