高级检索

宁正矿区新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水危险性评价

马小勇, 程振雨, 崔俊峰, 韩健, 殷裁云

马小勇,程振雨,崔俊峰,等. 宁正矿区新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水危险性评价[J]. 煤炭科学技术,2023,51(S1):298−309

. DOI: 10.12438/cst.2023-0919
引用本文:

马小勇,程振雨,崔俊峰,等. 宁正矿区新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水危险性评价[J]. 煤炭科学技术,2023,51(S1):298−309

. DOI: 10.12438/cst.2023-0919

MA Xiaoyong,CHENG Zhenyu,CUI Junfeng,et al. Risk assessment of roof water inrush in No. 8 coal seam of Jurassic system Yan'an Formation in the first mining area of Xinzhuang Coal Mine in Ningzheng Mining Area[J]. Coal Science and Technology,2023,51(S1):298−309

. DOI: 10.12438/cst.2023-0919
Citation:

MA Xiaoyong,CHENG Zhenyu,CUI Junfeng,et al. Risk assessment of roof water inrush in No. 8 coal seam of Jurassic system Yan'an Formation in the first mining area of Xinzhuang Coal Mine in Ningzheng Mining Area[J]. Coal Science and Technology,2023,51(S1):298−309

. DOI: 10.12438/cst.2023-0919

宁正矿区新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水危险性评价

基金项目: 

华能集团总部科技资助项目(HNKJ20-H49)

详细信息
    作者简介:

    马小勇: (1977—),男,甘肃华亭人,高级工程师,学士。E-mail:871586657@qq.com

    通讯作者:

    程振雨: (1987—),男,河北深州人,工程师,学士。E-mail:605205957@qq.com

  • 中图分类号: TD745

Risk assessment of roof water inrush in No. 8 coal seam of Jurassic system Yan'an Formation in the first mining area of Xinzhuang Coal Mine in Ningzheng Mining Area

Funds: 

Technology Project of China Huaneng Group Co., Ltd. (HNKJ20-H49)

  • 摘要:

    针对新庄矿井水文地质条件特别是矿井水的涌(突)水水源和机理认识不清,直接影响新庄煤矿的安全、高效、绿色开采这一问题,通过水质分析和计算导水裂隙带发育高度,判定新庄矿井8号煤层顶板涌(突)水水源;同时在含水层的厚度、单位涌水量、物探含水层富水异常区、钻孔消耗量、岩芯采取率、地层脆塑性比6个主控因素的含水层富水性分析和综放开采条件下冒裂安全性分析基础上,通过多结果叠合对首采区8号煤层顶板涌(突)水危险性进行评价。结果表明:矿井顶板涌(突)水水源为下白垩统志丹群洛河组砂岩孔隙−裂隙含水层和中侏罗统直罗组、延安组上、中部(煤8层顶板以上)砂岩复合承压含水层,其中下白垩统志丹群洛河组砂岩孔隙−裂隙含水层是主要致灾水源。首采区内8号煤层导水裂隙带发育高度均能沟通洛河组砂岩含水层,首采区全区域为冒裂危险区。8号煤层顶板涌(突)水危险区中Ⅰ区主要分布在首采区的北部及中西部,Ⅱ区主要分布在首采区的中部及中西部,Ⅲ区主要分布在首采区的中东部及南部,Ⅳ区主要分布在首采区的东部及南部。

    Abstract:

    The unclear understanding of the hydrogeological conditions of Xinzhuang Coal Mine, especially the water source and mechanism of mine water inrush, directly affects the safety, efficiency, and green mining of Xinzhuang Coal Mine.This time, through water quality analysis and calculation of the development height of the water conducting fracture zone, it is determined that the water source of the roof of the No.8 coal seam in Xinzhuang Coal Mine is water inrush; At the same time, based on the analysis of aquifer water abundance based on six main control factors: aquifer thickness, unit water inflow, geophysical exploration aquifer water abundance anomaly area, borehole consumption, core recovery rate, and formation brittleness plasticity ratio, and based on the safety analysis of caving under fully mechanized top coal caving mining conditions, the risk of water inrush from the roof of No. 8 coal seam in the first mining area was evaluated through multiple results superposition.The results show that the source of water inrush from the roof of the mine is the sandstone pore fissure aquifer of the Luohe Formation of the Lower Cretaceous Zhidan Group and the composite confined aquifer of the upper and middle sandstone of the Middle Jurassic Zhiluo Formation and Yan'an Formation (above the roof of the 8th coal seam). The sandstone pore fissure aquifer of the Luohe Formation of the Lower Cretaceous Zhidan Group is the main source of disaster.The development height of the water conducting fracture zone of the No. 8 coal seam in the first mining area can communicate with the sandstone aquifer of the Luohe Formation, and the entire area of the first mining area is a risk area of cracking.In the roof water inrush danger zone of Coal Seam 8, Zone I is mainly distributed in the north and central west of the first mining area, Zone II is mainly distributed in the middle and central west of the first mining area, Zone III is mainly distributed in the middle and south of the first mining area, and Zone IV is mainly distributed in the east and south of the first mining area.

