高级检索

煤基固废矿化封存CO2技术研究进展

朱磊, 古文哲, 宋天奇, 何志伟, 刘治成

朱 磊,古文哲,宋天奇,等. 煤基固废矿化封存CO2技术研究进展[J]. 煤炭科学技术,2024,52(2):309−328

. DOI: 10.12438/cst.2023-0988
引用本文:

朱 磊,古文哲,宋天奇,等. 煤基固废矿化封存CO2技术研究进展[J]. 煤炭科学技术,2024,52(2):309−328

. DOI: 10.12438/cst.2023-0988

ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress of CO2 storage technology by mineralization of coal-based solid waste[J]. Coal Science and Technology,2024,52(2):309−328

. DOI: 10.12438/cst.2023-0988
Citation:

ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress of CO2 storage technology by mineralization of coal-based solid waste[J]. Coal Science and Technology,2024,52(2):309−328

. DOI: 10.12438/cst.2023-0988

煤基固废矿化封存CO2技术研究进展

基金项目: 

中煤集团重大科技专项资助项目(ZMYXM*JT-22-02)

详细信息
    作者简介:

    朱磊: (1982—),男,安徽阜阳人,教授级高级工程师,博士。Tel: 029-87870177,E-mail:103210851@qq.com

    通讯作者:

    何志伟: (1997—),男,内蒙赤峰人,助理工程师,硕士。E-mail:CUMTzhiweiHe@163.com

  • 中图分类号: X511;X752

Research progress of CO2 storage technology by mineralization of coal-based solid waste

Funds: 

Major Science and Technology Special Project Funding of China National Coal Group (ZMYXM*JT-22-02)

  • 摘要:

    “碳达峰、碳中和”目标是中国维护全球生态安全的大国责任担当,也是实现高质量发展和生态文明建设的重要途径,CO2减排势在必行。“相对富煤、贫油、少气”的能源资源禀赋格局导致中国主体能源仍以碳排放强度较高的煤炭为主,煤炭作为电力、钢铁、煤化工等高耗能行业的重要能源与原料,在“双碳”目标实现过程中占有重要地位,煤炭工业通过低碳转型实现碳达峰,既是煤炭工业高质量发展的内在要求,也是落实国家“双碳”战略目标的重要抓手。相对于传统天然矿化原料,煤基固废矿化封存CO2具有原料丰富、产物友好、能耗较低、反应迅速等优点,同时可以产出高附加值产物用于化工、建筑等领域,受到了广泛的关注。介绍了我国主要煤基固废煤矸石、粉煤灰、脱硫石膏、气化渣、炉底渣的特点,分析了我国主要CO2排放源及产生量;回顾了按照矿化封存位置不同的原位和非原位CO2矿化技术及按照矿化机理不同的直接碳酸化和间接碳酸化技术;综述了以煤基固废作为原料进行CO2矿化封存技术的研究进展,发现该技术反应条件苛刻,成本较高,处理规模小,研究尚停留在实验室阶段;简述了以煤基固废作为载体,利用采空区作为储源矿化封存CO2技术,主要包括构筑功能性充填体及制备负碳型充填材料2种技术;分析了煤基固废矿化封存CO2现存问题及未来研究方向。煤基固废为原料的CO2矿化技术,未来应优化工艺流程,降低反应成本,进一步加强工业化推广的研究;针对以煤基固废作为载体,利用采空区作为储源的CO2矿化封存技术,未来应加强对深度矿化机理、封存风险评价及长期稳定性的研究,提高CO2封存规模和长期稳定性。在此基础上,利用煤基固废制备浆体充填材料,以水为载体,以泵为动力,以管路为通道,将充填材料及CO2输送至采空区进行矿化反应,同时结合微生物诱导碳酸钙沉淀(MICP)技术,封闭岩体采动裂隙,实现CO2矿化封存。

    Abstract:

    The goal of “carbon peak and carbon neutrality” is China’s responsibility as a major country to maintain global ecological security, and it is also an important way to achieve high-quality development and ecological civilization construction. CO2 emission reduction is imperative.As a result of the energy resource endowment pattern of “rich in coal, poor in oil and less gas”, the main energy in China is still coal with high carbon emission intensity. Coal is an important energy and raw material for high energy-consuming industries such as electric power, iron and steel and coal chemical industry. it plays an important role in the process of achieving the goal of “double carbon”. The coal industry achieves carbon peak through low-carbon transformation, which is the inherent requirement of the high-quality development of coal industry. It is also an important starting point for the implementation of the national “double carbon” strategic goal. Compared with the traditional natural mineralization raw materials, coal-based solid waste mineralization and storage CO2 has the advantages of rich raw materials, friendly products, low energy consumption and rapid reaction. At the same time, it can produce high value-added products for chemical industry, construction and other fields. The characteristics of main coal-based solid waste coal gangue, fly ash, desulphurization gypsum, gasification slag and furnace bottom slag in China are introduced, the main CO2 emission sources and production in China are analyzed, and the in-situ and ex-situ CO2 mineralization technologies according to different mineralization and storage locations and direct and indirect carbonation technologies according to mineralization mechanism are reviewed. The research progress of CO2 mineralization and storage technology using coal-based solid waste as raw material is reviewed, and it is found that this technology has harsh reaction conditions, high cost, small treatment scale, and the research is still in the laboratory stage. This paper briefly describes the mineralization and storage technology of CO2 with coal-based solid waste as carrier and goaf as storage source, which mainly includes two technologies: construction of functional filling body and preparation of negative carbon filling material. The existing problems and future research direction of coal-based solid waste mineralization and storage of CO2 are analyzed. For the CO2 mineralization technology with coal-based solid waste as raw material, the technological process should be optimized, the reaction cost should be reduced, and the research on industrialization promotion should be further strengthened. aiming at the CO2 mineralization and storage technology with coal-based solid waste as carrier and goaf as storage source, the research on deep mineralization mechanism, storage risk assessment and long-term stability should be strengthened in the future, so as to improve the storage scale and long-term stability of CO2. On this basis, the slurry filling material is prepared from coal-based solid waste, with water as carrier, pump as power and pipeline as channel, the filling material and CO2 are transported to the goaf for mineralization reaction, and combined with microbial induced calcium carbonate precipitation (MICP) technology, the mining fissures in rock mass are closed to realize CO2 mineralization and storage.

