Study on evaluation technology of coal seam roof water hazard risk with protection coefficient
-
摘要:
关于近水体下采煤防水安全煤(岩)柱保护层厚度取采高倍数问题,《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》(以下简称《“三下”开采规范》)附表4-3“防水安全煤(岩)柱保护层厚度”仅适用于“松散含水层”下采煤,至于基岩含水层下采煤以及老空水体下采煤如何确定保护层厚度并未涉及;常用的顶板水害风险评价技术方法评价的主要内容包括富水性评价、导通性评价、充水强度评价,在含水层富水性已知的情况下,评价方法可以进一步简化,仅评价“导通性”即可。基于以上2点,从《“三下”开采规范》出发,试图构建类似于底板突水系数那样简单的判据用于评价顶板水害风险。首先,基于“保护”一词的科学内涵,提出导水裂隙带顶界面至上覆含水层之间的隔水岩层均具有保护功能,应统称为保护层(Hb);基于《“三下”开采规范》中保护层厚度选取采高(A)一定倍数的做法,提出了保护系数(Bs)概念,即保护层厚度与采高的比值(Bs=Hb/A)。其次,基于《“三下”开采规范》附表4-3关于防隔水煤(岩)柱保护层厚度取值的规定,提出松散含水层下采煤的保护系数分区阈值Bi=(0,2、3、4、5、6、7);煤系地层一般为砂、泥岩互层型沉积建造,其中泥岩具有阻水功能(相当于松散层下的黏性土层),且泥岩总厚度一般大于累计采厚,故基岩含水层下保护层厚度可参照《“三下”开采规范》附表4-3“松散层底部黏性土层厚度大于累计采厚”的条件并按最大值选取,即4A,遂提出评价基岩含层的保护系数分区阈值Bi=(0,4)。根据保护系数和分区阈值,可将评价区划分为突水区(Bs≤0)、危险区(0<Bs<Bi)、安全区(Bs≥Bi)。当煤层上方有多层含水层时,应分别进行评价。最后,举例说明应用保护系数评价顶板水害风险的过程和方法,指出当含水层富水性为中等及以上时,“突水区”“危险区”的内涵侧重于安全性,通常作为防水安全煤柱留设;当含水层富水性弱或疏放经济时,“突水区”“危险区”主要用于指导疏干工程设计。
Abstract:Regarding the issue of determining the thickness of the protective layer for waterproof and safe coal (rock) pillars in mining near water bodies, Appendix 4-3 of the “Code for Retaining and Mining Coal Pillars in Buildings, Water Bodies, Railways, and Main Tunnels” (hereinafter referred to as the “Three Underground Mining Code”) is only applicable to coal mining under “loose aquifers”. As for how to determine the thickness of the protective layer for coal mining under bedrock aquifers and mining under goaf water bodies, it is not involved; The main content of commonly used roof water hazard risk assessment techniques and methods includes water abundance evaluation, conductivity evaluation, and water filling strength evaluation. When the water abundance of the aquifer is known, only “conductivity” can be evaluated, and the evaluation method can be further simplified. Based on the above two points, this article attempts to construct a simple criterion similar to the coefficient of water inrush from the bottom plate to evaluate the risk of roof water damage, starting from the “Three Underground Mining Standards”. Firstly, based on the scientific connotation of the term “protection”, it is proposed that the impermeable rock layers between the top interface of the water conducting fracture zone and the overlying aquifer have protective functions and should be collectively referred to as the protective layer (Hb); Based on the practice of selecting a certain multiple of mining height (A) for the thickness of the protective layer in the “Three Lower Mining Standards”, the concept of protection coefficient (Bs) is proposed, which is the ratio of the thickness of the protective layer to the mining height (Bs=Hb/A). Secondly, based on the provisions of Appendix 4-3 of the “Three Underground Mining Specification” regarding the thickness of the protective layer for waterproof coal pillars, the threshold value of the protection coefficient zoning for coal mining under loose aquifers is proposed to beBi=(0, 2、3、4、5、6、7); The coal bearing strata under the bedrock aquifer are generally composed of sand and mudstone interbedded sedimentary formations, where mudstone has a water blocking function (equivalent to the cohesive soil layer under the loose layer), and the total thickness of mudstone is generally greater than the cumulative mining thickness. The thickness of the protective layer can be selected according to the condition of “the thickness of the cohesive soil layer at the bottom of the loose layer is greater than the cumulative mining thickness” in Appendix 4-3 of the “Three Underground Mining Specifications” and selected according to the maximum value, Therefore, the threshold value of the protection coefficient zoning for evaluating the bedrock aquifer isBi=(0,4). According to the protection coefficient and zoning threshold, the evaluation area can be divided into water inrush zone (Bs≤0), danger zone (0<Bs<Bi), and safety zone (Bs≥Bi). When there are multiple aquifers above the coal seam, separate evaluations should be conducted. Finally, an example is given to illustrate the process and method of applying protection coefficient to evaluate the risk of roof water damage. It is pointed out that when the water content of the aquifer is medium or above, the connotation of “water inrush zone” and “dangerous zone” focuses on safety and is usually reserved as waterproof safety coal pillars; When the aquifer has weak water abundance or is economically drained, the “water inrush zone” and “dangerous zone” are mainly used to guide the design of drainage engineering.