  • 煤层顶板涌(突)水水害事故是中国煤矿领域制约煤矿资源开发和采掘进程的主要因素之一[1-2],煤层综放开采条件下[3-4],顶板覆岩发生变形、破坏强烈,如果对顶板主要含水层发育状况、富水性、含水层厚度、水化学类型、上下含水层之间的水力联系等认识不足,煤层开采冒裂裂隙带发育到充水含水层的底板标高以上,且触及到的部位充水含水层富水性强,足以引起相当规模的矿井(涌)突水,大量的矿井(涌)突水对矿井采掘带来严重威胁和造成严重的水害事故[5-8],同时也会造成水资源渗漏流失和地下水破坏[9-12];另一方面,高矿化度矿井水仅经过简单处理达不到煤矿绿色开采排放的要求。因此,有效地评价煤层顶板涌(突)水水害危险性[13-21],针对性地圈定顶板突水危险区,对煤矿顶板水害预测、防治及安全、绿色开采具有十分重要的指导意义。

    新庄煤矿是一处大型煤矿,位于鄂尔多斯盆地南部宁正矿区,属于在建矿山。其井田西南部的一盘区为首采区,主要开采煤层为侏罗系延安组8号煤层。随着新庄矿井建设的推进,矿井涌水水量大、矿化度高的问题成为目前矿井面临的主要水文地质问题。从矿井以往资料[22-28]来看,当前新庄煤矿对矿井水文地质条件、特别是矿井水的涌水机理认识不清。笔者在全面搜集新庄煤矿及周边矿井地质、水文地质资料的基础上,深化分析矿井8号煤层首采区的地质、水文地质条件,并采用“三图−双预测”煤层顶板水害预测评价方法[13-21],对新庄煤矿8号煤层首采区顶板含水层涌(突)水危险性进行评价,以期为制定矿井防治水技术措施和安全开采技术保障提供依据。

    新庄井田位于陇东含水盆地的南部,是陇东含水盆地[22-30]的一部分。由于井田断裂构造不发育,水文地质边界条件和地下水系统与区域情况类同。根据陇东盆地内地下水系统的划分及地层分布、水力联系等特征,矿区地下水系统自上而下可划分为黄土及河谷潜水系统(Q)、下白垩统志丹群地下水系统(K1zh)、侏罗系地下水系统(J)3个大的系统[22,25],其中白垩系及侏罗系为承压含水层,白垩系又包含泾川组-罗汉洞组(K1jc—K1jh)、环河组(K1h)和洛河组(K1l)3个孔隙、裂隙承压含水系统(图1)。对矿井充水有影响的含水层为下白垩统志丹群孔隙、裂隙承压含水层和中侏罗统直罗组、延安组上、中部(煤8层顶板以上)砂岩复合承压含水层,这2个含水层以井田北边界和东边界为补给边界,南边界和井田中的马莲河沟谷下游为排泄边界,地下水补给来源为井田边界处地下含水层的侧向补给,地下水主要为自北往南径流,少量在马莲河沟谷区排泄,大部分流出井田在陕西亭口一带排泄。

    图  1  陇东盆地宁正矿区内含水岩组剖面示意
    Figure  1.  Profile diagram of water-bearing rock formation in Ningzheng Mining Area of Longdong Basin

    新庄井田内的含、隔水层按其含水性、含水空间介质类型及水力特征,可划分为4个含水层和4个隔水层(图2)。第四系潜水含水层,为井田第一含水层;下白垩统志丹群环河华池组碎屑岩类孔隙裂隙潜水含水层,为井田第二含水层;洛河组砂岩孔隙-裂隙含水层,为井田第三含水层;中侏罗统直罗组、延安组上、中部(煤8层顶板以上)砂岩复合承压含水层,为井田第四含水层。下白垩统志丹群环河华池组顶板为井田第一隔水层;环河华池组—洛河组中部粉砂岩、砂质泥岩为井田第二隔水层;中侏罗统安定组、直罗组砂泥岩为井田第三隔水层;中下侏罗统延安组下部(煤8层顶板)下侏罗统富县组底板以上的砂质泥岩、煤层为井田第四隔水层。

    图  2  新庄井田矿井综合水文地质柱状图
    Figure  2.  Comprehensive hydrogeological histogram of Xinzhuang Mine Field

    第一、第二含水层与煤层的间距大,对矿井开采基本无影响。对矿井开采有影响的主要含水层为第三承压含水层(洛河组砂岩孔隙-裂隙含水层),其次为第四复合承压含水层(中侏罗统直罗组、延安组上、中部(煤8层顶板以上)砂岩含水层);这2个含水层为矿井直接充水水源,其中,洛河组含水层厚度大,首采区的平均厚度达400 m;孔隙度大,为10%~20%;富水性强,而该含水层距离规划开采的8号煤层层间距小,平均为110 m,煤层开采形成的导水裂隙带将会导通洛河组含水层。

