高级检索

煤气化渣资源化利用综述

高海洋, 梁龙, 靳开宇, 谭佳琨

高海洋,梁 龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208. DOI: 10.12438/cst.2023-1147
引用本文: 高海洋,梁 龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208. DOI: 10.12438/cst.2023-1147
GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208. DOI: 10.12438/cst.2023-1147
Citation: GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208. DOI: 10.12438/cst.2023-1147

煤气化渣资源化利用综述

基金项目: 

国家自然科学基金资助项目(52204295)

详细信息
    作者简介:

    高海洋: (1997—),男,山东济宁人,硕士研究生。E-mail:ts21040163p31@cumt.edu.cn

    通讯作者:

    梁龙: (1989—),男,山东莱阳人,副教授,硕士生导师。E-mail:lianglong1218@sina.com

  • 中图分类号: TQ536

Review on resource utilization of coal gasification slag

Funds: 

National Natural Science Foundation of China (52204295)

  • 摘要:

    随着“双碳”目标的推进,社会对煤气化渣处理的关注与需求日渐紧迫。综合过往研究,介绍了煤气化渣的主要来源与排渣方式,并分别对比了粗渣与细渣在形貌、粒度组成、矿物物相、化学组成等方面的性质特点,为实现其“减量化、资源化、无害化”利用提供了理论依据。基于气流床煤气化粗渣、细渣显著的性质差异,探索了两者不同的资源化处理方式,并分析了当下利用途径存在的局限性。粗渣具有优秀的水化活性与火山灰活性,在矿井回填、路基填筑、水泥与混凝土骨料、陶粒材料以及墙体材料等中低值利用领域应用广泛,但存在重金属浸出风险、经济效益低等问题。细渣中残炭含量丰富,主要采用重选法与浮选法进行可燃体回收与灰渣分离。但其较高的细粒级含量降低了重选分选精度,复杂的炭−灰结合形态提高了浮选回收难度。同时细渣孔隙结构发达,比表面积高达258.29 m2/g,具有一定的吸附能力,在土壤改良、催化剂载体、化工原料、陶瓷材料、吸附材料等领域应用潜力巨大,但高值化处理工艺复杂,成本较高,工业应用难度较大。针对这些问题,需基于煤气化渣的物化性质,探索大规模消纳与高值化利用相结合的途径,实现对煤气化渣分类分级的资源化利用。此外,需结合现场生产实践,探索煤气化渣就地解决的处理方法以降低运输成本,以及在其产生工艺过程中进行物化性质的诱导改善处理。

    Abstract:

    With the promotion of the “carbon peaking and carbon neutrality” goals, the social’s concern and demand for the treatment of coal gasification slag is becoming more and more urgent. Based on previous research, this paper introduces the main sources and discharge methods of coal gasification slag, and compares the properties and characteristics of coarse and fine slag in terms of morphology, particle size composition, mineral phase, chemical composition, etc, which providing a theoretical basis for the realization of its “reduction, resourcefulness and harmlessness” utilization. According to the obvious differences in properties between coarse slag and fine slag in entrained-flow gasification, this paper explores the different resource treatment methods both of them, and analyzes the limitations of the current utilization methods. Coarse slag has excellent hydration activity and volcanic ash activity, and is widely used in mine backfilling, roadbed filling, cement and concrete aggregate, ceramic materials, wall materials and other low-value utilization fields, but there are problems such as the risk of heavy metal leaching and low economic benefits. Fine slag contains rich carbon residue, and gravity separation and flotation are mainly used for combustible recovery and ash separation. However, the high fine-grained content reduces the precision of gravity separation, and the complex carbon-ash combination morphology increases the difficulty of flotation recovery. At the same time, the pore structure of fine slag is developed, with a specific surface area as high as 258.29 m2/g and certain adsorption capacity. Fine slag has great application potential in fields such as soil improvement, catalyst carrier, chemical raw materials, ceramic materials, adsorption materials, etc. But the complex high-value treatment process and high cost make industrial applications more difficult. In order to address these problems, it is necessary to explore the way of combing large-scale elimination with high-value utilization based on the physical and chemical properties of coal gasification slag, and realize the classified and graded resource utilization of coal gasification slag. It is necessary to explore the treatment method of on-site solution of coal gasification slag, combined with field production practice, which benefits to reduce the transportation cost. As well as the induction of physical and chemical properties to improve the treatment in the process of its generation.

  • 我国主要矿区浅部煤炭资源逐年减少,逐渐进入下位煤层开采的阶段。然而,下位煤层开采中伴随着动力灾害现象,成为阻碍矿山安全生产和威胁工作人员生命安全的重要因素之一[1-2]。在回采过程中,工作面受上覆采空区遗留煤柱影响,导致下部煤层矿压显现明显,局部帮鼓、煤柱变形严重等事故频发,且随着近距离煤层群开采比例扩大,下层煤的工作面开采控制面临巨大难题,给矿山高效生产带来新的挑战[3-5]

    针对工作面强矿压显现与回采巷道之间区段煤柱稳定性的作用关系,研究遗留煤柱和下位工作面空间关系耦合影响下工作面巷道强矿压显现,分析回采阶段区段煤柱的损伤变形特性,进而提出相应的合理控制理论和技术手段。蔡武等[6]构建断层活化模型力学机制及诱冲机理,分析出其诱发冲击矿压的机理。于斌等[7]理论分析煤层开采遗留煤柱对强矿压显现影响,得到了遗留煤柱对下煤层应力传递模型。鞠金峰等[8]通过模拟实验和理论分析,对回采时出煤柱阶段动载矿压发生的机理和规律进行了深入研究。岳喜占等[9]通过理论分析和数值模拟,计算了遗留煤柱影响下煤层底板附加应力载荷,并构建上覆煤层椭圆应力拱模型。赵猛等[10]分析深部矿井坚硬厚岩层下工作面冲击矿压事故诱因,总结矿压规律并提出有效治理方案。张华磊等[11]采用断裂损伤理论、弹塑性理论建立了巷帮围岩层裂板结构力学模型,分析了煤矿回采中巷道帮部围岩失稳机制。王家臣等[12]采用室内试验、理论分析及现场实测综合手段对硬煤煤壁破坏形式、发生机理及影响因素进行分析。于远祥等[13]对深埋煤层巷道煤帮变形破坏特征进行分析,得到了煤帮极限平衡区及其破裂区宽度的理论计算公式。孙利辉等[14]针对强动压作用下巷帮变形破坏问题,分析巷帮变形破坏特征和影响因素,建立巷帮受力破坏模型。贾后省等[15]现场实测得到巷帮变形破坏规律,通过数值模拟和理论分析对巷道变形进行可行性分析。

