Solving hydrogeological parameters of thick sandstone based on various analytical and numerical methods
-
摘要:
在煤矿开采过程中,矿井涌(突)水等事故不仅会造成巨大的经济损失,还严重威胁工作人员的生命安全。水文地质参数在计算矿井涌水量过程中扮演着重要角色,因此,准确测定含水层的水文地质参数对于煤矿防治水等工作具有重要意义。为了获取更加贴近实际的矿区顶板巨厚洛河组砂岩含水层的水文地质参数,以新庄煤矿洛河组巨厚砂岩含水层上、下段的抽水试验资料为依托,采用传统的非稳定流的Theis公式法、Jacob直线图解法和水位恢复法等解析法,结合实际场地特征,计算出洛河组砂岩含水层上、下段的渗透系数分别为0.22~0.59 和0.03~0.35 m/d;上段导水系数为128.74~373.67 m2/d,下段为5.52~47.07 m2/d;上段的贮水系数为2.22×10−4~6.69×10−3,下段为6.53×10−5~3.29×10−3。并通过FEFLOW软件建立新庄矿区的地下水流数值模型,求解洛河组含水层的水文地质参数,得到洛河组上、下段渗透系数分别为0.55和0.45 m/d。通过多种方法对比分析表明,通过数值模拟法得到的水文地质参数结果与多种解析法计算的结果相近。在此基础上,根据各方法得出的水文地质参数计算矿井涌水量,并与实际涌水量进行对比,结果表明:在含水层上段,采用数值模拟法得到的水文地质参数计算的涌水量更加接近实际涌水量;而在洛河组下段,采用Jacob直线图解法得到的水文地质参数计算的涌水量更加接近实际涌水量。进一步提高了水文地质参数计算的准确度,为后期的含水层富水性研究、矿井涌水量预测以及类似矿区顶板巨厚洛河组砂岩含水层的矿井水防治工作提供依据。
Abstract:In the process of coal mining, accidents such as water inrush in mines can not only cause huge economic losses, but also seriously threaten the safety of workers. Hydrogeological parameters play an important role in calculating the amount of water inflow in mines. Therefore, accurately measuring the hydrogeological parameters of aquifers is of great significance for coal mine water prevention and control work. In order to obtain more practical hydrogeological parameters of the thick sandstone aquifer in the Luohe Formation of the mining area roof, based on the pumping test data of the upper and lower sections of the Luohe Formation sandstone aquifer in Xinzhuang Coal Mine, traditional analytical methods such as Theis formula method, Jacob line diagram method, and water level restoration method for unstable flow were used, and combined with the actual site characteristics, the upper and lower sections of the Luohe Formation sandstone aquifer were calculated The permeability coefficients of the lower section are 0.22~0.59 and 0.03~0.35 m/d respectively; The upper section has a hydraulic conductivity coefficient of 128.74-373.67 m2/d, while the lower section has a conductivity coefficient of 5.52-47.07 m2/d; The water storage coefficient of the upper section is 2.22×10−4-6.69×10−3, the lower paragraph is 6.53× 10−5-3.29×10−3. And a numerical model of groundwater flow in the Xinzhuang mining area was established using FEFLOW software to solve the hydrogeological parameters of the Luohe Formation aquifer. The permeability coefficients of the upper and lower sections of the Luohe Formation were obtained to be 0.55 and 0.45m/d, respectively. By comparing and analyzing various methods, it is shown that the hydrogeological parameters obtained through numerical simulation are similar to the results calculated by various analytical methods. On this basis, the mine water inflow was calculated based on the hydrogeological parameters obtained by various methods, and compared with the actual water inflow. The results showed that in the upper section of the aquifer, the hydrogeological parameters calculated using numerical simulation method were closer to the actual water inflow; In the lower section of the Luohe Formation, the hydrogeological parameters calculated using Jacob's line diagram method are closer to the actual water inflow. This further improves the accuracy of hydrogeological parameter calculation, providing a basis for later research on aquifer water abundance, prediction of mine water inflow, and mine water prevention and control work in similar mining areas with thick sandstone aquifers in the Luohe Formation.