    为了更加准确地判别新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水水源,笔者从水质化验结果和导水裂隙带发育高度2个方面分别进行分析。

    根据抽水试验以及井田先期开采地段内及其周围水文孔抽水试验分析,该含水层富水性变化大,具有明显的不均一性,单位涌水量0.620 3~1.731 L/s·m,渗透系数0.10~0.71 m/d,平均0.366 m/d。从采集的洛河组水样绘制的piper图解[22]来看(图3),洛河组水样落在了第7区,以碱及弱酸为主,说明地下水演化较深,径流条件相对封闭,成为以Cl-、SO42−和Na+离子为主的高矿化度水,矿化度1.14~6.17 g/L,矿化度1~2 g/L的区域主要分布在马莲河西北方向,该区域东侧地下水矿化度逐渐增大(图4)。水化学类型主要为SO4-Na、SO4·C1-Na及少量SO4·HCO3-Na型。富水性中等~强。

    图  3  新庄井田下白垩统志丹群洛河组含水层地下水piper图
    Figure  3.  Piper map of aquifer groundwater in luohe formation of lower cretaceous Zhidan Group in Xinzhuang Mine Field
    图  4  新庄矿井下白垩统志丹群洛河组地下水矿化度分布
    Figure  4.  Distribution map of groundwater mineralization in luohe formation of lower cretaceous Zhidan Group in Xinzhuang Coal Mine

    由于新庄煤矿目前未对导水裂隙带进行实测,在矿井内无“两带”实测参考资料;但新庄矿井开采地质水文地质条件与南邻彬长矿区相似,因此彬长矿区“两带”数据对于评价研究区8号煤层顶板导水裂隙带发育高度有较好的借鉴意义。

    经一系列推导运算,利用式(1)计算综采一次采全高导水裂隙带高度,利用式(2)计算式(1)的误差。计算值与实测值的相对误差为±(1.32%~17.74%),绝对误差在2.87~28.40 m(表1),预计的裂隙带发育高度与实测值基本一致,偏差较小,表明该公式实际适用性好。

    表  1  导水裂隙带发育高度计算值与实测值对比
    Table  1.  Comparison between the calculated and measured values of the development height of the water conducting fracture zone
    矿名采厚/
    m
    实测值/
    m
    计算值/
    m
    绝对误差相对误差/%
    亭南3.5121127.276.275.18
    大佛寺3.9150134.76−15.2410.16
    文家坡7171174.563.562.08
    玉华8165183.0718.0710.95
    胡家河10.1225.43197.03−28.4012.60
    大佛寺11.22189.05202.9213.877.34
    大佛寺11.6211.7204.73−6.973.29
    胡家河12.1194.1206.9812.886.64
    大佛寺12.55191208.8917.899.37
    雅店12.6214.2209.09−5.112.38
    小庄15.8217.25220.122.871.32
    孟村矿17.5273.11224.65−48.4617.74
    下载: 导出CSV 
    | 显示表格
    $$ H = \frac{{100M}}{{0.36M + 1.19}} $$ (1)

    式中,M为煤层开采厚度,m;H为导水裂隙带发育高度,m。

    $$ s = \sqrt {\frac{1}{{{{n}} - 1}}\sum\limits_{i = 1}^n {{{({Y_{\rm{i}}} - \overline Y )}^2}} } $$ (2)

    式中,s为偏差值,%;n为样本数量;Yi为各样本的值;$\bar Y $为所有样本平均值。

    新庄矿井8号煤层顶板导水裂隙带高度计算公式可以表示为式(3):

    $$ H = \frac{{100M}}{{0.36M + 1.19}} \pm 16.55 $$ (3)

    据(3)计算的新庄井田178口钻孔首采区8号煤层顶板导水裂隙带高度分布如图5所示,导水裂隙带高度最大234.04 m,最小144.02 m,平均200.03 m。对比8号煤层顶板距洛河组砂岩孔隙−裂隙含水层底板距离(图5),8号煤层导水裂隙带发育高度除N802钻孔外其余177口钻孔均能沟通上部洛河组砂岩含水层,而成矿井的直接充水水源。

    图  5  新庄井田178口钻孔8号煤层距洛河组底板距离及导水裂隙带发育高度对比
    Figure  5.  Comparison of the distance from No. 8 coal seam of 178 boreholes in Xinzhuang Coal Field to the floor of Luohe Formation and the development height of water conducting fracture zone