    有效的监测预警是预防此类情况的重要保障,光纤传感技术由于损耗低、线径小、距离长、精度高等特点,在各种工程现场得到成果应用,如煤矿、桥梁和核电站等,在分布面积广的大型应用平台也被用于检测结构健康状态。其中光纤光栅(FBG)技术传感器、体积小、线状设计灵活多样可被制成光纤光栅埋入式应变传感器,钻孔应力计作为采动应力监测成熟及常见仪器,基于光纤光栅与应力计相结合布设工艺,实现采动过程中区段煤柱支承压力在线监测。

    光测技术联合应用于现场的研究已经逐渐成熟。笔者[16-17]综合利用光纤传感技术对采场上覆岩层运移过程中的内部应变,覆岩垮落形态、关键层载荷等实时联测监测。顾春生等[18]基于光纤光栅传感器设计一种布设工艺,实现采动过程中对矿压的在线监测。梁敏富等[19-20]设计一种新型光纤光栅锚杆测力计实现锚杆载荷变化的实时监测。李丽君等[21]提出适用于煤岩体埋入的矿用液压支架压力测量的光纤光栅矿压传感器。卢毅等[22]通过FBG技术对地裂缝发育及预测进行监测。张丁丁等[23]利用光纤传感技术对采动影响下断层活化进行研究。

    笔者将FBG、光栅应力计技术应用于回采过程中煤柱内部变形开展现场试验,用FBG进行结构内部应变实时监测,用应力计进行煤柱内部应力测试,分析了煤柱空间、时间应变场分布规律,研究了工作面推进过程中煤柱应力应变时域演化规律,验证了应变法在煤柱内部变形观测和矿压监测预警的可行性。

    FBG,即光纤布拉格光栅,利用内部写入法或激光在光纤上形成周期性缺陷从而改变纤芯区域折射率,当外界参量(温度、应力)改变时,会改变光栅折射率,导致传感器波长发生漂移,通过检测波长漂移得出应变、温度。由光纤模式耦合理论可知,当光栅折射率周期变换造成波导条件改变,导致一定波长发生相应的模式耦合,使得反射光对该波长出现奇异变换,此时反射光最大值λB(布拉格波长)为

    $$ {\lambda _{\mathrm{B}}} = 2{{{n}}_{{\text{eff}}}}\varLambda $$ (1)

    式中,neff 为纤芯折射率;Λ为光栅反射周期。经过反射后的光栅中心波长与其折射率和周期关联密切,当任一物理量发生变化时,从而引起光栅反射光中心波长可以表示为

    $$ \frac{{{{\Delta }}{\lambda _{\text{B}}}}}{{{\lambda _{\text{B}}}}} = \varepsilon - \left( {\frac{{n_{{\text{eff}}}^2}}{2}} \right)(p - vp)\varepsilon $$ (2)

    式中,ν为光纤的泊松比;ε为光纤应变值;p为光纤的弹光系数,定义Pr为合理弹光性系数,则有:

    $$ \frac{{{{\Delta }}{\lambda _{\text{B}}}}}{{{\lambda _{\text{B}}}}} = \left( {1 - {P_{\text{r}}}} \right)\varepsilon $$ (3)

    式(3)即为光纤光栅波长量与应变的关系式。当光纤光栅材料确定时,光纤光栅的应变传感系数为一常数。引入常数Kλ为光纤光栅应变灵敏度系数,则有:

    $$ \frac{{{{\Delta }}{\lambda _{\text{B}}}}}{{{\lambda _{\text{B}}}}} = {K_\lambda } \varepsilon $$ (4)

    式(4)即为波长漂移量与应变间的关系式,若考虑环境温度对光纤光栅的影响,则有:

    $$ \varepsilon = {K_\lambda } [(\lambda - {\lambda _0}) - {K_T} (T - {T_0})] $$ (5)

    得出光纤光栅应变与波长、温度之间的关系式,其中,Kλ 为应变与波长变化量的比例系数;KT为波长变化量与温度的比例系数, nm/℃;λ0为栅点波长的初始测量值,nm;λ为栅点波长的测量值,nm;Tλ测量时的环境温度,℃;T0λ0测量时的环境温度,℃。

    光栅应力计利用压力变化转换为光纤光栅波长漂移量的解析技术,将光纤光栅钻孔应力计植入钻孔并施加初始应力,当围岩受到扰动时会挤压压力枕,压力枕会感受到压力并通过压力枕内的液压油传送到光纤光栅压力计。此时与之连接的光纤光栅会同步受到挤压使栅区发生变化,光纤光栅压力计会将压力变化转换为波长的漂移量,通过波长信号解调设备将这部分变化解析出来便可以测得钻孔内部的应力值。

    波长与应力之间满足以下关系式:

    $$ P = \left[({A_1} - {A_0}) - \frac{{({B_0} - {B_1})}}{{{K_3}}} {K_2}\right] \times 100 {K_1} $$ (6)

