高级检索

高延伸率锚索动态力学特性及工程应用

付玉凯, 吴拥政, 周鹏赫, 孙卓越, 李军臣

付玉凯,吴拥政,周鹏赫,等. 高延伸率锚索动态力学特性及工程应用[J]. 煤炭科学技术,2024,52(2):49−62. DOI: 10.12438/cst.2023-0093
引用本文: 付玉凯,吴拥政,周鹏赫,等. 高延伸率锚索动态力学特性及工程应用[J]. 煤炭科学技术,2024,52(2):49−62. DOI: 10.12438/cst.2023-0093
FU Yukai,WU Yongzheng,ZHOU Penghe,et al. Dynamic mechanical characteristics and engineering application of high elongation anchor cable[J]. Coal Science and Technology,2024,52(2):49−62. DOI: 10.12438/cst.2023-0093
Citation: FU Yukai,WU Yongzheng,ZHOU Penghe,et al. Dynamic mechanical characteristics and engineering application of high elongation anchor cable[J]. Coal Science and Technology,2024,52(2):49−62. DOI: 10.12438/cst.2023-0093

高延伸率锚索动态力学特性及工程应用

基金项目: 国家自然科学基金资助项目(52174080,52274123);天地科技重点基金资助项目(2022-2-TD-ZD016)
详细信息
    作者简介:

    付玉凯: (1985—),男,河南安阳人,副研究员,博士。E-mail:543913570@qq.com

  • 中图分类号: TD353.6

Dynamic mechanical characteristics and engineering application of high elongation anchor cable

  • 摘要:

    传统锚索延伸率低、抗冲击能力差,在强冲击载荷作用下易出现脆性破断失效,导致巷道出现冒顶、冲击地压事故等问题。基于此,自主开发了具有高强度、高延伸率及高抗冲击等特性的锚索,采用实验室试验、理论分析及现场试验等综合手段,分析了高延伸率锚索的静、动载力学性能,研究了高延伸率锚索化学成分、金相组织和夹杂物与普通锚索的差异,提出了高延伸率锚索支护吸能原理,并将高延伸率锚索在现场进行了应用。研究结果表明:静载作用下,高延伸率锚索抗拉强度为1 790 MPa,最大力总延伸率8.1%,是普通锚索的1.61~2.25倍;动载作用下,高延伸率锚索钢丝不易散开,破断载荷与普通锚索基本相同,断后伸长率分别是锚索A、B、C的1.82倍、1.68倍和1.52倍,单位长度吸能量分别是锚索A、B、C的2.54倍、1.99倍和1.70倍,高延伸率锚索塑性变形能力更强,吸能能力更高。高延伸率锚索通过在冶炼和轧制工艺过程中控制有害化学元素和有益化学元素含量、细化金相组织及减少夹杂物尺寸和数量等方式提高了钢丝的塑性变形能力,进而提高锚索整体的抗冲击性能。高延伸率锚索在现场应用过程中经受了多次大能量冲击后,巷道支护效果良好,高延伸率锚索未出现破断,有效控制了巷道冲击破坏。

    Abstract:

    The traditional anchor cable has low elongation, poor impact resistance, and is prone to brittle fracture failure under strong impact load, leading to roof fall, rock burst accidents and other problems in the roadway. Based on this, the anchor cable with high strength, high elongation and high impact resistance was independently developed. The static and dynamic mechanical properties of the anchor cable with high elongation were analyzed by laboratory tests, theoretical analysis and field tests. The differences between high elongation anchor cable and ordinary anchor cable in chemical composition, metallographic structure and inclusion are also studied. Finally, the energy absorption principle of high elongation anchor cable support is proposed, and the high elongation anchor cable is applied in the field. The results show that: Under static load, the tensile strength of high elongation anchor cable is 1790 MPa, the total elongation of maximum force is 8.1%, which is 1.61−2.25 times of that of ordinary anchor cable. Under dynamic load, the steel wire of high elongation anchor cable is not easy to disperse, and the breaking load is basically the same as that of ordinary anchor cable. The elongation after breaking is 1.82 times, 1.68 times and 1.52 times of that of anchor cable A, B and C, respectively. The energy absorption per unit length is 2.54 times, 1.99 times and 1.70 times of that of anchor cable A, B and C, respectively. The high elongation anchor cable has stronger plastic deformation capacity and higher energy absorption capacity. The high elongation anchor cable improves the plastic deformation ability of the steel wire by controlling the content of harmful and beneficial chemical elements, refining the metallographic structure and reducing the size and quantity of inclusions in the smelting and rolling process, thereby improving the overall impact resistance of the anchor cable. After the high elongation anchor cable has withstood many large energy shocks in the field application process, the roadway support effect is good, and the high elongation anchor cable has not broken, effectively controlling the roadway impact damage.