  • 图  1   宁东基地煤基固废产量和利用率

    Figure  1.   Production and utilization rate of coal-based solid waste from Ningdong Base

    图  2   煤基固废XRD图谱

    Figure  2.   XRD pattern of coal-based solid waste

    图  3   2022年世界不同地区及主要国家二氧化碳排放量

    Figure  3.   Carbon dioxide emissions from different regions and major countries in world in 2022

    图  4   2000—2022年全球与能源有关的温室气体排放

    Figure  4.   Global energy-related greenhouse gas emissions, 2000—2022

    图  5   橄榄岩内的水通量和化学反应[26]

    Figure  5.   Water flux and chemical reactions in peridotite[26]

    图  6   非原位矿化技术路线

    Figure  6.   Non in-situ mineralization technology route

    图  7   基于pH -swing的铵盐萃取蛇纹石的间接矿化工艺流程[60]

    Figure  7.   Indirect mineralization process for ammonium salt extraction of serpentine based on pH swing[60]

    图  8   矿山功能性充填的CO2封存架构

    Figure  8.   CO2 storage architecture for functional filling in mines

    图  9   煤基固废充填井下碳封存工艺

    Figure  9.   Underground carbon storage technology for coal based solid waste filling

    图  10   负碳充填体技术体系

    Figure  10.   Negative carbon filling technology system

    表  1   典型原位矿化试点项目

    Table  1   Typical in-situ mineralization pilot project

    地区 储源 盖层 储存潜力
    美国纽约州 含钙斜长石和辉石的榴辉岩,
    目标层孔隙度5%[28-29]
    纽瓦克盆地的湖相沉积,泥岩、长石、
    碳酸盐结核、页岩和碎屑层序
    测试榴辉岩的CO2缓存潜力
    美国华盛顿州、俄勒冈州
    和爱达荷州
    哥伦比亚河玄武岩群目标层孔隙度
    为15%~25%[30-31]
    渗透率极低的玄武岩层 10~50 Gt CO2
    美国东海岸近海 桑迪胡克盆地玄武岩,孔隙度15%[32] 沉积盖层、泥岩、粉砂、黏土 900 Mt CO2
    美国西海岸近海 胡安德富卡板块玄武岩,平均孔隙率为10%[33] 细粒浊积层序与黏土沉积 920 Gt CO2
    冰岛 超基性至碱性(45%~49%SiO2)玄武岩流动和橄榄拉斑
    玄武岩组成的透明碎屑岩[34-35]
    低孔玄武岩 12 Mt CO2
    下载: 导出CSV
  • [1] 谢和平,刘 涛,吴一凡,等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术,2022,54(1):145−156.

    XIE Heping,LIU Tao,WU Yifan,et al. Progress and prospect of CO2 energy utilization technology[J]. Advanced Engineering Sciences,2022,54(1):145−156.

    [2] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.

    WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J]. Journal of China Coal Society,2023,48(7):2599−2612

    [3] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.

    SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.

    [4]

    MARCHETTI C. On geoengineering and the CO2 problem[J]. Climatic Change,1977,1(1):59−68. doi: 10.1007/BF00162777

    [5] 胡永乐,郝明强,陈国利,等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发,2019,46(4):716−727.

    HU Yongle,HAO Mingqiang,CHEN Guoli,et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development,2019,46(4):716−727.

    [6] 张守仁,桑树勋,吴 见,等. CO2驱煤层气关键技术研发及应用[J]煤炭学报,2022,47(11) :3952−3964.

    ZHANG Shouren,SANG Shuxun,WU Jian,et al. Progress and application of key technologies for CO2 enh-ancing coalbed methane[J]. Journal of China Coal Society,2022 ,47(11) :3952−3964.

    [7] 卢义玉,周军平,鲜学福,等. 超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J]. 天然气工业,2021,41(6):60−73.

    LU Yiyu,ZHOU Junping,XIAN Xuefu,et al. Research progress and prospect of the integrated super-critical CO2 enhanced shale gas recovery and geological sequestration[J]. Natural Gas Industry,2021,41(6):60−73.

    [8] 刘树阳,孙宝江,宋永臣,等. CO2提高天然气采收率的重力效应与气藏压力影响模拟[J]. 中国石油大学学报(自然科学版),2020,44(3):81-89.

    LIU Shuyang,SUN Baojiang,SONG Yongchen,et al. Simulation on gravity effect and reservoir pressure influ-ence analysis in CO2 enhanced gas recovery[J]. Jourmal of China University of Petroleum (Edition of Natural Science),2020,44(3):81-89.