    其中,K1为压力与波长变化量的比例系数,MPa/nm;K2 为温度补偿系数,℃/nm;K3为波长变化量与温度的比例系数,℃/nm;A0为压力传感器测量的初始波长,nm;A1为压力传感器实时采集的波长,nm;B1为温补传感器实时采集的波长,nm;B0为温补传感器采集的初始波长,nm。

    光缆传输线路距离、光纤熔接点数、输出光的能量、线缆弯折角度与激光路径损耗之间的差异性等都会影响到测试精度。为保证光测系统数据的测量精准,排查影响系统精度因素,在进行光测精度测试过程中,需要结合仪器性能和系统参数进行优化。采用高频连续测试来检验系统精度。

    测试方法及实施步骤如下:

    1)开展测试煤柱的编号,记录各传感器的坐标位置。

    2)在井下利用激光笔打出红色激光,地面线路端头接受激光信号,确保光缆线路通畅。

    3)为最大化减小因采动对精度的影响,工作面检修期间开展短时连续测量,分析系统的重复测试精度,每个测孔FBG、光纤光栅应力计,均连续采集200组数据。

    4)将初次采集的数据作为初值,后续测试结果与初值作差后的波动,作为重复测试精度。

    5)将测量精度与传感器精度的数值对比,对比二者是否满足允许误差范围内。

    光测系统精度测试结果见表1图1

    表  1  光测传感器精度
    Table  1.  Precision of optical sensor
    钻孔编号 类型 FBG 光栅应力计
    1–1号 波长/pm ±2 ±3
    应变/10−6 ±1.69
    应力/MPa ±0.075
    允许波长误差范围/pm ±5 ±5
    2–1号 波长/pm ±2 ±2
    应变/10−6 ±1.69
    应力/MPa ±0.05
    允许波长误差范围/pm ±5 ±5
    下载: 导出CSV 
    | 显示表格
    图  1  不同监测系统精度误差范围
    Figure  1.  Precision error range of different monitoring systems

    图1所示,1–1F号,2–1F号钻孔的FBG重复测量200组数据得出波长漂移量误差在±2 pm;光栅应力计分别为±3 pm、±2 pm。由表1可以看出,光栅与应力计精度误差范围均在±5 pm之内,波长漂移量转换为应变误差在±1.69×10−6,应力误差分别为0.075 MPa和0.05 MPa,以上传感器均满足工程允许误差范围。

    测试选在陕西某矿压显现剧烈煤层,测试工作面为南翼盘区第3个回采工作面,位于上覆近距离煤层采空区下,上覆煤层中相邻工作面之间留设30 m宽度煤柱,造成该工作区段煤柱位于上覆近距离煤层遗留煤柱下方。该工作面距上覆煤层平均层间距为30 m,区段煤柱长度295 m,煤层厚度4.04~5.2 m,平均厚度4.5 m。如图2所示,工作面受上覆遗留煤柱影响,工作面回采过程中矿压显现强烈,区段煤柱发生了严重的帮鼓、底鼓现象。

    图  2  现场区段煤柱变形
    Figure  2.  Deformation of coal pillars in site section

    光测系统主要包括光纤光栅解调仪、光纤布拉格光栅传感器、光纤光栅传感光缆、光纤光栅应力计等。光纤光栅传感器数据采集利用16通道的光纤光栅解调仪进行测量,波长测量范围1 510~1 590 nm,该便携式仪器体积较小,监测精度高,扫描频率为1~50 Hz可调,能实时监测应变信号(图3图4)。

    图  3  煤柱测试附属装置
    Figure  3.  Auxiliary device for coal pillar testing
    图  4  煤柱光测系统布置及监测实物
    Figure  4.  Layout and monitoring physical of coal pillar optical measurement system

    测试传感器为定点式光纤光栅光缆,与金属索状光缆连接,如图3a所示。试验前将传感器标定参数与钻孔编号相对应,便于测试植入钻孔后与出厂标定值对比判断传感器良好与否。图3e为外径厚度50 mm的PVC管,其作用是将光缆推送至测试孔内,光缆两端连接红色激光笔,随时根据光强确定光缆弯折与否,安装结束后孔口预留尾纤接入通讯光缆,线路集成至地面可进行长时数据监测。

    近距离煤层群开采强矿压显现的机理相比单煤层开采更加复杂,引起局部静载应力集中的力源更加丰富,在浅部开采条件下也会出现较高的局部应力集中区。区段煤柱处于上覆采空区遗留煤柱下,受顶板自重和上覆煤柱集中应力的静态力源影响,工作面回采时,一侧采空或两侧采空的煤柱受采空区侧向的支承压力的叠加作用,使得工作面危险程度上升。同时,煤柱上的集中应力可能向下传递,当煤柱下方进行采掘作业时,引起遗留煤柱附近煤岩变形失稳破坏,产生的动载扰动将与局部静载叠加诱发强矿压显现[24]

    图5所示,测试区段煤柱与上覆煤层底板垂直距离为30 m,遗留煤柱宽度30 m,垂距与煤柱宽度比值为1。工作面受上覆煤柱影响范围L可通过式(7)计算:

    图  5  遗留煤柱下区段煤柱应力分布
    Figure  5.  Stress distribution of coal pillars in lower section of remaining coal pillars
    $$ L=b+2({{h}}_{{1}}+{{h}}_{{2}})\text{tan}\;\varphi $$ (7)

    式中,φ为煤柱影响角度;h1为两层煤间距;h2为煤柱厚度;b为上覆煤柱宽度。研究的区段煤柱,处于上覆遗留煤柱正下方,在上覆遗留煤柱影响下,煤柱长度范围内应力呈现出中间大,两侧小分布特征,在该载荷影响下,工作面回采推过该区段煤柱位置时,强矿压显现明显,冲击危险性将大幅提高。在该范围内布置传感器便于分析工作面回采对该煤柱的影响。