  • 图  1   常规锚索静载拉伸破断照片

    Figure  1.   Photo of static tensile fracture of cables

    图  2   高延伸率锚索实物

    Figure  2.   Physical image of high elongation cables

    图  3   落锤冲击试验系统

    Figure  3.   Drop hammer impact test system

    图  4   锚索试样冲击后变形破坏情况

    Figure  4.   Deformation and damage of anchor cable sample after impact

    图  5   锚索试样冲击力–位移曲线

    Figure  5.   Impact force displacement curve of anchor cable sample

    图  6   4种锚索断后伸长率和吸能特性对比

    Figure  6.   Comparison of elongation and energy absorption characteristics of four kinds of anchor cables after fracture

    图  7   4种锚索金相组织形貌

    Figure  7.   Metallographic morphology of 4 kinds of anchor cables

    图  8   4种锚索晶粒形貌

    Figure  8.   Grain morphology of four kinds of anchor cables

    图  9   4种锚索夹杂物形态

    Figure  9.   Inclusion morphology of kinds of anchor cables

    图  10   锚索的工作阻力特性曲线

    Figure  10.   Working resistance characteristic curve of anchor cable

    图  11   锚杆和锚索联合支护吸能曲线示意

    Figure  11.   Schematic diagram of energy absorption curve for combined support of bolts and cables

    图  12   义马矿区典型巷道变形破坏情况

    Figure  12.   Deformation and failure of typical roadways in Yima mining area

    图  13   高延伸率锚索巷道支护效果

    Figure  13.   Field application effect of high elongation anchor cable

    图  14   锚索受力和冲击能量关系曲线

    Figure  14.   Relation curve between axial force and impact energy of anchor cable