    [9] 孙致学,朱旭晨,张建国,等. CO2置换法开采水合物井网系统及注采参数分析[J]. 中国石油大学学报(自然科学版),2020,44(1):71−79.

    SUN Zhixue,ZHU Xuchen,ZHANG Jianguo,et al. Influence of well pattern and injection-production parameters on gas hydrate recovery via CO2 injection and replacement method[J]. Journal of China University of Petroleum(Edition of Natural Science),2020,44(1):71−79.

    [10] 邱文杰,刘正邦,杨 蕴,等. 砂岩型铀矿CO2+O2地浸采铀的反应运移数值模拟[J]. 中国科学:技术科学,2022,52(4):627−638.

    QIU Wenjie,LIU Zhengbang,YANG Yun,et al. Reactive transport numerical modeling of CO2+O2 in-situ leaching in sandstone-type uranium ore[J]. Scientia Sinica(Technologica),2022,52(4):627−638.

    [11] 曹默雷,陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报,96(5):1868−1882.

    CAO Molei,CHEN Jianping. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica,96(5):1868−1882.

    [12] 桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

    SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.

    [13] 阳平坚,彭 栓,王 静,等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学,2024,44(1):404−416.

    YANG Pingjian,PENG Shuan,WANG Jing,et al. Carbon Capture,Utilization and Storage (CCUS) technology development status and application prospects [J]. China Environmental science,44(1):404−416.

    [14] 徐连兵,卓锦德,张 凯. 大型煤电化基地固废分质分类资源化利用研究[J]. 中国煤炭,2022,48(7):131−136.

    XU Lianbing,JOW Jinder,ZHANG Kai. Study on qualitative classified resource utilization of solid wastes in large-scale coal,power and coal chemical industry cluster base[J]. China Coal,2022,48(7):131−136.

    [15] 杨 科,赵新元,何 祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.

    YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.

    [16] 白国良,刘瀚卿,刘 辉,等. 煤矸石理化特性及其对混凝土强度的影响[J]. 建筑结构学报,2023,44(10):243−254.

    BAI Guoliang,LIU Hanqing,LIU Hui,et al. Physicochemical properties of coal gangue and its influence on concrete strength[J]. Journal of Building Structures,2023,44(10):243−254.

    [17] 马志斌,张学里,郭彦霞,等. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展,2021,40(6):3058−3071.

    MA Zhibin,ZHANG Xueli,GUO Yanxia,et al. Research progress on characteristics and element dissolution behaviors of circulating gluidized bed–derived fly ash[J]. Chemical Industry and Engineering Progress,2021,40(6):3058−3071.

    [18] 张丽宏,金要茹,程芳琴. 煤气化渣资源化利用[J]. 化工进展,2022:1-13.

    ZHANG Lihong,JIN Yaoru,CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress,2022:1-13.

    [19] 高仁辉,曹巍缤,庞超明,等. 电厂炉底渣的性能及在混凝土中的应用现状[J]. 混凝土与水泥制品,2022(10):78−83,87.

    GAO Renhui,CAO Weibin,PANG Chaoming,et al. Review of properties of coal-fired furnace bottom slag and its application in concrete[J]. China Concrete and Cement Products,2022(10):78−83,87.

    [20]

    Energy Institute.Statistical review of world energy 2023[R]. London:EI Statistical Review of World Energy,2023.

    [21]

    IEA.CO2 Emissions in 2022[R].Paris: IEA Publications,2023.

    [22] 陈 浮,王思遥,于昊辰,等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报,2022,47(4):1452−1461.

    CHEN Fu,WANG Siyao,YU Haochen,et al. Technological innovation paths of coal industry for achieving car-bon neutralization[J]. Journal of China Coal Society,2022,47(4):1452−1461.

    [23] 姚强岭,曹胜根,闫 仑,等. 煤矿采动空间CO2地质封存、运移与固化理论和技术框架[J]. 采矿与安全工程学报,2023,40(5):1003−1017.

    YAO Qiangling,CAO Shenggen,YAN Lun,et al. Research framework of theory and technology for CO2 geological storage,migration and solidification incoal mining-induced space[J]. Journal of Mining and Safety Engineering,2023,40(5):1003−1017.

    [24] 李姗姗,袁 亮. 煤炭工业全生命周期碳排放核算与影响因素[J]. 煤炭学报,2023,48(7):2925−2935.

    LI Shanshan,YUAN Liang. Carbon emission accounting and influencing factors for whole life cycle of coal industry[J]. Journal of China Coal Society,2023,48(7):2925−2935.

    [25]

    SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature (London),1990,345(6275):486.

    [26]

    SANNA A,UIBU M,CARAMANNA G,et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews,2014,43(23):8049−8080. doi: 10.1039/C4CS00035H

    [27]

    HOUSE K Z,SCHRAG D P,HARVEY C F,et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences,USA,2006,103(33):12291-12295.

    [28]

    MATTER J M,TAKAHASHI T,GOLDBERG D. Experimental evaluation of in situ CO2‐water‐rock reactions during CO2 injection in basaltic rocks:Implications for geological CO2 sequestration[J]. Geochemistry Geophysics Geosystems,2007,8(2).