    试验测试场所选定在上覆遗留煤柱下,按图6所示方式在30 m遗留煤柱下部两侧10 m处各布置2组测试钻孔,传感器钻孔编号分别为光纤光栅(F)、应力计(S)沿着工作面推进方向,测试钻孔编号分别为1–1F号,1–1S号,2–1F号,2–1S号。

    图  6  区段煤柱测试钻孔布置平面示意
    Figure  6.  Layout plan of drilling holes for section coal pillar testing

    确定位置在遗留煤柱下,根据煤柱长度确定测孔位置,从回风巷向运输巷打直径94 mm、深度15 m的钻孔,并清理钻孔中煤屑。用抱箍将测试光缆固定在管上,将测试光缆推送至预定位置。固定好传感器后不断续接PVC管植入钻孔中,通过红光笔随时检查传感器状态,并用便携式解调仪监测光栅数据情况。按照以上步骤完成测试钻孔的光缆布置,如图7所示。

    图  7  区段煤柱FBG应变测试钻孔布置示意
    Figure  7.  Schematic of borehole layout for strain testing of section coal pillars

    光纤测试钻孔孔径94 mm,角度6°,孔深15 m,测孔内分别有FBG传感器,孔内光纤光栅布设9个测点,主测点4个,剩下5个为备用测点,间距0.9 m,能实现不同深度处煤体水平应变信号监测。

    应变测试为光纤光栅测试,光纤光栅测试是指栅区受到拉伸或压缩引起折射率变化,是通过波长改变转化公式,用应变表征被测物体变形量。在工作面回采期间,首先依次对光纤光栅进行测试,频率为每小时采集一次,按照上述步骤连续进行每日长时间测试,测试时间为下煤层回采经过上覆遗留煤柱总过程,进而能够测试煤层回采过程中煤柱内部的应变。

    采用应力法监测工作面回采区域的强矿压显现。区域监测采用KSE 型液压式应力监测系统监测工作面回采时矿压事件。布置位置与光纤光栅测孔类似,按照工作面回采方向在煤柱内部布置依次为应力计测孔、光栅测孔,测孔间距为2 m,从运输巷煤壁打孔深3 m、角度0°的钻孔,测试时间与上述光纤光栅测孔同步进行,根据工作面回采进度定期检查保证传感器正常运行。

    由于安装工艺铺设钻孔为近水平,FBG测得主要为水平应变,后文描述应变均为水平应变。为研究区段煤柱内FBG空间分布规律,分别测试工作面推进至2–1号测孔前−20、−10 m,经过2–1号测孔时及滞后测孔10、21、35 m。测试结果表明,煤柱未受到扰动应变值会稳定在±50×10−6范围内。

    为测得该测孔不同孔深的应变值,连续采集测孔波长变化15 min,取该段时间内波长变化的平均值。2–1号测孔内测试结果如图8所示,工作面推进未到达测孔应变略有波动,推过钻孔变化明显,应变大小随孔深的变化规律基本一致,随着工作面推进,峰值应变逐渐增大,即应变随钻孔增加呈先增大后减小的变化规律。如图8所示,在孔深10.3~13.1 m,应变较大,分布在(169~337)×10−6,且应变值最大均出现在孔深13.1 m处,分别为170×10−6(滞后工作面10 m)、315×10−6(滞后工作面21 m)、338×10−6(滞后工作面35 m);在距孔口0~8.9 m范围内,FBG测点测得应变值较小,分布在(3~97)×10−6,在37×10−6附近平稳变化,即应变随孔深呈现先增加后减小的趋势。综上所述,由煤柱“弹塑性理论”分布规律可知[25],煤柱依次存在破碎区、塑性区、弹性区、原岩应力区,如图9所示,区段煤柱受超前支承压力和侧向支承压力影响,煤柱宽度方向发生弹塑性变形,0~10 m范围内煤柱基本处于弹性变形阶段,应变峰值在距煤壁13 m左右,随工作面推进整体水平应变降低,表明此位置煤体发生塑性破坏,13 m处塑性变形阶段应变水平整体较低。以上分析表明,煤柱内部应变大小的分布与“弹塑性区”分布有很好的对应性[26]

    图  8  2–1F号FBG不同孔深处应变曲线
    Figure  8.  No. 2–1F FBG strain curve at different hole depths
    图  9  煤柱侧向支承压力分布
    Figure  9.  Lateral support pressure distribution of coal pillars

    随着工作面接近上覆遗留煤柱影响区域,在进煤柱阶段前,区段煤柱受超前支承压力影响,顶板破断成块相互铰接结构稳定,区段煤柱载荷增加但仍保持稳定,如图10a所示,内部光栅受到径向压缩产生横向应变,导致横截面由圆形变成椭圆形,光纤光栅的反射特性也随之产生偏振特性,产生的应变呈减小状态,如图10b所示。水平光纤光栅在岩层断裂弯曲下发生弯曲形变,岩层两侧存在水平张拉裂隙,岩层弯曲造成的光纤受力可看为施加在光纤上的轴向拉力,存在水平张拉裂隙时,光纤光栅的中心波长向长波方向移动,分布在光纤光栅上的拉应力将在裂隙产生的对应位置产生突变,产生应变呈增大状态。如图11所示,进煤柱阶段覆岩结构发生改变,在采动影响下,顶板发生破断,块体铰接处因应力集中进一步破坏发生回转,导致区段煤柱上覆载荷增加,内部出现裂隙,光栅产生受拉应力影响产生横向水平应变。随着工作面继续推进,覆岩破断回转向上传递,关键层破断导致来压,煤柱内部裂隙进一步发育,加速扩张形成裂缝,水平应变也随之迅速增大。

    图  10  光纤光栅受力
    Figure  10.  Radial force diagram of fiber bragg grating
    图  11  上覆遗留煤柱变形失稳模型
    Figure  11.  Deformation and instability model of overlying residual coal pillars