    表  1   巷道冲击地压典型事故案例

    Table  1   Typical accident cases of roadway rock burst

    基本信息内容描述现场图片
    义马矿区耿村矿“12·22”冲击地压事故工程概况事故发生在13230工作面下巷,位于东三采区(2–3)轨道下山东翼,北侧为采空区,西侧和南侧均为未开采的2–3煤,埋深700 m,煤层厚度10.4 m,煤层倾角9°~13°。巷道为留底煤布置,底煤厚度0.5~6.20 m。直接顶为泥岩,平均厚度31.5 m,泥岩上部存在巨厚砾岩,厚度380 m。巷道采用锚网索+36U棚复合支护,锚索直径17.8 mm,最大力总延伸率3.5%。未冲击区域顶板锚索受力在170~350 kN,巷帮锚索受力在150~210 kN
    围岩变形
    破坏特征
    “12·22”冲击地压事故造成工作面运输巷道超前工作面160 m巷道被损毁,震级2.1级,冲击能量6.3×105 J,巷道高度由冲击的4.15 m降低至1.7 m,宽度由冲击前的6.2 m降低至1.8 m。顶板大量锚索出现破断,液压抬棚损坏30架,转载机移位、翻倒,输送带侧翻、压死
    门克庆煤矿“4·8”冲击地压事故工程概况事故发生在3102工作面回风巷,回风巷煤柱尺寸35 m,埋深677~707 m。直接顶为粉砂岩,厚度4.70 m,基本顶为细砂岩,厚度18.48 m。直接底为粉砂岩,厚度10.29 m,基本底为细砂岩,厚度21.90 m。煤层上部35 m处存在一层厚硬中粒砂岩,厚度达到62 m。巷道采用锚网索支护,锚索直径21.8 mm,最大力总延伸率5.0%。未冲击区域顶板锚索受力在140~260 kN,巷帮锚索受力在90~230 kN
    围岩变形
    破坏特征
    “4·8”冲击地压事故造成90 m巷道出现强烈破坏,监测到的冲击能量达3.3×107 J,工作面人员听到巨响煤炮,工作面支架工作阻力出现剧增,单体压弯、巷道顶板锚杆、锚索出现破断,巷道出现强烈变形,顶板下沉严重,帮部煤体抛出,底板隆起,巷道出现堵塞,局部区域巷道已闭合
    彬长胡家河矿“10·11”冲击地压事故工程概况事故发生在402104工作面回风巷,煤层厚度23 m,埋深650 m,煤柱尺寸40 m。直接顶为砂质泥岩,厚度6.03 m,基本顶为中砂岩,厚度35.95 m。直接底为炭质泥岩,厚度1.10 m,基本底为泥岩,厚度4.79 m。巷道采用锚网索支护,锚索直径21.8 mm,最大力总延伸率5.0%。未冲击区域顶板锚索受力在160~420 kN,巷帮锚索受力在130~260 kN
    围岩变形
    破坏特征
    “10·11”冲击地压事故造成70 m巷道严重破坏,监测到的冲击能量超过106 J,防冲支架出现不同程度的立柱弯折、爆缸等破坏,大量的锚杆和锚索出现破断失效,顶板严重下沉,巷帮鼓出,底板隆起,巷道严重地段出现闭合、堵塞
    吉林龙家堡煤矿“6·9”冲击地压事故工程概况事故发生在305综放工作面运输巷,距离开切眼85~305 m,主采3号煤层,煤层厚度10 m,煤层开采深度850~980 m。伪顶为炭质泥岩厚0.3 m,直接顶为黑色、灰色泥岩,厚5~30 m。巷道采用锚网索支护,锚索直径21.8 mm,最大力总延伸率5.0%。未冲击区域顶板锚索受力在160~280 kN,巷帮锚索受力在120~240 kN
    围岩变形
    破坏特征
    “6·9”冲击地压事故造成220 m巷道严重破坏,冲击能量达1.55×108 J,支架几乎全部以立柱弯曲、爆缸、折断等方式损坏,U型钢棚变形严重,部分被折断。部分锚杆被整体推出,锚索出现大量破断失效
    下载: 导出CSV

    表  2   锚索力学性能测试结果

    Table  2   Test results of mechanical properties of anchor cable bearing capacity

    型号 公称直径/mm 破断载荷/kN 抗拉强度/MPa 屈服强度/MPa 最大力总延伸率/%
    1×7股锚索 21.6 530 1860 1 600
    3.6
    21.6 532 1860 1 600
    3.5
    21.6 528 1860 1 620
    3.7
    1×19股锚索 21.8 560 1810 1570 5.0
    21.8 566 1820 1560 5.1
    21.8 554 1800 1560 5.0
    高延伸率锚索 21.8 560 1 790
    1 550
    8.2
    21.8 562 1 800
    1 550
    8.0
    21.8 561 1 790
    1 560
    8.1
    下载: 导出CSV

    表  3   4种锚索断后伸长率和单位长度吸能量

    Table  3   Elongation and energy absorption per unit length of four kinds of anchor cables after breaking

    锚索类型断后位移/mm断后伸长率/%单位长度吸能/kJ
    锚索A46.802.466.01
    锚索B50.702.677.67
    锚索C56.002.958.95
    高延伸率锚索85.104.4815.24
    下载: 导出CSV

    表  4   锚索钢材化学成分

    Table  4   Chemical composition of anchor cable steel

    锚索类型 各元素质量分数/%
    C Si Mn P S Cr Ni Cu
    锚索A 0.84 0.19 0.77 0.010 0.008 5 0.16 0.018 0.041
    锚索B 0.83 0.20 0.78 0.013 0.011 0.17 0.027 0.060
    锚索C 0.82 0.22 0.62 0.014 0.004 1 0.27 0.012 0.014
    高延伸率锚索 0.79 0.22 0.83 0.011 0.003 6 0.20 0.011 0.014
    下载: 导出CSV

    表  5   4种锚索夹杂物等级

    Table  5   Inclusion level of 4 kinds of anchor cables

    锚索类型非金属夹杂物(等级)
    ABD
    锚索A1.52.50.5
    锚索B1.02.00.5
    锚索C1.02.00.5
    高延伸率锚索0.51.00.5
    下载: 导出CSV

    表  6   不同类型煤矿对锚索选择的要求

    Table  6   Requirements for cable selection in different types of coal mines

    巷道类型 锚索类型 锚索直径/mm 最大力总延伸率/%
    无冲击危险 普通锚索 18.9~21.8 3.5~5.0
    弱冲击危险 普通锚索 21.8 ≥5.0
    中等冲击危险 高延伸率锚索 21.8 ≥7.0
    强冲击危险 高延伸率锚索 21.8 ≥8.0
    下载: 导出CSV
  • [1] 康红普,吴拥政,何 杰,等. 深部冲击地压巷道锚杆支护作用研究与实践[J]. 煤炭学报,2015,40(10):2225−2233.