    [29]

    OLSEN P E,KENT D V,CORNET B,et al. High-resolution stratigraphy of the Newark rift basin (early Mesozoic,eastern North America)[J]. Geological Society of America Bulletin,1996,108(1):40−77. doi: 10.1130/0016-7606(1996)108<0040:HRSOTN>2.3.CO;2

    [30]

    MCGRAIL B P,SPANE F A,SULLIVAN E C,et al. The Wallula basalt sequestration pilot project[J]. Energy Procedia,2011,4:5653−5660. doi: 10.1016/j.egypro.2011.02.557

    [31]

    ZAKHAROVA N V,GOLDBERG D S,SULLIVAN E C,et al. Petrophysical and geochemical properties of columbia river flood basalt:Implications for carbon sequestration[J]. Geochemistry,Geophysics,Geosystems,2012,13(11):Q11001.

    [32]

    GOLDBERG D S,KENT D V,OLSEN P E. Potential on-shore and off-shore reservoirs for CO₂ sequestration in central atlantic magmatic province basalts[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(4):1327−1332.

    [33]

    GOLDBERG D S,TAKAHASHI T,SLAGLE A L. Carbon dioxide sequestration in deep-sea basalt[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(29):9920−9925.

    [34]

    MATTER J M,KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837−841. doi: 10.1038/ngeo683

    [35]

    MATTER J M,BROECKER W S,GISLASON S R,et al. The CarbFix Pilot Project–Storing carbon dioxide in basalt[J]. Energy Procedia,2011,4:5579−5585. doi: 10.1016/j.egypro.2011.02.546

    [36] 张 敏,叶 航,包 琦,等. CO2原位矿化选址关键参数及其封存潜力评估研究进展[J/OL]. 化工进展:1-17[2023-08-17]. https://doi.org/10.16085/j.issn.1000-6613.2023-0355.

    TIONG Michelle,YE Hang,BAO Qi,et al. Review on key parameters and storage capacity potential assessment for in-situ carbon mineralization site[J/OL]. Chemical Industry and Engineering Progress:1-17[2023-08-17]. https://doi.org/10.16085/j.issn.1000-6613.2023-0355.

    [37]

    ZEVENHOVEN R,FAGERLUND J,SONGOK J K. CO2 mineral sequestration:developments toward large-scale application[J]. Greenhouse Gases:Science and Technology,2011,1(1):48−57. doi: 10.1002/ghg3.7

    [38] 王秋华,吴嘉帅,张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展,2022,42(3):1572−1582.

    WANG Qiuhua,WU Jiashuai,ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress,2022,42(3):1572−1582.

    [39] 王中辉,苏 胜,尹子骏,等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展,2021,40(4):2318−2327.

    WANG Zhonghui,SU Sheng,YIN Zijun,et al. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method[J]. Chemical Industry and Engineering Progress,2021,40(4):2318−2327.

    [40]

    LACKNER K S ,WENDT C H ,BUTT D P ,et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153-1170.

    [41]

    Olajire A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science & Engineering,2013,109:364−392.

    [42] 纪 龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京:中国矿业大学(北京),2018:4-5.

    JI Long. Carbon dioxide sequestration by mineralisation of coal fly ash[D]. Beijing:China University of Mining and Technology(Beijing),2018:4-5.

    [43]

    KWAK J H,HU J Z,HOYT D W,et al. Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si,13C NMR spectroscopy[J]. Journal of Physical Chemistry C,2010,114(9):4126−4134. doi: 10.1021/jp1001308

    [44]

    KWAK J H,HU J Z,TURCU R V F,et al. The role of H2O in the carbonation of forsterite in supercritical CO2[J]. International Journal of Greenhouse Gas Control,2011,5(4):1081−1092. doi: 10.1016/j.ijggc.2011.05.013

    [45]

    HUIJGEN W J J,RUIJG G J,COMANS R N J,et al. Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation[J]. Industrial & Engineering Chemistry Research,2006,45(26):9184−9194.

    [46]

    HUIJGEN W J J,COMANS R N J,WITKAMP G. Cost evaluation of CO2 sequestration by aqueous mineral carbonation[J]. Energy Conversion and Management,2007,48(7):1923−1935. doi: 10.1016/j.enconman.2007.01.035

    [47]

    HAUG T A. Dissolution and carbonation of mechanically activated olivine-Investigating CO2 sequestration possibilities[J]. Department of Geology & Mineral Resources Engineering,2010.

    [48]

    GERDEMANN S J,O'CONNOR W K,DAHLIN D C,et al. Ex Situ aqueous mineral carbonation[J]. Environmental Science & Technology,2007,41(7):2587−2593.

    [49]

    O'CONNOR W K,DAHLIN D C,NILSEN D N,et al. Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation[C]//18th Annual International Pittsburgh Coal Conference,Newcastle,NSW,Australia,2001.

    [50]

    SANNA A,WANG X,LACINSKA A,et al. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration[J]. Minerals Engineering,2013,49:135−144. doi: 10.1016/j.mineng.2013.05.018

    [51]

    PARK A A,FAN L. CO2 mineral sequestration:physically activated dissolution of serpentine and PH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241−5247. doi: 10.1016/j.ces.2004.09.008

    [52]

    BOBICKI E R,LIU Q,XU Z,et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science,2012,38(2):302−320. doi: 10.1016/j.pecs.2011.11.002

    [53]

    GOFF F,LACKNER K S. Carbon Dioxide Sequestering Using Ultramaf ic Rocks[J]. Environmental Geosciences,1998,5(3):89−102. doi: 10.1046/j.1526-0984.1998.08014.x

    [54]

    TEIR S,REVITZER H,ELONEVA S,et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing,2007,83(1):36−46.