    充水水源和充水通道是煤矿顶板涌(突)水的2大必要条件,由前述分析可知,充水水源主要是白垩统志丹群洛河组砂岩孔隙−裂隙含水层。对于充水通道,该矿井地质构造相对简单,未发现大型的导水构造,因此可以判定采动引起的导水裂隙带是8号煤层顶板涌(突)水的主要充水通道。文中通过对洛河组砂岩孔隙−裂隙含水层富水性、冒裂安全性分别进行评价分区,并将2个分区结果进行叠加分析,对顶板涌(突)水危险性进行综合性评价。

    影响煤层顶板充水含水层富水性的因素众多[4],文中选取洛河组砂岩含水层的厚度、单位涌水量、物探含水层富水异常区、钻孔消耗量、岩芯采取率、地层脆塑性比6个主控因素,分别做出专题图。基于层次分析法(AHP)[31]建立水性评价模型,进行综合性评价分区。

    1)含水层厚度。一般情况下,若其他因素一定,含水层厚度越大,则含水量越大,富水性就越好。本文统计新庄煤矿、核桃峪煤矿、高家堡煤矿及雅店煤矿以往钻孔270余口钻孔洛河组砂岩裂隙含水层厚度数据,绘制了洛河组砂岩含水层厚度等值线图(图6a)。

    图  6  新庄井田洛河组砂岩含水层富水性主控因素专题图
    Figure  6.  Thematic map of main control factors for water abundance of sandstone aquifer in Luohe Formation of Xinzhuang Mine Field

    2)单位涌水量。单位涌水量越大,单一含水层富水性及其与上下含水层的相互补给关系就越好。为了消除不同井径、不同降深对涌水量的影响,使单位涌水量分区更合理,本文将新庄煤矿井田内钻孔及周边其他矿井井田范围内的水文孔抽水试验成果换算成统一井径,统一降深下的单位涌水量q,生成单位涌水量等值线图(图6b)。

    3)物探含水层富水异常区。根据地面瞬变电磁探测结果圈定洛河组砂岩含水层上中下段的富水异常区(图6c—6e)。

    4)钻孔消耗量。通常情况下,钻进过程中冲洗液漏失量越大,反映岩层的孔隙性越好,富水性越强。本文搜集统计新庄煤矿及周边270余口钻孔冲洗液漏失量资料,绘制了洛河组岩层钻进消耗量专题图(图6f)。

    5)岩芯采取率。一般情况下,岩芯完整性差、采取率越低,说明岩层较为破碎,节理裂隙发育,储水能力和导水能力越好,富水性越强;反之不然。本文统计新庄煤矿及周边270余口钻孔岩芯采取率资料,绘制了钻孔岩芯采取率等值线图(6g)。

    6)脆塑性比。一般情况下含水层砂泥脆塑性比越大,含水率越高,水等流体越易流动。本文统计新庄煤矿及周边270余口钻孔揭露的地层岩石脆塑性比资料,绘制了洛河组岩层砂岩、泥岩对比的脆塑性比等值线图(图6h)。

    由于单一信息专题图只包含一个地学信息,因此它不能满足通过一个数字模型进行多元信息综合处理的要求。因此必须先建造一个初始模型,使之能基本反映各地学信息的作用,然后通过反复调参、拟合运算,使之逐步向目标逼近,最终建立能够反映煤层顶板充水含水层富水性实际情况的模型。

    1)数据归一化。笔者采用线性函数转换,表达式为

    $$ {{{a}}_{{i}}} = \frac{{{{{b}}_i} - {\rm{min}}{b_i}}}{{{\text{max}}{{{b}}_i} - {\rm{min}}{b_i}}} $$ (4)

    式中,ai为归一化后的数据;bi为归一化前的数值;maxbi为各主控因素量化值的最大值;minbi为各主控因素量化值的最小值。

    2)单因素归一化专题图。单因素数据经过归一化处理后,即可建立各单因素属性数据库。运用GIS处理归一化数据,作出各单因素归一化专题图(图7)。

    图  7  新庄井田洛河组砂岩含水层富水性主控因素单因素归一化专题图
    Figure  7.  Single factor normalization thematic map of main control factors for water yield of sandstone aquifer in Luohe Formation of Xinzhuang Mine Field

    3)专题图叠加过程。把各个有关因素的信息存储层复合成一个信息存储层,使所生成的信息存储层中包含所有相关因素的信息。

    4)模型的建立。富水性指数的定义为某一地区的某一地段的某一位置上的各种信息对其产生的叠加影响总和,是含水层富水程度的一种归一化度量。

    通过层次分析法建立层次结构分析模型,构造判断矩阵,并进行一致性检验,得出方案层中要素对决策目标的排序权重,见表2

    表  2  方案层中要素对决策目标的排序权重
    Table  2.  The ranking weight of the factors to the decision goal in the scheme layer
    方案单位涌水量C5消耗量C6含水层厚度C4脆塑性比C7
    权重0.29560.19110.14780.1204
    方案上部富水
    异常区C1
    岩芯采取率
    C8
    中部富水
    异常区C2
    底部富水
    异常区C3
    权重0.09670.07580.04830.0242
    下载: 导出CSV 
    | 显示表格