    KANG Hongpu,WU Yongzheng,HE Jie,et. al. Rock bolting performance and field practice in deep roadway with rock burst[J]. Journal of China Coal Society,2015,40(10):2225−2233.

    [2] 吴拥政,付玉凯,何 杰,等. 深部冲击地压巷道“卸压–支护–防护”协同防控原理与技术[J]. 煤炭学报,2021,46(1):132−144.

    WU Yongzheng,FU Yukai,HE Jie,et al. Principle and technology of “pressure relief-support-protection” collaborative prevention and control in deep rock burst roadway[J]. Journal of China Coal Society,2021,46(1):132−144.

    [3] 康红普,姜鹏飞,冯彦军,等. 煤矿巷道围岩卸压技术及应用[J]. 煤炭科学技术,2022,50(6):1−15.

    KANG Hongpu, JIANG Pengfei, FENG Yanjun,et al. Destressing technology for rock around coal mine roadways and its applications[J]. Coal Science and Technology,2022,50(6):1−15.

    [4] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813.

    HE Manchao,XIE Heping,PENG Suping,et. al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813.

    [5] 吴拥政,何 杰,王 洋. 特大断面冲击地压巷道破坏机理及控制技术研究[J]. 煤炭科学技术,2018,46(1):61−67.

    WU Yongzheng,HE Jie,WANG Yang. Study on failure mechanism and control technology of large cross section rockburst roadway[J]. Coal Science and Technology,2018,46(1):61−67.

    [6] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1−30.

    [7] 王 琦,何满潮,许 硕,等. 恒阻吸能锚杆力学特性与工程应用[J]. 煤炭学报,2022,47(4):1490−1500.

    WANG Qi,HE Manchao,XU Shuo,et al. Mechanical properties and engineering application of constant resistance energy absorbing bolt[J]. Journal of China Coal Society,2022,47( 4):1490−1500.

    [8] 吴拥政,付玉凯,郝登云. 加锚岩体侧向冲击载荷下动力响应规律研究[J]. 岩石力学与工程学报,2020,39(10):2014−2024.

    WU Yongzheng,FU Yukai,HAO Dengyun. Study on dynamic response law of anchored rock mass under lateral impact loads[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):2014−2024.

    [9] 付玉凯,鞠文君,吴拥政,等. 高冲击韧性锚杆吸能减冲原理及应用研究[J]. 煤炭科学技术,2019,47(11):68−75.

    FU Yukai,JU Wenjun,WU Yongzheng,et al. Study on principle application of energy absorption and bump reduction of high impact toughness rock bolt[J]. Coal Science and Technology,2019,47(11):68−75.

    [10] 何满潮,郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报,2014,33(7):1297−1308.

    HE Manchao,GUO Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1297−1308.

    [11] 康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术,2021,49(4):1−11.

    KANG Hongpu. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology,2021,49(4):1−11.

    [12]

    CAI M,KAISER P K. Rockburst support reference book volume I:rockburst phenomenon and support characteristics[M]. Sudbury:Laurentian University,2018:284–285.

    [13]

    SIMSER B,JOUGHIN W C,ORTLEPP W D. The performance of Brunswick Mine's rockburst support system during a severe seismic episode[J]. Journal South African Institute of Mining and Metallurgy,2002,102(4):217−223.

    [14] 赵兴东,朱乾坤,牛佳安,等. 一种新型J释能锚杆力学作用机制及其动力冲击实验研究[J]. 岩石力学与工程学报,2020,39(1):13−21.

    ZHAO Xingdong,ZHU Qiankun,NIU Jiaan,et al. Mechanical mechanism analyses and dynamic impact experimental tests of a kind of novel J energy-releasing bolts[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):13−21.