-
-
表 1 钻孔参数
Table 1 Drilling parameters
钻孔 孔径/mm 深度/m 钻孔类型 X1 445 0~230.00 抽水孔 345 230.00~469.00 245 469.00~742.00 152 742.00~918.65 X2 311 0~470.00 观测孔 190 470.00~742.00 152 742.00~935.41 X3 393 0~191.00 抽水孔 345 191.00~430.00 245 430.00~730.00 152 730.00~893.93 X4 311 0~423.00 观测孔 190 423.00~730.00 152 730.00~886.42 表 2 抽水时间表
Table 2 Pumping schedule h
抽水过程 上段 下段 X1与X2 X3与X4 X1与X2 X3与X4 抽水 稳定 抽水 稳定 抽水 稳定 抽水 稳定 第一次降深 40 10 50 11 49 10 51 10 第二次降深 15 8 17 8 12 8 20 9 第三次降深 29 13 13 9 12 9 12 8 表 3 各解析法水文地质参数计算
Table 3 Calculation table of hydrogeological parameters for various analytical methods
含水层 钻孔 渗透系数K/(m·d−1) 导水系数T/ (m2·d−1) 贮水系数S Theis公式法 Jacob直线图解法 水位恢复法 Theis公式法 Jacob直线图解法 水位恢复法 Theis公式法 Jacob直线图解法 水位恢复法 上段 X1 0.47 0.4 0.59 297.67 253.34 373.67 5.57×10−3 6.69×10−3 4.28×10−3 X3 0.27 0.26 0.22 158.00 152.15 128.74 2.22×10−4 4.36×10−4 3.66×10−4 下段 X1 0.35 0.22 0.33 47.07 29.59 44.38 1.67×10−3 3.29×10−3 0.98×10−3 X3 0.09 0.03 0.04 12.43 4.14 5.52 7.15×10−5 8.58×10−5 6.53×10−5 -
[1] 中国科学院能源战略研究组. 中国能源可持续发展战略专题研究[M]. 北京:科学出版社,2006. Energy Strategy Research Group,Chinese Academy of Sciences. Special study on China's energy sustainable development strategy[M]. Beijing:Science Press,2006.
[2] 于小鸽,刘燚菲,翟培合. 基于PCA-AWOA-ELM模型的矿井突水水源识别[J]. 煤炭科学技术,2023,51(3):182−189. YU Xiaoge,LIU Yifei,ZHAI Peihe. Identification of mine water inrush source based on PCA-AWOA-ELM model[J]. Coal Science and Technology,2023,51(3):182−189.
[3] 吕情绪,狄军贞,李 果,等. 高强度采矿活动对地下水影响的数值模拟研究[J]. 煤炭科学技术,2023,51(5):193−199. LYU Qingxu,DI Junzhen,LI Guo,et al. Numerical simulation study on the impact of high intensity mining activities on groundwater[J]. Coal Science and Technology,2023,51(5):193−199.
[4] 张耀辉,熊祖强,李西凡,等. 复杂水文地质条件下矿井水害综合防治技术研究[J]. 煤炭科学技术,2021,49(3):167−174. ZHANG Yaohui,XIONG Zuqiang,LI Xifan,et al. Study on technology of mine water disater prevention and control in underground mine under complex hydrogeological conditions[J]. Coal Science and Technology,2021,49(3):167−174.
[5] DU W. JIANG Y. Assessment of water inush and factor sensitivity analysis in an amalgamated coal mine in China[J]. Arabian Journal of Geosciences,2017,10(21):1−9.
[6] 吴家杰,史丽娜. 非稳定流方法计算水文地质参数[J]. 西部探矿工程,2010(1):140−141. WU Jiajie,SHI Lina. Calculation of hydrogeological parameters using the unsteady flow method [J] Western Exploration Engineering,2010 (1):140−141
[7] 聂庆林,高广东,轩华山,等. 抽水试验确定承压含水层参数方法探讨[J]. 水文地质工程地质,2009,37(4):37−41. NIE Qinglin,GAO Guangdong,XUAN Huashan,et al. Methods of determining parameters of a confined aquifer with pumping tests[J]. Hydrogeology & Engineering Geology,2009,36(4):37−40.
[8] 薛禹群,朱学愚,吴吉春,等. 地下水动力学[M]. 北京:地质出版社,1997. XUE Yuqun,ZHU Xueyu,WU Jichun,et al . Groundwater Dynamics[M]. Beijing:Geological Publishing House,1997.
[9] 常安定,李佩成. 用割离井公式反求水文地质参数的直线图解法[J]. 西北农林科技大学学报(自然科学版),2006,34(4):135−138. CHANG Anding,LI Peicheng. The flow jacob linear graphic method of converse calculating the hydrogeology parameters with the isolated-well formulas[J]. Journal of Northwest A& F University (NaturalScience Edition),2006,34(4):135−138.
[10] 蒋辉. 基于Aquifer Test的抽水试验参数计算方法分析[J]. 水文地质工程地质,2011,38(2):35−38. JIANG Hui. An analysis of parameter calculation through pumping tests based on the AquiferTest[J]. Hydrogeology & Engineering Geology,2011,38(2):35−38.
[11] 廖梓龙,魏永富,郭中小,等. 一种基于MATLAB的渗透系数确定方法[J]. 水资源与水工学报,2012,23(2):175−178. LIAO Zilong,WEI Yongfu,GUO Xiaoxiao,et al. A method for determining permeability coefficient based on matlab[J]. Journal of Water Resources and Hydraulic Engineering,2012,23(2):175−178.