    引入富水性指数CI的初始模型来对充水含水层富水性进行评价。可用以下模型公式表示。

    $$ {\rm{CI}} = \sum\limits_{{{k}} = 1}^{{m}} {{W_k}} \cdot {f_k}(x,y) $$ (5)

    式中:CI为富水性指数; Wk为地学信息权重; fk(x,y)为单信息影响值函数;xy为地理坐标;m为多元信息的个数。

    fkxy)具体在煤层顶板充水含水层富水性评价中就是第k个地学信息量值归一化后的值。由此可以得出新庄煤矿煤层顶板充水含水层富水性评价模型公式为

    $$ \begin{split} &{\rm{CI}} = \displaystyle\sum\limits_{{{k}} = 1}^m {{W_k}} \cdot {f_k}(x,y) =0.093\,4 \times f_{1}(x,y)+0.046 \,7 \times \\ &\quad f_{2}(x,y)+0.023\,3 \times f_{3}(x,y)+0.179\,9 \times f_{4}(x,y)+ \\ &\quad 0.359\,7 \times f_{5}(x,y)+0.074\,2 \times f_{6}(x,y)+0.074\,2 \times \\ & \qquad\qquad\quad f_{7}(x,y)+0.148\,5 \times f_{8}(x,y)\\[-10pt] \end{split}$$ (6)

    在各单一因素的归一化专题图基础上借助GIS强大的空间数据分析功能计算各信息专题图叠加后各单元富水性指数值的大小,其每一单元内各单一地学信息量化后的归一值一致。通过对富水性影响程度的空间数据进行数学统计分析,得到影响程度频率分布图(图8),确定富水性指数0.38780.47140.5304为分区依据。根据富水性指数大小将全区分为相对富水程度不同的4个区,由大到小依次为富水性相对强区、富水性相对较强区、富水性相对中等区、富水性相对较弱区(图9)。

    图  8  影响程度频率分布
    Figure  8.  Frequency distribution diagram of impact degree
    图  9  新庄矿井首采区洛河组砂岩含水层富水性综合分区
    Figure  9.  Comprehensive zoning map of water yield of sandstone aquifer in Luohe formation in the first mining area of Xinzhuang coal mine

    导水裂隙带作为导水通道,其发育高度是决定能否突水的关键因素[24-25]。用8号煤层导水裂隙带突破下白垩统志丹群洛河组底界高度作为评价顶板冒裂安全性的定量指标,对新庄井田首采区冒裂安全性进行分区。

    通过导水裂隙带发育高度等值线与8号煤层顶板距洛河组底界距离等值线对比(图10),新庄煤矿8号煤层导水裂隙带发育高度均能沟通上部洛河组砂岩含水层,因此将评价区全部划分为冒裂危险区。

    图  10  新庄矿井8号煤层顶板距洛河组距离与导水裂隙带发育高度对比
    Figure  10.  Comparison between the distance from the roof of Coal Seam 8 in Xinzhuang Coal Mine to the Luohe Formation and the development height of the water conducting fracture zone

    将得到的下白垩统志丹群洛河组砂岩孔隙−裂隙含水层富水性和冒裂安全性的分区图进行融合,对新庄煤矿首采区8号煤层顶板涌(突)水危险性进行评价,分为I、II、III、IV四个区(图11)。分区原则:

    图  11  新庄矿井首采区8号煤层突水危险性分区
    Figure  11.  Water inrush risk zoning map of coal seam No.8 in the first mining area of Xinzhuang Min

    I区:综放开采条件下,8号煤层导水裂隙发育高度能够导通顶板洛河组含水层富水性相对强区。工作面在该区域回采时,可能会导致涌水量大的现象。

    II区:综放开采条件下,8号煤层导水裂隙发育高度能够导通顶板洛河组含水层富水性相对较强区。工作面在该区域回采时,可能会导致涌水量大的现象,但涌水量总体上会小于I区。

    III区:综放开采条件下,8号煤层导水裂隙发育高度能够导通顶板洛河组含水层富水性相对中等区。工作面在该区域回采时,顶板水会涌入矿井,但涌水量总体上比I、II区小,对开采影响也要小。

    IV区:综放开采条件下,8号煤层导水裂隙发育高度能够导通顶板洛河组含水层富水性相对较弱区。工作面在该区域回采时,也会有顶板水涌入矿井,但涌水量相对于其他区总体上比较小,对开采影响也最小,但在导水裂隙带影响范围内的地下水会涌入矿井。