    图12为2022–11–12—11–29工作面推进情况,为直观看出应变测试曲线效果,此处将横坐标工作面推进期间的日期,按实际工况转化为工作面至测孔推进距离。以测试孔为基准0点,工作面推进至钻孔前–25 m至滞后钻孔100 m测试孔期间,FBG 2–1F号测点处应变时域变化曲线、光栅应力计2–1S号测点处应力时域变化曲线。为了详细全面分析应变、应力与生产进度之间的关系,分别对推进过程中期间的水平应变进行分析。由图12可以看出,在工作面推进期间,应变整体呈现出阶梯式上升趋势,FBG受到横向拉力影响,煤柱内部应变逐渐增大650×10−6左右趋于稳定状态。

    图  12  2–1F号测孔FBG全周期测试结果
    Figure  12.  Full cycle test results of No. 2–1F measuring holes

    图13a所示,工作面至测孔–29 m前,应变呈平稳波动状态,至工作面至测孔−30 m开始,应变曲线开始波动,直至−19 m时,应变曲线出现“尖峰”状突变,但应变变化值较小,在推进至距测孔−10 m时,应变曲线变化明显,表明光纤光栅监测超前支承范围在−30 m左右,并在煤壁前方−10 m支承压力达到峰值。

    图  13  回采期间2–1F号FBG应变变化曲线
    Figure  13.  Strain variation curve of No. 2–1F FBG during mining

    图13b可以发现,在工作面推进至测孔后,从工作面滞后钻孔开始,应变开始出现逐渐增加的趋势,煤柱内部应变随工作面的推进增加速率不同,不同孔深处光栅测点应变不同,例如光栅测点在孔深11.7 m,应变量均大于其他测点的应变。工作面经过测孔开始,应变出现立刻上升的趋势,此过程持续至工作面滞后钻孔14 m,随后煤柱内部裂隙显现,应变快速增加,于工作面推进16 m,应变快速增加至312×10−6,随后增减速率衰减,并随工作面推进过程中处于平稳增加状态。在第2次变形发育时,应变呈现先缓慢增加(滞后测孔30 m)后快速增加的趋势,随后在工作面滞后钻孔32 m后,煤柱内部稳定,应变在450×10−6附近平稳增加。

    图13c为工作面推进过程中滞后测孔40~100 m应变变化曲线,在工作面正常推进过程中,应变均表现出平稳增加的状态,与之前叙述一致。由于煤柱内裂隙发育程度不同,在工作面分别测孔47, 61, 73 m应变分别出现小幅增长,随工作面继续推进期间,应变曲线均保持平稳波动状态,应变曲线峰值在609×10−6附近平稳波动,此时工作面滞后测孔90 m,煤柱内部应变趋于稳定,工作面推进对煤柱影响保持平稳。

    观察图13a可以发现,在工作面推进至煤柱前方–20 m出现一次波动,曲线负向增大,出现压应力,此段压应力变化即为工作面超前支承压力的变化,煤柱内部受到超前支承压力影响,在推进–10 m至钻孔阶段应变整体呈快速波动,应变曲线呈上升状,煤柱内部开始产生裂隙。FBG传感器因内部裂隙扩展,由垂向应力变为在剪应力作用下产生拉伸变形,此时所受为轴向拉力,当工作面靠近钻孔处时,曲线呈下降趋势,煤体变形破碎并重新压实。图13b工作面推进过程中应变先呈现平稳增加状态后突然出现短暂快速增加趋势,煤体拉应力值急剧增大,达到峰值后稳定一段时间,之后随着煤体破裂变形使FBG产生弯曲变形,使得裂隙张开位置产生拉应力突变;同理图13c工作面推进过程中也出现相同情况。

    以上结果可以表明各测点局部变形程度剧烈,顶板破断发生回转现象,致使上覆遗留煤柱及岩层倾倒,采场覆岩周期性运动,顶板切落瞬间释放大量能量,煤柱内部应变出现短暂迅速增加,区段煤柱压力叠加超出承载能力,出现变形失稳现象。结合光栅应力计与FBG联合分析出现该现象原因。

    光栅应力计详情如图14所示,应力计安装后,初始值基本为0,钻孔内部测得的应力值为煤柱垂直应力的变化量,煤柱内部应力分布情况均为煤柱应力的增量,为满足与FBG测量水平方向一致性,根据材料力学第一强度理论和筒体壁厚极限理论可得,孔壁对应力计水平作用极限值为

    图  14  2–1号测孔FBG应变梯度及应立计变形响应
    Figure  14.  No. 2–1 measuring hole FBG and strain gauge deformation response
    $$ {f_i} = \frac{{2n[\sigma ](1 + \xi )}}{{n + 2R}} $$ (8)

    式中,[σ]为应力计水平方向的应力;fi为孔壁对应力计的作用力;ξ为应力传递效率;n为应力计的壁厚;R为钻孔半径。

    由于超前支承压力的影响,应力计测试曲线在煤柱前方30 m出现应力波动,此时处于应力增长区并在煤柱前−10 m应力波动明显,煤柱受到垂向应力作用,说明超前支承压力达到峰值,此时FBG横向应变出现小幅增长。

    当工作面推过测孔时,孔内应力计与FBG分别对孔内变形响应明显,在滞后测孔14 m左右,在矿压影响下应力计与围岩应力相互平衡状态被打破,孔内出现裂隙,应力计的支承应力出现平衡–波动–平衡的状态,此时FBG受到轴向拉力影响,水平应变出现突增,增量在180×10−6。随着工作面继续推进,传感器对煤柱内部变形响应明显,该阶段内应力水平升高,应变跳跃事件增多且跳跃幅度增长,在FBG出现多次应变峰值之前多次出现应力增长现象,表明工作面回采过程中引起煤柱支承应力改变及矿压显现,使得煤柱内部应变的瞬间突增,进而导致应变在工作面推进期间呈现阶段性平缓后突然增加的趋势。