    [55]

    MAROTO-VALER M M,FAUTH D J,KUCHTA M E,et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Processing Technology,2005,86(14/15):1627−1645. doi: 10.1016/j.fuproc.2005.01.017

    [56]

    KREVOR S C,LACKNER K S. Enhancing process kinetics for mineral carbon sequestration[J]. Energy Procedia,2009,1(1):4867−4871. doi: 10.1016/j.egypro.2009.02.315

    [57]

    PARK A A,JADHAV R,FAN L. CO2 mineral sequestration:Chemically enhanced aqueous carbonation of serpentine[J]. Canadian Journal of Chemical Engineering,2003,81(3/4):885−890. doi: 10.1002/cjce.5450810373

    [58]

    TEIR S,KUUSIK R,FOGELHOLM C,et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2[J]. International Journal of Mineral Processing,2007,85(1):1−15.

    [59]

    WANG X,MAROTO-VALER M. Integration of CO2 capture and storage based on pH-swing mineral carbonation using recyclable ammonium salts[J]. Energy Procedia,2011,4:4930−4936. doi: 10.1016/j.egypro.2011.02.462

    [60]

    WANG Xiaolong,MAROTO-VALER M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel,2011,90(3):1229−1237.

    [61] 包炜军,李会泉,张 懿. 温室气体CO2矿物碳酸化固定研究进展[J]. 化工学报,2007,58(1):1−9. doi: 10.3321/j.issn:0438-1157.2007.01.001

    BAO Weijun,LI Huiquan,ZHANG Yi. Progress in carbon dioxide sequestration by mineral carbonation[J]. Journal of Chemical Industry and Engineering,2007,58(1):1−9. doi: 10.3321/j.issn:0438-1157.2007.01.001

    [62]

    BOSECKER K. Bioleaching:metal solubilization by microorganisms[J]. FEMS Microbiology Reviews,1997,20(3):591−604.

    [63]

    POWER I M,DIPPLE G M,SOUTHAM G. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration[J]. Environmental Science & Technology,2010,44(1):456−462.

    [64] 李 振,雪 佳,朱张磊,等. 煤矸石综合利用研究进展[J]. 矿产保护与利用,2021,41(6):165−178.

    LI Zhen,XUE Jia,ZHU Zhanglei,et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2021,41(6):165−178.

    [65]

    GAO Y,HUANG H,TANG W,et al. Preparation and characterization of a novel porous silicate material from coal gangue[J]. Microporous and Mesoporous Materials,2015,217:210−218. doi: 10.1016/j.micromeso.2015.06.033

    [66]

    WU Y,WU Z,LIU K,et al. Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption[J]. Korean Journal of Chemical Engineering,2020,37(10):1786−1794. doi: 10.1007/s11814-020-0593-3

    [67]

    WU Y,DU H,GAO Y,et al. Syntheses of four novel silicate-based nanomaterials from coal gangue for the capture of CO2[J]. Fuel,2019,258:116192. doi: 10.1016/j.fuel.2019.116192

    [68]

    DU Hong,MA Liang,LIU Xiaoyao,et al. A novel mesoporous SiO2 material with MCM-41 structure from coal gangue:Preparation,ethylenediamine modification,and adsorption properties for CO2 capture[J]. Energy & Fuels,2018,32(4):5374−5385.

    [69] 康 超,乔金鹏,杨胜超,等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报,2023,74(7):2783-2799.

    KANG Chao,QIAO Jinpeng,YANG Shengchao,et al. Research progress on activation extraction of valuable metals in coal gangue[J]. Journal of Chemical Industry and Engineering2023,74(7):2783-2799.

    [70]

    ZHANG C S,LIU X F,WU Q S,et al. Study of mechanical force on coal gangue reactivity[J]. Key Engineering Materials,2013,539:145−148. doi: 10.4028/www.scientific.net/KEM.539.145

    [71]

    GUO Y X,YAN K Z,CUI L,et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing,2014,131:51−57. doi: 10.1016/j.minpro.2014.07.001

    [72] 任根宽,朱登磊,谭 超. 从煤矸石中提取活性氧化铝的清洁化工艺[J]. 安全与环境学报,2014,14(1):160−163.

    REN G K,ZHU D L,TAN C. Renovation on the cleansing technology in leaching of active alumina from the coal gangue[J]. Journal of Safety and Environment,2014,14(1):160−163.

    [73] 王晓龙,刘 蓉,纪 龙,等. 利用粉煤灰与可循环碳酸盐直接捕集固定电厂烟气中二氧化碳的液相矿化法[J]. 中国电机工程学报,2018,38(19):5787−5794.

    WANG Xiaolong,LIU Rong,JI Long,et al. A new direct aqueous mineralization process using fly ash and recyclable carbonate salts to capture and storage co2 from flue-gas[J]. Proceedings of the Chinese Society for Electrical Engineering,2018,38(19):5787−5794.

    [74] 马卓慧,廖洪强,程芳琴,等. 粉煤灰提铝硅钙渣矿化固定CO2[J]. 硅酸盐通报,2020,39(4):1224−1229,1236.

    MA Zhuohui,LIAO Hongqiang,CHENG Fangqin,et al. CO2 sequestration by mineralization of silica calcium slag generated in process of extracting alumina from fly ash[J]. Bulletin of the Chinese Ceramic Society,2020,39(4):1224−1229,1236.

    [75] 蔡洁莹,李向东,李海红,等. 电厂粉煤灰固定二氧化碳实验研究[J]. 煤炭转化,2019,42(1):87−94.

    CAI Jieying,LI Xiangdong,LI Haihong,et al. Experimental study on solidification of carbon dioxide by coal fly ash in power plant[J]. Coal Conversion,2019,42(1):87−94.