    分区分块结果:Ⅰ区分为Ⅰ-1~Ⅰ-3等3个区块,主要分布在首采区的北部及中西部,面积约5.966 5 km2,占可采范围的21.5%(图11)。Ⅱ区主要分布在首采区的中部及中西部,面积约9.775 4 km2,占可采范围的35.3%(图11)。Ⅲ区分为Ⅲ-1~Ⅲ-3等3个区块,主要分布在首采区的中东部及南部,面积约7.169 km2,占可采范围的25.9%(图11)。Ⅳ区分为Ⅳ-1~Ⅳ-2等2个区块,主要分布在首采区的东部及南部,面积约4.782 km2,占可采范围的17.3%(图11)。

    1)对新庄煤矿侏罗系延安组8号煤层开采有影响的主要含水层为下白垩统志丹群洛河组砂岩孔隙−裂隙含水层,该含水层厚度大,富水性强,距离规划开采的8号煤层层间距小,煤层开采形成的导水裂隙带将会导通该含水层,成为矿井直接充水水源。

    2)经水质分析与导水裂隙带发育高度计算,判定下白垩统志丹群洛河组砂岩孔隙−裂隙含水层为新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水的主要致灾水源;首采区内8号煤层导水裂隙带发育高度均能沟通洛河组砂岩含水层,首采区全区域划分为冒裂危险区。

    3)新庄煤矿首采区侏罗系延安组8号煤层顶板涌(突)水危险区可划分为四个区,Ⅰ区分为主要分布在首采区的北部及中西部,占可采范围的21.5%;Ⅱ区主要分布在首采区的中部及中西部,占可采范围的35.3%;Ⅲ区主要分布在首采区的中东部及南部,占可采范围的25.9%;Ⅳ区主要分布在首采区的东部及南部,占可采范围的17.3%。

  • 图  1   陇东盆地宁正矿区内含水岩组剖面示意

    Figure  1.   Profile diagram of water-bearing rock formation in Ningzheng Mining Area of Longdong Basin

    图  2   新庄井田矿井综合水文地质柱状图

    Figure  2.   Comprehensive hydrogeological histogram of Xinzhuang Mine Field

    图  3   新庄井田下白垩统志丹群洛河组含水层地下水piper图

    Figure  3.   Piper map of aquifer groundwater in luohe formation of lower cretaceous Zhidan Group in Xinzhuang Mine Field

    图  4   新庄矿井下白垩统志丹群洛河组地下水矿化度分布

    Figure  4.   Distribution map of groundwater mineralization in luohe formation of lower cretaceous Zhidan Group in Xinzhuang Coal Mine

    图  5   新庄井田178口钻孔8号煤层距洛河组底板距离及导水裂隙带发育高度对比

    Figure  5.   Comparison of the distance from No. 8 coal seam of 178 boreholes in Xinzhuang Coal Field to the floor of Luohe Formation and the development height of water conducting fracture zone

    图  6   新庄井田洛河组砂岩含水层富水性主控因素专题图

    Figure  6.   Thematic map of main control factors for water abundance of sandstone aquifer in Luohe Formation of Xinzhuang Mine Field

    图  7   新庄井田洛河组砂岩含水层富水性主控因素单因素归一化专题图

    Figure  7.   Single factor normalization thematic map of main control factors for water yield of sandstone aquifer in Luohe Formation of Xinzhuang Mine Field

    图  8   影响程度频率分布

    Figure  8.   Frequency distribution diagram of impact degree

    图  9   新庄矿井首采区洛河组砂岩含水层富水性综合分区

    Figure  9.   Comprehensive zoning map of water yield of sandstone aquifer in Luohe formation in the first mining area of Xinzhuang coal mine

    图  10   新庄矿井8号煤层顶板距洛河组距离与导水裂隙带发育高度对比

    Figure  10.   Comparison between the distance from the roof of Coal Seam 8 in Xinzhuang Coal Mine to the Luohe Formation and the development height of the water conducting fracture zone

    图  11   新庄矿井首采区8号煤层突水危险性分区

    Figure  11.   Water inrush risk zoning map of coal seam No.8 in the first mining area of Xinzhuang Min

    表  1   导水裂隙带发育高度计算值与实测值对比

    Table  1   Comparison between the calculated and measured values of the development height of the water conducting fracture zone

    矿名采厚/
    m
    实测值/
    m
    计算值/
    m
    绝对误差相对误差/%
    亭南3.5121127.276.275.18
    大佛寺3.9150134.76−15.2410.16
    文家坡7171174.563.562.08
    玉华8165183.0718.0710.95
    胡家河10.1225.43197.03−28.4012.60
    大佛寺11.22189.05202.9213.877.34
    大佛寺11.6211.7204.73−6.973.29
    胡家河12.1194.1206.9812.886.64
    大佛寺12.55191208.8917.899.37
    雅店12.6214.2209.09−5.112.38
    小庄15.8217.25220.122.871.32
    孟村矿17.5273.11224.65−48.4617.74
    下载: 导出CSV

    表  2   方案层中要素对决策目标的排序权重

    Table  2   The ranking weight of the factors to the decision goal in the scheme layer

    方案单位涌水量C5消耗量C6含水层厚度C4脆塑性比C7
    权重0.29560.19110.14780.1204
    方案上部富水
    异常区C1
    岩芯采取率
    C8
    中部富水
    异常区C2
    底部富水
    异常区C3
    权重0.09670.07580.04830.0242
    下载: 导出CSV
  • [1] 董书宁,姬亚东,王 皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

    DONG Shutong,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disasterin Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.