    采动条件下,煤体随着应力水平和加载次数的增多,内部微裂隙逐步萌生、发育连接,形成宏观裂隙,最终破坏失稳。FBG对煤体变形进行监测时,煤体表面或者内部出现微观裂隙的时候,裂隙产生位置光栅所测得的应变会明显大于相邻区域。随着裂隙进一步发育,加速扩张,宽度增大,形成裂缝,裂缝处光纤应变也随之迅速增大,根据光栅应变增量来判断局部煤体变形的剧烈程度和实现煤体变形定位。如图15所示。

    图  15  煤体内部变形光栅应变响应
    Figure  15.  Strain response of deformation grating inside coal body

    图16为工作面推进距离1–1F号钻孔前−20 m至滞后测孔100 m期间FBG不同孔深处应变时域对比曲线,可以看出,应变均随煤层回采呈现逐渐增加趋势,FBG在工作面期间,应变出现4次瞬时突变,瞬间突增最大应变的位置在滞后测孔16 m处,工作面推进滞后测孔41 ~100 m期间,应变均平缓稳定,波动幅度不明显,逐渐趋于稳定,达到应变稳定阶段。

    图  16  回采期间1–1F号应变曲线
    Figure  16.  Strain curves for different hole depths of No. 1–1F during mining

    图16中孔深3.3 m所示,工作面回采期间FBG应变均发生不同程度突增,其中在滞后钻孔16 m与37 m时瞬间增加应变量较大,增加应变量分别为85×10−6与62×10−6,在30 m处应变仅增加19×10−6,应变呈现 “阶梯”增加趋势,随后应变曲线均逐渐平缓稳定增加。在工作面回采滞后钻孔40~100 m期间,FBG测得,平均应变差量40×10−6。观察图16中孔深6.1 m可以发现,应变增加趋势与孔深3.3 m类似,不同的是工作面在滞后测孔40 m后,应变曲线突增量大。

    图16中孔深8.9 m可知,在距离测孔前–6 m,FBG出现应变波动现象,应变增加94×10−6,随后持续增加,该状态维持了约20 m,随后FBG应变瞬间增加位置在滞后测孔16 m和37 m处,煤柱的应变分别增加为228×10−6和90×10−6,前者变形量约是后者的2.5倍。随着工作面推进,应变保持平稳增加状态,表明采动应力趋于稳定。综上可以看出应变跳跃幅度是随着孔深增大而显著增大,受工作面回采影响,变形增大幅明显,应变跳跃幅度更大。影响范围在滞后钻孔40 m处,在16 m处应变波动最为明显,此时煤柱内部出现一定程度破坏,内部变形剧烈。

    图17为工作面距离钻孔前–10 m至滞后60 m推进过程1–1F号测孔所测应变的时域变化,选取FBG测孔深度为11.7 m处测点。可以看出,在工作面推进未进入上覆遗留煤柱前,应变仅在平缓增长,当工作面推进至遗留煤柱下时,应变出现一次大幅度突增,在工作面推进出遗留煤柱滞后钻孔40 m左右,出现一次小幅突增,随后处于平稳增长状态。

    图  17  钻孔深度11.7 m测点1–1F号应变曲线
    Figure  17.  Strain curve of measuring point No. 1–1F at a drilling depth of 11.7 m

    为详细研究工作面回采过程中进出上覆遗留煤柱应变增量规律,如图18所示,为便于分析,对应变突增所在阶段进行编号,分别为1*, 2*。在回采期间经过进入和推出上覆遗留煤柱均有瞬变应变出现,不过进入期间大于推出期间。

    图  18  过煤柱期间1–1F号应变曲线
    Figure  18.  No. 1–1F strain change curve during coal pillar crossing

    图1718所示,滞后测孔10 m初始应变为97×10−6,1*强矿压显现时应变开始相应的起始值为112×10−6,位置于滞后测孔16 m时进入遗留煤柱下方约5 m,此回采过程前应变波动平缓增长,应变激增,推进距离增长1 m,应变增量为317×10−6。明显看出1*应变增量大于2*增量,2*应变突增位置在遗留煤柱下约38 m,此时工作面即将推出上覆遗留煤柱下方,应变虽再一次发生突增,增量为74×10−6,应变突增时工作面仅回采1 m,但前者的应变对应的增量与后者增量相差较大,后者应变增量仅为前者的1/4。

    基于以上分析,煤柱内部变形呈现阶段性,仅在过煤柱阶段出现2次应变激增现象,且发生距离相距22 m,说明受上覆遗留煤柱集中应力影响明显,顶板垮落应力叠加,煤体出现破裂时会伴随着应变的瞬间变化,变形突然,发生速度过快。而且受集中叠加应力影响导致煤体破裂程度时应变大小呈正相关,在煤柱宽度方向上,内部变形出现显著的分区现象,靠近受回采影响侧影响明显,在煤柱宽度方向10~15 m范围内水平变形量约为其他宽度的2倍。

    以上分析表明,光测方法在井下抗干扰能力强,对工作面推进过程能实时监测,对煤柱变形强度响应灵敏,具有很好的前兆响应,在煤岩体应变观测和矿压预测方面应用前景广阔。实验室试验已取得大量成果,但该技术现场应用还处于试验阶段,仍需要通过大量现场试验得到进一步完善和验证。

    1)工作面推进过程中经过上覆遗留煤柱,水平应变峰值在煤柱宽度11.5 m处,煤柱塑性区宽度为2 m,变形影响范围约在10~15 m。

    2)受到上覆遗留煤柱影响,区段煤柱超前支承压力影响范围在距钻孔30 m,应力计应力增量在5 MPa,支承压力峰值在10 m处,滞后钻孔90 m左右,最大水平应变保持在650×10−6稳定波动,区段煤柱不再受工作面推进影响。