-
-
表 1 防水安全煤岩柱保护层厚度
Table 1 Thickness of waterproof and safety coal rock pillar protection layer
覆岩硬度 松散层底部
黏性土层厚
度大于累计
采厚/m松散层底部
黏性土层厚
度小于累计
采厚/m松散层全厚
小于累计
采厚/m松散层底部
无黏性
土层/m坚硬 4A 5A 6A 7A 中硬 3A 4A 5A 6A 软弱 2A 3A 4A 5A 极软弱 2A 2A 3A 4A 注:不适用于综放开采。$A = \dfrac{{\sum m}}{n} $,$\sum m $为累计采厚,n为分层层数。 表 2 防水安全煤岩柱保护层厚度
Table 2 Thickness of waterproof and safety coal rockpillar protection layer
覆岩岩性 含水层底部
隔水层厚度
大于累计
采厚/m含水层底部
隔水层厚度
小于累计
采厚/m含水层全厚
小于累计
采厚/m含水层底部
无隔水
层/m坚硬 4A 5A 6A 7A 中硬 3A 4A 5A 6A 软弱 2A 3A 4A 5A 极软弱 2A 2A 3A 4A 表 3 保护系数(Bs)计算
Table 3 Calculation of protection coefficient (Bs)
钻孔
编号钻孔坐标/m 含水层底板
埋深h1/m煤层顶板
埋深h2/m煤层厚度/m 预计采高A/m 导水裂隙带
高度Hli/m保护层厚
度Hb/m保护系
数BsX Y X zk1 … … … … … … … … … … zk2 … … … … … … … … … … zk3 … … … … … … … … … … $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 表 4 各含水层保护系数(Bs)
Table 4 Protection coefficient of each aquifer (Bs)
孔号 第四系含水层
保护系数(Bs)新近系含水层
保护系数(Bs)9煤顶板含水层
保护系数(Bs)11煤顶板含水层
保护系数(Bs)采厚
3.0 m采厚
4.0 m采厚
3.0 m采厚
4.0 m采厚
3.0 m采厚
4.0 m采厚
3.0 m采厚
4.0 m3-9 39.1 25.9 10.5 4.5 3.8 0.5 ≤0 ≤0 3-6 50.4 33.7 15.2 3.1 2.7 −0.3 ≤0 ≤0 3-10 54.3 36.6 23.4 14.1 6.5 2.5 ≤0 ≤0 4-1 30.5 18.7 3.0 −1.8 1.2 −1.5 ≤0 ≤0 4-2 56.2 38.0 23.8 14.4 8.7 4.2 ≤0 ≤0 4-3 64.2 44.0 36.0 23.6 13.4 7.7 ≤0 ≤0 5-1 27.6 12.6 −3.8 −5.2 −8.4 −10.8 ≤0 ≤0 5-2 40.2 26.0 11.5 5.3 10.0 5.1 ≤0 ≤0 5-3 60.5 41.3 25.0 15.4 10.1 5.2 ≤0 ≤0 5-4 75.0 52.1 47.6 32.3 10.2 5.3 ≤0 ≤0 6-1 50.2 33.5 23.3 14.1 7.3 3.1 ≤0 ≤0 6-2 73.9 51.3 46.3 31.4 9.9 5.1 ≤0 ≤0 7-2 42.4 27.7 15.3 8.1 1.1 −1.5 ≤0 ≤0 7-3 50.8 33.9 21.8 13.0 5.0 1.4 ≤0 ≤0 9-3 77.0 53.6 46.0 31.1 3.6 0.3 ≤0 ≤0 8-1 54.7 36.9 25.4 15.7 2.2 −0.7 ≤0 ≤0 8-8 61.3 41.9 32.9 21.3 3.8 0.5 ≤0 ≤0 8-9 72.3 50.1 45.1 30.5 5.4 1.7 ≤0 ≤0 9-7 59.4 40.5 27.9 17.6 14.3 9.4 ≤0 ≤0 9-8 67.1 46.2 36.7 24.1 2.4 −0.6 ≤0 ≤0 9-9 87.1 63.2 64.4 44.9 1.2 2.2 ≤0 ≤0 -
[1] 尹尚先,连会青,徐 斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181. YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovat-ion[J]. Coal Geology & Exploration,2021,49(1):170−181.
[2] 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京:煤炭工业出版社,2017. [3] 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[S]. 北京:煤炭工业出版社,2017. [4] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(S1):38−392. LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(S1):38−392.