    [2] 周全超,张洪清,焦 扬,等. 基于组合赋权法的煤层顶板突水危险性评价[J]. 科学技术与工程,2022,22(9):3497−3503.

    ZHOU Quanchao,ZHANG Gongqing,JIAO Yang,et al. Evaluation of the risk of water inrush from coal roof based on combination weighting method[J]. Science Technology and Engineering,2022,22(9):3497−3503.

    [3] 曾一凡,刘晓秀,武强,等. 双碳背景下“煤-水-热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550.

    ZENG Yifan,LIU Xiaoxiu,WU Qiang,et al. Theory and technical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China Coal Society,2023,48(2):538−550.

    [4] 孙 魁,夏玉成,李 成,等. 综放开采条件下煤层顶板涌( 突) 水危险性评价[J]. 西安科技大学学报,2019,39(3):452−460.

    SUN Kui,XIA Yucheng,LI Cheng,et al. Risk assessment of water inflow( inrush) from coal seam roof under fully mechanized caving mining[J]. Journal of Xi’an University of Science and Technology,2019,39(3):452−460.

    [5] 孙 魁,王 英,李 成,等. 巨厚煤层顶板离层水致灾机理研究[J]. 河南理工大学学报(自然科学版),2018,37(2):14−21.

    SUN Kui,WANG Ying,LI Cheng,et al. Mechanism of roof separation water disaster in thick coal seam[J]. Journal of Henan Polytechnic University(Natural Science),2018,37(2):14−21.

    [6] 孙 魁. 煤矿水害致灾机理研究[D]. 西安: 西安科技大学, 2016.

    SUN Kui. Study on disaster-causing mechanism of coal mine flood[D]. Xi’an: Xi’an University of Science and Technology, 2016.

    [7] 郭晋伟. 五龙煤矿水文地质特征及水害分析[J]. 江西煤炭科技,2020(1):39−43.

    GUO Jinwei. Analysis of hydrogeological characteristics and water hazard in Wulong colliery[J]. Jiangxi Coal Science & Technology,2020(1):39−43.

    [8] 武 强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.

    WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.

    [9] 柳 宁,赵晓光,解海军,等. 榆神府地区煤炭开采对地下水资源的影响[J]. 西安:西安科技大学学报,2019,39(1):71−78.

    LIU Ning,ZHAO Xiaoguang,XIE Haijun,et al. Influence of coal mining on groundwater resources in Yushenfu Area[J]. Xi’anJournal of Xi’an University of Science and Technology,2019,39(1):71−78.

    [10] 范立民. 保水采煤的科学内涵[J]. 煤炭学报,2017,42(1):27−35.

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society,2017,42(1):27−35.

    [11]

    FAN Limin,Ma Xiongde. A review on investigation of water-preserved coal mining in western China[J]. International Journal of Coal Science & Technology,2018,5(4):411−416.

    [12] 范立民,马雄德,冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711−1717.

    FAN Limin,MA Xiongde,JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society,2015,40(8):1711−1717.

    [13] 武 强,黄晓玲,董东林,等. 评价煤层顶板涌(突)水条件的“三图-双预测法”[J]. 煤炭学报,2000,25(1):60−65.

    WU Qiang,HUANG Xiaoling,DONG Donglin,et al. “Three maps-two predictions” method to evaluate water bursting coditions on roof coal[J]. Journal of China Coal Society,2000,25(1):60−65.

    [14] 武 強,许 珂,张 维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341−1347.

    WU Qiang,XU Ke,ZHANG Wei. Further research on “three maps-two predictions”method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1347.

    [15]

    WU Q,LIU Y Z,ZHOU W F,et al. Assessment of water inrush vulnerability from overlying aquifer using GIS-AHP-based “three maps-two predictions” method: A case study in Hulusu coal mine, China[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2015,48(3-4):234−243. doi: 10.1144/qjegh2015-014

    [16]

    WU Q,LIU Y Z,ZHOU W F,et al. Evaluation of water inrush vulnerability from aquifers overlying coal seams in the menkeqing coal mine, China[J]. Mine Water and the environment,2015,34(3):258−269. doi: 10.1007/s10230-014-0313-5

    [17] 曾一凡,武 强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.

    ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics, causes, and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.

    [18] 任晓波,吴瑞芳. 基于煤层顶板充水含水层水压的“修正三图-双预测法”研究[J]. 煤炭工程,2016,48(S2):131−133.