    [15]

    HYETT A J,BAWDEN W F,HEDRICK N,et al. A laboratory evaluation of the 25 mm garford bulb anchor for cable bolt reinforcement[J]. Cim Bulletin,1995,88(992):54−59.

    [16]

    OZBAY U,NEUGEBAUER E. In-situ pull testing of a yieldable rock bolt,ROOFEX[J]. Controlling Seismic Hazard and Sustainable Development of Deep Mines,2009,2:1081−1090.

    [17] 江 贝,王 琦,魏华勇,等. 地下工程吸能锚杆研究现状与展望[J]. 矿业科学学报,2021,6(5):569−580.

    JIANG Bei,WANG Qi,WEI Huayong,et al. Recent development and prospects of energy-absorbing bolt in underground engineering[J]. Journal of Mining Science and Technology,2021,6(5):569−580.

    [18] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报,2016,45(6):1071−1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Ming & Technology,2016,45(6):1071−1081.

    [19] 吴拥政,康红普,丁 吉,等. 超高强热处理锚杆开发与实践[J]. 煤炭学报,2015,40(2):308−313.

    WU Yongzheng,KANG Hongpu,DING Ji,et al. Development and application of ultrahigh-heat processed rock bolts[J]. Journal of China Coal Society,2015,40(2):308−313.

    [20] 付玉凯,吴拥政,鞠文君,等. 锚杆侧向冲击载荷下动力响应及抗冲击机理[J]. 煤炭学报,2016,41(7):1651−1658.

    FU Yukai,WU Yongzheng,JU Wenjun,et al. Response and impact mechanism of rock bolt under lateral dynamic impact load[J]. Journal of China Coal Society,2016,41(7):1651−1658.

    [21] 康红普,杨景贺,姜鹏飞. 锚索力学性能测试与分析[J]. 煤炭科学技术,2015,43(6):29−33.

    KANG Hongpu,YANG Jinghe,JIANG Pengfei. Tests and analysis on mechanical properties for cable bolts[J]. Coal Science and Technology,2015,43(6):29−33.

    [22] 付玉凯,鞠文君,吴拥政,等. 深部回采巷道锚杆(索)防冲吸能机理与实践[J]. 煤炭学报,2020,45(S2):609−617.

    FU Yukai,JU Wenjun,WU Yongzheng,et al. Mechanism and practice of energy absorption and anti-impact of bolt(cable) in deep mining roadway[J]. Journal of China Coal Society,2020,45(S2):609−617.

    [23] 焦建康,鞠文君,吴拥政,等. 动载冲击地压巷道围岩稳定性多层次控制技术[J]. 煤炭科学技术,2019,47(12):10−17.

    JIAO Jiankang,JU Wenjun,WU Yongzheng,et al. Multi-layer control technologies for surrounding rock stability of dynamic-loading rock burst roadway[J]. Coal Science and Technology,2019,47(12):10−17.

    [24] 何满潮,王 炯,孙晓明,等. 负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J]. 煤炭学报,2014,39(2):214−221.

    HE Manchao,WANG Jiong,SUN Xiaoming,et al. Mechanics characteristics and applications of prevention and control rock bursts of the negative poisson’s ratio effect anchor[J]. Journal of China Coal Society,2014,39(2):214−221.

    [25] 吴拥政,付玉凯,张月生,张月祥,刘立军,王淑华,等. 一种钢绞线及其制法和应用[P]. 中国:CN111112353B,2021–10–01.
    [26] 张振全,张明博. 预应力钢绞线SWRH82B锥形断裂机理及优化研究[J]. 炼钢,2021,37(3):74−80.

    ZHANG Zhenquan,ZHANG Mingbo. Study on mechanism and optimization of cone fracture of SWRH82B prestressed steel strand[J]. Steel Making,2021,37(3):74−80.

    [27] 王新华. 钢铁冶金:炼钢学[M]. 北京:高等教育出版社,2007.
    [28] 康红普. 煤巷锚杆支护成套技术研究与实践[J]. 岩石力学与工程学报,2005,24(21):3959−3964.

    KANG Hongpu. Study and application of complete rock bolting technology to coal roadway[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21):3959−3964.

    [29] 康红普,徐 刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(1):013501.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(1):013501.

图(14)  /  表(6)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  18
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 录用日期:  2023-02-24
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-02-22

目录

    /

    返回文章
    返回