    [76]

    PATEL A,BASU P,ACHARYA B. An investigation into partial capture of CO2 released from a large coal/petcoke fired circulating fluidized bed boiler with limestone injection using its fly and bottom ash[J]. Journal of Environmental Chemical Engineering,2017,5(1):667-678.

    [77] 刘 蓉,王晓龙,万超然,等. 粉煤灰增湿矿化捕集CO2工艺研究[J]. 有色冶金节能,2018,34(5):55−59.

    LIU Rong,WANG Xiaolong,WAN Chaoran,et al. Study on the process of mineralization capture CO2 by the fly ash with humidification[J]. Energy Saving of Nonferrous Metallurgy,2018,34(5):55−59.

    [78]

    MONTES HERNANDEZ, PÉREZ-LÓPEZ R, RENARD F,et al. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash[J]. Journal of Hazardous Materials,2009,161(2/3):1347-1354.

    [79] 刘 威. 煤基改性飞灰矿化CO2反应机理与实验研究[D]. 武汉:华中科技大学,2018:43.

    LIU Wei. Reaction mechanism and experimental study on carbon dioxide sequestration by mineral carbonation using coal-based modified fly ash[D]. Wuhan:Huazhong University of Science and Technology,2018.

    [80] 史才军,卢 豹,潘萧颖,等. 利用二氧化碳固化技术制备绿色混凝土材料和制品[J]. 江苏建筑,2018(2):14−18.

    SHI Caijun,LU Bao,PAN Xiaoying,et al. Preparation of green concrete materials and products with co2 curing technology[J]. Jiangsu Construction,2018(2):14−18.

    [81] 丁美荣. 水泥行业碳排放现状分析与减排关键路径探讨[J]. 中国水泥,2021(7):46−49.

    DING Meirong. Analysis of carbon emission status in cement industry and discussion on the key path of emission reduction[J]. China Cement,2021(7):46−49.

    [82] 於林锋. 基于全寿命周期的预拌混凝土碳排放计算模型研究[J]. 粉煤灰,2011,23(6):42−46.

    YU Linfeng. Servicelife period-based carbon emission computing model for ready-mix concrete[J]. Coal Ash,2011,23(6):42−46.

    [83] 孙一夫,李凤军,何 文,等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术,2021,27(2):237−245.

    SUN Yifu,LI Fengjun,HE Wen,et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology,2021,27(2):237−245.

    [84] 何光耀,王 兵,史鹏程,等. 粉煤灰基沸石分子筛的合成及应用进展[J]. 洁净煤技术,2021,27(3):48−60.

    HE Guangyao,WANG Bing,SHI Pengcheng,et al. Recent progress of synthesis and application of fly ash based zeolite[J]. Clean Coal Technology,2021,27(3):48−60.

    [85] 张中华. 粉煤灰制备吸附剂捕集CO2的研究[J]. 中国电机工程学报,2021,41(4):1227−1233.

    ZHANG Zhonghua. Development of Fly-ash-based sorbents for CO2 capture[J]. Proceedings of the Chinese Society for Electrical Engineering,2021,41(4):1227−1233.

    [86]

    AQUINO T F D,ESTEVAM S T,VIOLA V O,et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes[J]. Fuel,2020,276:118143.

    [87]

    VERRECCHIA G,CAFIERO L,CAPRARIIS B D,et al. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption[J]. Fuel,2020,276:118041.

    [88] 缪应菊,李 琳,缪应纯,等. 高硅粉煤灰基二氧化硅气凝胶的物理表征及其CO2捕集应用[J]. 中国测试,2020,46(5):51−56,64.

    MIAO Yingju,LI Lin,MIAO Yingchun,et al. Characterization of silica aerogels synthesized from high-Si fly ash and its application in CO2 capture[J]. China Measurement & Test,2020,46(5):51−56,64.

    [89]

    CHANDRASEKAR G,SON W J,AHN W S. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption[J]. Journal of Porous Materials,2009,16(5):545–551.

    [90]

    ZHANG S Q,RAVI S,LEE Y R,et al. Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption[J]. Journal of Industrial and Engineering Chemistry,2019,72:241−249. doi: 10.1016/j.jiec.2018.12.024

    [91]

    PANEK R,WDOWIN M,FRANUS W,et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture[J]. Journal of CO2 Utilization,2017,22:81−90. doi: 10.1016/j.jcou.2017.09.015

    [92] 沈雪华,颜 枫,谢 丰,等. 固废源固态胺吸附剂用于CO2捕集研究进展[J]. 硅酸盐学报,2023,51(9):2411−2422.

    SHEN Xuehua,YAN Feng,XIE Feng,et al. Research progress of solid amine adsorbents derived from solid waste for CO2 capture[J]. Journal of the Chinese Ceramic Society,2023,51(9):2411−2422.

    [93]

    SHEN X H,YAN F,LI C Y,et al. Biogas upgrading via cyclic CO2 adsorption:application of highly regenerable PEI@nano-Al2O3 adsorbents with anti-urea properties[J]. Environmental Science & Technology,2021,55(8):5236−5247.

    [94]

    SHEN X H,YAN F,LI C Y,et al. Amine-functionalized nano-Al2O3 adsorbent for CO2 separation from biogas:Efficient CO2 uptake and high anti-urea stability[J]. Journal of Cleaner Production,2022,332:130078. doi: 10.1016/j.jclepro.2021.130078

    [95] 王 倩,李神勇,康 帅,等. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报,2023,74(3):1010−1032.