[5] 陈寒秋,翟 宇,回胜利,等. 煤层底板含水层突水危险性评价及防治对策[J]. 煤炭科学技术,2011,39(7):112−115. CHEN Hanqiu,ZHAI Yu,HUI Shengli,et al. Evaluation on water inrush danger from aquifer under seam floor and water inrush prevention and control countermeasures[J] Coal Science and Technology,2011,39(7):112−115.
[6] 刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探,2009,37(4):34−37,42. LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration,2009,37(4):34−37,42.
[7] 施龙青,韩 进,宋 扬. 用突水概率指数法预测采场底板突水[J]. 中国矿业大学学报,1999,28(5):442−444,446. SHI Longqing ,HAN Jin ,SONG Yang . Predicting water inrush from the mining floor using the probability index method of water inrush[J]. Journal of China University of Mining & T echnology ,1999,28(5):442−444,446.
[8] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018. The State Administration of Coal Mine Safety. Rules for water prevention and control in coal mines[M]. Beijing:China Coal Industry Publishing House,2018.
[9] 王计堂,王秀兰. 突水系数法分析预测煤层底板突水危险性的探讨[J]. 煤炭科学技术,2011,39(7):106−111. WANG Jitang,WANG Xiulan. Discussion on the analysis and prediction of water inrush risk of coal seam floor by water inrush coefficient method[J]. Coal Science and Technology,2011,39(7):106−111.
[10] 刘 钦,孙亚军,徐智敏. 改进型突水系数法在矿井底板突水评价中的应用[J]. 煤炭科学技术,2011,39(8):107−109. LIU Qin,SUN Yajun,XU Zhimin. Application of modified water inrush coefficient method to evaluation of water inrush from mine floor[J]. Coal Science and Technology,2011,39(8):107−109.
[11] 任君豪,王心义,王 麒,等. 基于多方法的煤层底板突水危险性评价[J]. 煤田地质与勘探,2022,50(2):89−97. REN Junhao,WANG Xinyi,WANG Qi,et al. Risk assessment of water inrush from coal seam floors based on multiple meth ods[J]. Coal Geology & Exploration,2022,50(2):89−97.
[12] 李 凯,李晓龙. 基于改进型突水系数法治理底板奥灰水害技术[J]. 煤田地质与勘探,2022,50(6):125−131. doi: 10.12363/issn.1001-1986.21.10.0551. LI Kai,LI Xiaolong. Techniques for prevention and control of Ordovician limestone water disasters based on modified water inrush coefficient method[J]. Coal Geology & Exploration,2022,50(6):125−131. doi: 10.12363/issn.1001-1986.21.10.0551.