    3)回采过煤柱阶段,根据现场实测区段煤柱11.7 m处最大水平应变,过上覆遗留煤柱出现2次应变突增,进煤柱5 m时FBG测得水平应变增量317×10−6,出煤柱前2 m时增量为74×10−6,约是进煤柱阶段的1/4。进煤柱时顶板周期破断伴随回转运动以及出煤柱时覆岩2次运动,顶板大面积切落造成矿压显现剧烈。

  • 图  1   气化粗渣、细渣的表观形貌[10]

    Figure  1.   Apparent morphology of gasification coarse slag and fine slag[10]

    图  2   气化粗渣与细渣的微观形貌[12]

    Figure  2.   Microscopic Morphology of gasification coarse slag and fine slag[12]

    图  3   不同粒级气化细渣的炭−灰结合形态[18]

    C—红色;Si—黄色;Al—粉色

    Figure  3.   Carbon-ash bonding form of gasified fine residue at different granular levels[18]

    图  4   原煤以及煤气化渣的XRD分析结果[19]

    Q—石英;K—高岭石;P—黄铁矿;C—方解石;M—莫来石;A—钙长石;T—硫铁矿

    Figure  4.   XRD patterns of raw coal and slags[19]

    图  5   气化粗渣水流分级装置结构[33]

    Figure  5.   Structure of gasification coarse slag water flow classifier[33]

    图  6   柴油−十二烷基硫酸钠复配捕收剂制备工艺流程[41]

    Figure  6.   Preparation process flow diagram of diesel-sodium lauryl sulfate compound collector[41]

    图  7   煤气化渣资源化利用方式

    Figure  7.   Resource utilization mode of coal gasification slag

    图  8   水泥、粗渣和细渣样品在不同水化时间下的微观结构[60]

    Figure  8.   Microstructure of cement, coarse residue and fine residue samples at different hydration times[60]

    图  9   细渣施用速率对玉米和小麦发芽率的影响及在第7天的发芽图[73]

    Figure  9.   Effect of fine slag application rate on germination rate of maize and wheat and germinating pictures on seventh day[73]

    图  10   细渣制备泡沫陶瓷工艺流程[101]

    Figure  10.   Process flow of fine residue preparation of foam ceramics[101]

    表  1   国内煤气化渣粒度组成[15]

    Table  1   Particle size composition of coal gasification slag[15]

    粒度级/mm +1.0 1.0~0.8 0.8~0.50 0.5~0.25 0.25~0.125 0.125~0.074 −0.074
    粗渣质量分数/% 宁煤Texaco 69.06 10.67 5.23 2.58 2.46 2.46 2.46
    宁煤GSP 9.45 17.37 23.44 19.6 20.77 5.33 4.04
    陕西水煤浆 49.10 49.10 49.10 24.46 13.17 7.03 6.25
    细渣质量分数/% 宁煤Texaco 18.75 18.75 18.75 23.87 28.85 4.47 14.06
    宁煤GSP 13.59 13.59 13.59 11.97 40.07 24.87 9.50
    陕西水煤浆 3.46 3.46 3.46 18.29 20.99 13.62 43.65
    榆林气流床 1.03 1.03 1.03 14.27 32.36 9.25 43.09
    下载: 导出CSV

    表  2   我国不同地区和不同炉型气化粗渣和细渣主要化学组成

    Table  2   Main chemical composition of gasification coarse slag and fine slag in different regions and different furnace types in China

    样品 化学组成质量分数/%
    SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SO3
    陕西Texaco粗渣[23] 41.12 12.72 12.88 1.23 1.94 1.49 0.61
    陕西Texaco细渣[23] 32.20 8.87 4.33 0.69 1.23 0.54 0.52
    陕西多喷嘴对置式水煤浆气化粗渣[13] 41.44 13.91 17.37 17.37 2.26 1.46 1.40 0.65 1.38
    陕西多喷嘴对置式水煤浆气化细渣[13] 35.93 15.48 18.13 17.19 2.11 1.39 2.31 0.88 3.25
    安庆粉煤Shell气化粗渣[24] 46.90 20.38 7.66 8.57 1.02 2.03 1.65 1.01 2.12
    安庆粉煤Shell气化细渣[24] 37.50 21.63 15.73 17.70 1.18 0.55 0.53 1.29 3.27
    鄂尔多斯水煤浆气化粗渣[25] 55.30 19.14 9.79 8.65 1.14 2.44 1.45 1.16 0.66
    鄂尔多斯水煤浆气化细渣[25] 54.40 21.93 8.36 6.70 1.09 2.70 1.86 1.28 1.23
    Texaco气化粗渣[26] 42.90 13.27 5.20 13.44 1.28 2.02 1.55 0.64
    Texaco气化细渣[26] 37.02 10.20 2.86 4.98 0.79 1.41 0.62 0.60
    宁煤粗渣[10] 48.82 19.33 10.34 10.64 2.90 2.42 1.31 1.03 2.39
    宁煤细渣[10] 51.95 18.33 8.89 9.09 4.10 3.10 1.61 1.11 0.77
    神木化工粗渣[27] 41.12 12.72 12.88 1.23 1.94 1.49
    神木化工细渣[27] 32.20 8.87 4.33 0.69 1.23 0.54
    神华集团粗渣[28] 50.59 18.44 12.06 8.77 3.27 2.13 1.20 1.18
    神华集团细渣[28] 41.78 37.40 7.54 6.85 0.76 1.34 0.65 2.19
    下载: 导出CSV

    表  3   不同气化细渣复配捕收剂

    Table  3   Different compound collectors for gasification fine slag

    捕收剂 细渣灰分/% 精矿灰分/% 尾矿灰分/% 可燃体回收率/%
    煤油−月桂酸复配捕收剂[40] 54.92 40.03 92.07 94.91
    柴油−十二烷基硫酸钠复配捕收剂[41] 79.88 58.69 95.86 88.26
    煤油−油酸复配捕收剂[42] 48.22 67.30 68.00
    下载: 导出CSV