    WANG Qian,LI Shenyong,KANG Shuai,et al. Research progress of pretreatment technology for efficient utilization of coal ash[J]. Journal of Chemical Industry and Engineering,2023,74(3):1010−1032.

    [96] 吴 艳,翟玉春,尹 振,等. 粉煤灰酸法提取氧化铝过程的机械研磨活化研究[J]. 矿冶工程,2009,29(1):71−73, 77.

    WU Y,ZHAI Y C,YIN Z,et al. Study on mechanical grinding activation fly ash and acid leaching of aluminium oxide[J]. Mining and Metallurgical Engineering,2009,29(1):71−73, 77.

    [97] 吴成友,余红发,郑利娜,等. 加压酸浸法提取粉煤灰中的Al2O3和Fe2O3[J]. 化工环保,2012,32(2):173−176.

    WU Chengyou,YU Hongfa,ZHENG Lina,et al. Acid extraction of Al2O3 and Fe2O3 from fly ash under pressure[J]. Environmental Protection of Chemical Industry,2012,32(2):173−176.

    [98] 周保成. 粉煤灰微波强化活化及机理研究[D]. 昆明:昆明理工大学,2019:51-57.

    ZHOU Baocheng. Study on microwave enhanced activation of fly ash and its mechanism [D]. Kunming:Kunming University of Science and Technology,2019:51-57.

    [99] 蒋周青,马鸿文,杨 静,等. 低钙烧结法从高铝粉煤灰脱硅产物中提取氧化铝[J]. 轻金属,2013(11):9−13.

    JIANG Zhouqing,MA Hongwen,YANG Jing,et al. Extraction of alumina from high-alumina fly ash desilicated residue by low-lime sintering process[J]. Light Metals,2013(11):9−13.

    [100]

    GUO Y ,LI Y ,CHENG F,et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology,2013,110:114-121.

    [101] 王百年,宛 强,阳春娇,等. 复合助剂活化粉煤灰提铝工艺条件研究[J]. 轻金属,2019(1):18−24.

    WANG Bainian,WAN Qiang,YANG Chunjiao,et al. Study on the extracting conditions of aluminum from fly ash using compound activator[J]. Light Metals,2019(1):18−24.

    [102] 刘能生,彭金辉,张利波,等. 高铝粉煤灰硫酸铵与碳酸钠焙烧活化对比研究[J]. 昆明理工大学学报(自然科学版),2016,41(1):1−6.

    LIU Nengsheng,PENG Jinhui,ZHANG Libo,et al. Comparative study of ammonium sulfate and sodium carbonate roasting of high aluminum coal fly ash activation[J]. Journal of Kunming University of Science and Technology (Natural Science Edition),2016,41(1):1−6.

    [103]

    HU T,KOU L Y,YANG L,et al. Micro-structural evolution of high aluminium fly ash enhanced by microwave heating to accelerate activation reaction process[J]. Powder Technology,2021,377:739−747. doi: 10.1016/j.powtec.2020.08.049

    [104]

    JU T Y,JIANG J G,MENG Y,et al. An investigation of the effect of ultrasonic waves on the efficiency of silicon extraction from coal fly ash[J]. Ultrasonics Sonochemistry,2020,60:104765. doi: 10.1016/j.ultsonch.2019.104765

    [105] 李海红. 电厂脱硫石膏协同粉煤灰固化CO2研究[D]. 徐州:中国矿业大学,2018:14-28.

    LI Haihong. Study on mineralization of CO2 sequestration with flue gas desulfurization gypsum and fly ash of power plant[D]. Xuzhou:China University of Mining and Technology,2018:14-28.

    [106] 狄华娟,杨林军,潘丹萍. 超声波强化钙基废渣碳酸化固定CO2的性能[J]. 化工学报,2012,63(8):2557−2565.

    DI Huajuan,YANG Linjun,PAN Danping. Enhancement of carbon dioxide sequestration with calcium-based residues by ultrasonics[J]. Journal of Chemical Industry and Engineering,2012,63(8):2557−2565.

    [107] 许静文. 脱硫石膏改性固体胺复合材料吸附烟气中CO2的研究[D]. 青岛:青岛科技大学,2018:17-32.

    XU Jingwen. CO2 adsorption of flue gas desulfurization gypsum modified solid amine adsor bents[D]. Qingdao:Qingdao University of Science & Technology,2018:17-32.

    [108] 周绿山,赖 川,王 芬,等. 多孔碳酸钙的制备及应用研究进展[J]. 化工进展,2018,37(1):159−167.

    ZHOU LYushan,LAI Chuan,WANG Fen,et al. Progress in fabrication and applications of porous calcium carbonate[J]. Chemical Industry and Engineering Progress,2018,37(1):159−167.

    [109]

    LEE M G,JANG Y N,RYU K W,et al. Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration[J]. Energy,2012,47(1):370-377.

    [110]

    SONG K,KIM W,BANG J,et al. Polymorphs of pure calcium carbonate prepared by the mineral carbonation of flue gas desulfurization gypsum[J]. Materials & Design,2015,83:308−313.