[13] 武 强,黄晓玲,董东林,等. 评价煤层顶板涌(突)水条件的“三图—双预测法”[J]. 煤炭学报,2000,25(1):60−65. WU Qiang,HUANG Xiaoling,DONG Donglin,et al. Application of the ‘‘three maps-twopredictions’’ method toevaluate the conditions of roof waterinrush[J]. Journal of China Coal Society,2000,25(1):60−65.
[14] 李 坤,曾一凡,尚彦军,等. 基于GIS的“三图–双预测法”的应用[J]. 煤田地质与勘探,2015,43(2):58−62. LI Kun,ZENG Yifan,SHANG Yanjun,et al. The application of “three maps-two predictions”method based on GIS[J]. Coal Geology & Exploration,2015,43(2):58−62.
[15] 武 强,徐 华,赵颖旺,等. 基于“三图法”煤层顶板突水动态可视化预测[J]. 煤炭学报,2016,41(12):2968−2974. WU Qiang,XU Hua,ZHAO Yingwang,et al. Dynamicvisualization and prediction for water bursting on coal roofbasedon“three maps method”[J]. Journal of China Coal Society,2016,41(12):2968−2974.
[16] 吕玉广,齐东合. 顶板突(涌)水危险性“双图”评价技术与应用:以鄂尔多斯盆地西缘新上海一号煤矿为例[J]. 煤田地质与勘探,2016,44(5):108−112. LYU Yuguang,QI Donghe. Technique based on“double maps” for assessment of water inrush from roof aquifer and its application: with New Shanghai No. 1 coal mine at western edge of Ordos basin as example[J]. Coal Geology & Exploration,2016,44(5):108−112.
[17] 内蒙古上海庙矿业有限责任公司. 间接充水含水层突水危险性评价方法及系统[P]. 中国:ZL201510657028.7,20199-01-22. [18] 吕玉广,李宏杰,夏宇君,等. 基于多类型四双法的煤层顶板突水预测评价研究[J]. 煤炭科学技术,2019,47(9):209−228. doi: 10.13199/j.cnki.cst.2019.09.028. LYU Yuguang,LI Hongjie,XIA Yujun,et al. Prediction and evaluation study on coal seam roof water inrush based on multi-type four-double method[J]. Coal Science and Technology,2019,47(9):209−228. doi: 10.13199/j.cnki.cst.2019.09.028.
[19] 武 强,许 珂,张 维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341−1346. WU Qiang,XU Ke,ZHANG Wei. Further research on “Three maps-two predictions” method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1346.
[20] 吕玉广, 李春平, 韩 港, 等. 多因素评价地层富水性技术的分析与应用[J]. 能源与环保, 2021, 43(3): 44−51, 58. LYU Yuguang, LI Chunping, HAN Gang, et al. Analysis and application of formation water-rich evaluation technology by using multiple factors.[J]. China Energy and Environmental Protection, 2021, 43(3): 44−51, 58.
[21] 吕玉广,乔 伟,靳德武,等. 煤矿防治水工作实践中几点思考与建议[J]. 煤炭科学技术,2023,51(4):133−139. LYU Yuguang,QIAO Wei,JIN Dewu,et al. Some thoughts and suggestions on the practice of water prevention and control in coal mines[J]. Coal Science and Technology,2023,51(4):133−139.
-
期刊类型引用(4)
1. 问永忠,贾澎涛,夏敏高,张龙刚,王伟峰. 基于改进YOLOv8n的井下人员多目标检测. 工矿自动化. 2025(01): 31-37+77 . 百度学术
2. 董芳凯,赵美卿,黄伟龙. 煤矿井下暗光环境人员行为检测研究. 工矿自动化. 2025(01): 21-30+144 . 百度学术
3. 王轶玮,李晓宇,翁智,白凤山. 基于改进Zero-DCE模型的矿井低照度图像增强方法. 工矿自动化. 2025(02): 57-64+99 . 百度学术
4. 樊红卫,张超,刘金鹏,闫昕山,任跃武,王荣泉,李琳. 一种基于改进DeblurGAN-v2的煤矿带式输送机图像去运动模糊方法. 煤炭学报. 2024(S2): 1234-1247 . 百度学术
其他类型引用(1)