[12] YEH H D,HUANG Y C. Parameter estimation for leaky aquifers using the extended Kalman filter,and considering model and data measurement uncertainties[J]. Journal of Hydrology,2005,302(1-4):28−45. doi: 10.1016/j.jhydrol.2004.06.035
[13] 肖长来,梁秀娟,崔建铭,等. 确定含水层参数的全程曲线拟合法[J]. 吉林大学报(自然科学版),2005,35(6):751−755. XIAO Changlai,LIANG Xiujuan,CUI Jianming,et al. The whole process curve fitting method for determining aquifer parameters[J] Jilin University News (Natural Science Edition),2005,35 (6):751−755.
[14] 张楠. 深基坑水文地质参数的确定及降水设计[J]. 地下空间与工程学报,2011,7(2):375−379. ZHANG Nan. Determination of hydrogeology parameters and dewatering design of deep foundation pit[J]. Chinese Journal of Underground Space and Engineering,2011,7(2):375−379.
[15] 肖长来,梁秀娟,王彪,等. 水文地质学[M]. 北京:清华大学出版社,2010. XIAO Changlai,LIANG Xiujuan,WANG Biao,et al. Hydrogeology[M]. Beijing:Tsinghua University Press,2010.
[16] 李磊,陈干,唐沛,等. 基于解析法和数值法反演哈尔滨漫滩区水文地质参数[J]. 城市轨道交通研究,2021,24(10):54−59. LI Lei,CHEN Gan,TANG Pei,et al. Inversion of hydrogeological parameters in Harbin floodplain area based on analytical and numerical methods [J] Research on Urban Rail Transit,2021 24 (10):54−59.
[17] 刘玲,魏亚强,陈坚,等. 动网格在非饱和-饱和界面数值模拟中的应用研究进展[J]. 地质科技通报,2023,42(1):360−368. LIU Ling,WEI Yaqiang,CHEN Jian,et al. Research progress on the application of dynamic grids in the numerical simulation of unsaturated-saturated interfaces[J]. Bulletin of Geological Science and Technology,2023,42(1):360−368.
[18] 何俊杰,王明伟,王廷国. 地下水动力学[M]. 北京:地质出版社,2009. HE Junjie,WANG Mingwei,WANG Tingguo. Groundwater dynamics[M]. Beijing:Geological Publishing House,2009.
[19] 赵琳琳,肖长来,陈昌亮,等. 基于抽水试验的多种方法确定水文地质参数[J]. 地下空间与工程学报,2015,11(2):306−309. ZHAO Linlin,XIAO Changlai,CHEN Changliang,et al. Determination of hydrogeological parameters by a variety of methods based on the pumping test[J]. Chinese Journal of Underground Space and Engineering,2015,11(2):306−309.
[20] DIERSCH H J G,PERROCHET P. On the primary variable switching technique for simulating unsaturatedsaturated flows[J]. Advances in Water Resources,1999,23(3):271−301. doi: 10.1016/S0309-1708(98)00057-8
[21] 刘玲,陈坚,牛浩博,等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质,2022,49(1):164−174. LIU Ling,CHEN Jian,NIU Haobo,et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology,2022,49(1):164−174.
[22] 于炳义,杜绍敏,李学成. 水文地质数值模拟问题的讨论[J]. 黑龙江水专学报,2002,29(2):14−16. YU Bingyi,DU Shaomin,LI Xuecheng. Discussion on Numerical Simulation of Hydrogeology[J] Journal of Heilongjiang Water Conservancy College,2002,29 (2):14−16.
-
期刊类型引用(9)
1. 王军. 基于采空区地面井抽采数据评估煤矿卸压开采性能研究. 山西化工. 2024(08): 223-225 . 百度学术
2. 赵军利. 地面L型井顶板分段压裂技术在突出煤层中的应用. 煤矿现代化. 2023(02): 30-33 . 百度学术
3. 张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 . 本站查看
4. 王媛彬,李媛媛,韩骞,李瑜杰,周冲. 基于PCA-BO-XGBoost的矿井回采工作面瓦斯涌出量预测. 西安科技大学学报. 2022(02): 371-379 . 百度学术
5. 程士宜,李文超. 改善松软煤层抽采孔砂岩孔壁力学行为研究. 煤矿安全. 2022(10): 243-247 . 百度学术
6. 文建东,苗在全,高璐,荆士杰. 地面钻孔抽采对采空区自燃“三带”的影响研究. 能源与环保. 2022(12): 301-306 . 百度学术
7. 龙红军. 屯兰煤矿地面井压裂抽采瓦斯效果及影响范围. 煤炭科技. 2022(06): 86-90+95 . 百度学术
8. 吴向. 王峰煤矿地面L型井压裂抽采瓦斯工程实践. 内蒙古煤炭经济. 2022(24): 25-27 . 百度学术
9. 张尧兵. 工作面地面井瓦斯治理技术的可行性论证. 河南科技. 2021(12): 81-83 . 百度学术
其他类型引用(2)