    [111]

    SONG K,JANG Y,KIM W,et al. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum[J]. Energy,2014,65:527−532. doi: 10.1016/j.energy.2013.11.008

    [112]

    SONG K,KIM W,PARK S,et al. Effect of polyacrylic acid on direct aqueous mineral carbonation of flue gas desulfurization gypsum[J]. Chemical Engineering Journal,2016,301:51−57. doi: 10.1016/j.cej.2016.04.142

    [113]

    WANG B,PAN Z,CHENG H,et al. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring[J]. Journal of Crystal Growth,2018,492:122−131. doi: 10.1016/j.jcrysgro.2018.02.021

    [114]

    WANG B,PAN Z,CHENG H,et al. CO2 sequestration:high conversion of gypsum into CaCO3 by ultrasonic carbonation[J]. Environmental Chemistry Letters,2020,18(4):1369−1377. doi: 10.1007/s10311-020-00997-9

    [115] 程晓莹,武成利,吴 祥,等. 气化灰渣合成13X分子筛及其表征[J]. 煤炭转化,2021,44(3):76−82.

    CHENG Xiaoying,WU Chengli,WU Xiang et al. Synthesis and characterization of 13X zeolite from gasifier bottom slag[J]. Coal Conversion,2021,44(3):76−82.

    [116] 马 超,王 兵,樊盼盼,等. 煤气化渣基氨氮吸附剂的制备及吸附性能研究[J]. 洁净煤技术,2021,27(3):109−115.

    MA Chao,WANG Bing,FAN Panpan,et al. Research on preparation and adsorption properties of ammonia nitrogen sorbent based on coal gasification slag[J]. Clean Coal Technology,2021,27(3):109−115.

    [117]

    LI C,QIAO X,YU J. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters,2016,167:246−249. doi: 10.1016/j.matlet.2015.12.125

    [118]

    LIU S,CHEN X,AI W,et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060

    [119]

    KANG Y,WEI X,LIU G,et al. CO2-hierarchical activated carbon prepared from coal gasification residue:Adsorption equilibrium,isotherm,kinetic and thermodynamic studies for methylene blue removal[J]. Chinese Journal of Chemical Engineering,2020,28(6):1694−1700. doi: 10.1016/j.cjche.2019.12.017

    [120]

    ZHANG J,ZUO J,AI W,et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science,2021,537:147938. doi: 10.1016/j.apsusc.2020.147938

    [121]

    MIAO Z,WU J,NIU Y,et al. Development of a novel type hierarchical porous composite from coal gasification fine slag for CO2 capture[J]. Chemical Engineering Journal,2022,435:134909. doi: 10.1016/j.cej.2022.134909

    [122]

    MIAO Z,WU J,QIU G,et al. Solving two industrial waste issues simultaneously:Coal gasification fine slag-based hierarchical porous composite with enhanced CO2 adsorption performance[J]. Science of the Total Environment,2022,821:153347. doi: 10.1016/j.scitotenv.2022.153347

    [123]

    CHINDAPRASIRT P,RATTANASAK U. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer[J]. Waste Management,2010,30(4):667−672. doi: 10.1016/j.wasman.2009.09.040

    [124]

    KIM H,LEE H. Mineral Sequestration of Carbon Dioxide in Circulating Fluidized Bed Combustion Boiler Bottom Ash[J]. Minerals,2017,7(12):237. doi: 10.3390/min7120237

    [125]

    LOO L,MAATEN B,KONIST A,et al. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash[J]. Energy Procedia,2017,128:144−149. doi: 10.1016/j.egypro.2017.09.034

    [126] 谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1484−1503.

    XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1484−1503.

    [127] 刘 浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086.

    LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.

    [128] 张吉雄,张 强,周 楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.

    [129] 马立强,翟江涛,NGO Ichhuy. CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J]. 煤炭学报,2022,47(12):4228−4236.

    MA Liqiang,ZHAI Jiangtao,NGO Ichhuy. Experimental study on preparation of negative carbon flling material forwater protection mining by CO2 mineralization of coal-based solid waste[J]. Journal of China Coal Society,2022,47(12):4228−4236.

    [130]

    WANG Peng,MAO Xianbiao,CHEN Shenen. CO2 sequestration characteristics in the cementitious material based on gangue backfilling mining method[J]. International Journal of Mining Acience and Technology,2019,29(5):721−729.

    [131] 邓雪杰,李 玉,刘 浩,等. 一种矿化封存CO2的矿用微生物胶结充填材料及其制备方法[P]. 中国:ZL111978026B,2021-08-27.
    [132] 王赵君. 煤矸石基微生物矿化充填材料制备及性能试验研究[D]. 徐州:中国矿业大学,2023:37-52.

    WANG Zhaojun. Experimental study on preparation and properties of coal gangue based microbial mineralized filling materials[d]. xuzhou:china university of mining and technology,2023:37-52.

    [133] 朱 磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154.

    ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue sury bakilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.

  • 期刊类型引用(3)

    1. 杨宏飞,王海军,吴艳,解鹏,韩珂,董敏涛. 青龙寺煤矿煤层特征综合研究. 能源与环保. 2024(07): 105-110 . 百度学术
    2. 李亚军,王海军,解鹏,吴艳,尹家宽,韩珂. 青龙寺煤矿5~(-2)煤层夹矸特征. 陕西煤炭. 2024(09): 105-108+145 . 百度学术
    3. 解鹏,王海军,尹家宽,吴艳,李亚军,韩珂. 青龙寺煤矿顶板隐蔽致灾因素特征分析. 中国矿业. 2023(S2): 229-236 . 百度学术

    其他类型引用(0)

图(10)  /  表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  94
  • PDF下载量:  136
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2024-01-28
  • 刊出日期:  2024-02-22

目录

    /

    返回文章
    返回