    REN Xiaobo,WU Ruifang. A modified three graphics-two predictions method based on hydraulic pressure of aquifers above coal seam roof[J]. Coal Engineering,2016,48(S2):131−133.

    [19] 马雄德,范立民,贺卫中,等. 浅埋煤层高强度开采突水危险性分区评价[J]. 中国煤炭,2015,41(10):33−36.

    MA Xiongde,FAN Limin,HE Weizhong,et al. Zoning and evaluation on water inrush risk in shallow coal seam with high intensity mining[J]. China Coal,2015,41(10):33−36.

    [20] 张海荣,周荣福,郭达志,等. 基于GIS复合分析的煤矿顶板水害预测研究[J]. 中国矿业大学学报,2005,34(1):112−116.

    ZHANG Hairong,ZHOU Rongfu,GUO Dazhi,et al. Investigation on predicting roof water gush in coal mines based on multi-factor analysis[J]. Journal of China University of Mining & Technology,2005,34(1):112−116.

    [21] 许 武,夏玉成,杜荣军,等. 导水裂隙带预计经验公式的“三性”探究[J]. 矿业研究与开发,2013,33(6):63−67.

    XU Wu,XIA Yucheng,DU Rongjun,et al. Study on three properties of the empirical formula for estimating the height of water-flowing fractured zone[J]. Mining Research and Development,2013,33(6):63−67.

    [22] 张子祥. 甘肃省宁正矿区新庄井田煤质及工业用途评价[J]. 甘肃地质,2022,31(1):36−40,55.

    ZHANG Zixiang. Coal quality characteristics and industrial uses of coal in Ningzheng mine area, Gansu[J]. Gansu Geology,2022,31(1):36−40,55.

    [23] 牛永强. 宁正矿区白垩系砂岩水文地质特征及煤层顶板涌水危险性评价[D]. 邯郸: 河北工程大学, 2013.

    NIU Yongqiang. Hydrogeology features of cretaceous sandstone and evaluation on water inrush danger of roof in Ningzheng mining area[D]. Handan: Hebei Engineering University, 2013.

    [24] 吴铁卫. 宁正矿区洛河组含水层水文地质特征及防治对策[J]. 中国煤炭地质,2021,33(S1):65−68.

    WU Tiewei. Luohe Formation aquifer Hydrogeological features and control countermeasures in Ningzheng mining area[J]. Coal Geology of China,2021,33(S1):65−68.

    [25] 崔俊峰,李 媛,王大龙,等. 宁正矿区深埋含水层地下水水化学特征研究[J]. 中国煤炭地质,2022,34(8):60−67.

    CUI Junfeng,LI Yuan,WANG Dalong,et al. Study on groundwater Hydrochemical characteristics of deep aquifers in Ningzheng mining area[J]. Coal Geology of China,2022,34(8):60−67.

    [26] 杨小全. 宁正矿区顶板水害防治技术探索研究[J]. 内蒙古煤炭经济,2020(17):121−122.

    YANG Xiaoquan. Research on roof water hazard prevention technology in Ningzheng mining area[J]. Inner Mongolia Coal Economy,2020(17):121−122.

    [27] 曹小永. 宁正矿区三维地震试验资料品质分析研究[J]. 内蒙古煤炭经济,2019(23):213−221. doi: 10.3969/j.issn.1008-0155.2019.23.149

    CAO Xiaoyong. Study on the quality analysis of 3D seismic test data in Ningzheng mining area[J]. Inner Mongolia Coal Economy,2019(23):213−221. doi: 10.3969/j.issn.1008-0155.2019.23.149

    [28] 董宗兵. 甘肃省庆阳市宁正矿区煤层瓦斯分析研究[J]. 甘肃科技,2018,34(20):20−22.

    DONG Zongbing. Analysis and research on coal seam gas in Ningzheng mining area, Qingyang city, Gansu province[J]. Gansu Science and Technology,2018,34(20):20−22.

    [29] 中国煤炭地质总局. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1996.

    China National Administration of Coal Geology. Coal Accumulating and coal resource evaluation of Ordos Basin. [M]. Beijing: China Coal Industry Publishing House, 1996.

    [30] 刘亚南,崔旭东. 陇东盆地白垩系环河组水文地质条件[J]. 地下水,2009,31(1):55−57.

    LIU Yanan. Hydrogeological conditions of the cretaceous Huanhe formation in the Longdong Basin[J]. Ground Water,2009,31(1):55−57.

    [31] 宫厚健,曾一凡,刘守强,等. 基于改进模糊层次分析法的含水层富水性评价[J]. 煤炭技术,2018,37(1):158−159.

    GONG Houjian,ZENG Yifan,LIU Shouqiang,et al. Evaluation of water-richness of aquifer based on improved fuzzy analytical hierarchy process[J]. Coal Technology,2018,37(1):158−159.

图(11)  /  表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 网络出版日期:  2023-09-14
  • 刊出日期:  2023-05-31

目录

/

返回文章
返回