    表  4   不同气化细渣浮选工艺

    Table  4   Different flotation process for gasification fine slag

    浮选工艺 细渣灰分/% 精矿灰分/% 尾矿灰分/% 可燃体回收率/%
    一粗两精一扫[43](载体浮选) 68.00 24.62 96.43 94.61
    一粗一精一扫[44] 45.95 27.92 58.88 55.08
    三段浮选[45] 75.51 35.53 52.65
    反浮选[16] 60.11 83.62 55.27 92.99
    下载: 导出CSV

    表  5   不同煤气化渣制砖的性能对比

    Table  5   Performance comparison of different bricks prepared by coal gasification slag

    制备原料 砖材类型 吸水率/% 抗压强度/ MPa
    粗渣、细渣、水泥、土体稳定剂表面活性剂和助剂[66] 免烧砖 12.60
    粗渣、中塑性黏土[67] 黏土砖 45.00
    粗渣、锅炉渣、除尘灰、石灰、水泥、石膏[68] 免烧砖 14.00 22.25
    粗渣(1.5~3 mm)、水泥、粉煤灰[69] 蒸压砖 13.00 18.70
    粗渣与细渣(0.08 mm)、黏土、纸浆废液[23] 烧结砖 10.90
    细渣、黏结剂、添加剂[70] 烧结砖 21.26 49.71
    下载: 导出CSV

    表  6   不同煤气化渣制备吸附材料的性能对比

    Table  6   Performance comparison of different adsorbing materials prepared by coal gasification slag

    制备原料 吸附材料 制备方法 比表面积/
    (m2∙g−1
    吸附量
    细渣浮选精炭 活性炭 KOH活化法[87] 1226.80 亚甲蓝、碘吸附量分别为278、1292 mg/g
    包头细渣未燃炭 活性炭 KOH活化法[88] 2481.00 Pb2+吸附量141 mg/g
    内蒙古水煤浆气化细渣 活性炭 炭化、活化法[89] 104.30 碘吸附量582.19 mg/g
    宁东细渣 高结晶度单相A型沸石 固相碱熔变法[90] 61.09
    内蒙古GE水煤浆气化细渣 X型沸石复合材料 水蒸气高温活化→盐酸溶解→置于
    NaOH中加入导向剂[91]
    294.98 甲基蓝、Cr3+吸附量分别为93.88 mg/g、
    0.766 mmol/g
    宁东GSP干煤粉气化细渣 P型沸石/碳复合材料 碱性条件原位转换法[92] 189.30 结晶紫吸附量625.0 mg/g
    山西细渣 铁改性碳/沸石复合材料 酸碱浸溶合成法→硫酸铁改性[93] 348.30 NH4+、PO43−吸附量分别为7.44、6.94 mg/g
    上海细渣 碳硅复合材料 硫酸铵改性[94] 474.00 Pb2+吸附量124 mg/g
    陕西细渣 改性壳聚糖/煤气化渣复合材料 微波处理→酸浸出→壳聚糖改性[95] 343.06 甲基橙、Cr(VI)吸附量分别为
    125.23、8.70 mg/g
    宁夏GSP干煤粉气化细渣 煤气化基氨氮吸附剂 水热合成法[96] 311.00 氨氮吸附量3.50 mg/g
    宁夏细渣 CO2吸附剂 胺基团改性法[97] 541.00 CO2吸附量132.50 mg/g
    下载: 导出CSV

    表  7   不同煤气化渣制备陶瓷材料的性能对比

    Table  7   Performance comparison of different ceramic materials prepared by coal gasification slag

    制备原料 制备方法 抗压强度/MPa 孔隙率/%
    安庆Shell干煤粉气化粗渣、细渣 粗渣与细渣1∶1混合→掺入5%SiC为发泡剂[24] 8.68 39.23
    神华集团粗渣 半干法模压成型工艺→1100 ℃烧制[100] 8.96 49.20
    加入5%羧甲基纤维素钠作为黏结剂→1200 ℃烧制[28] 13.17 39.20
    下载: 导出CSV
  • [1] 朱菊芬,李健,闫龙,等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术,2021,27(6):11−21.

    ZHU Jufen,LI Jian,YAN Long,et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology,2021,27(6):11−21.

    [2] 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术,2021,27(1):1−33.

    WANG Fuchen. Coal gasification technologies in China:review and prospect[J]. Clean Coal Technology,2021,27(1):1−33.

    [3] 袁蝴蝶. 煤气化炉渣本征特征及应用基础研究[D]. 西安:西安建筑科技大学,2020:1-14.

    YUAN Hudie. Intrinsic characteristics of coal gasification slag and its fundamental research for applications[D]. Xi’an:Xi’an University of Architecture and Technology,2020:1-14.

    [4] 宁永安,段一航,高宁博,等. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术,2020,26(S1):14−19.

    NING Yongan,DUAN Yihang,GAO Ningbo,et al. Progress of component recycling and utilization technology of coal gasification slag[J]. Clean Coal Technology,2020,26(S1):14−19.

    [5] 刘开平,赵红艳,李祖仲,等. 煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报,2017,34(5):190−195. doi: 10.3969/j.issn.1673-2049.2017.05.021

    LIU Kaiping,ZHAO Hongyan,LI Zuzhong,et al. Influence of coal gasification slag on cement concrete performance[J]. Journal of Architecture and Civil Engineering,2017,34(5):190−195. doi: 10.3969/j.issn.1673-2049.2017.05.021

    [6]

    YUAN N,ZHAO A,HU Z,et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment:a review[J]. Chemosphere,2022,287:132227. doi: 10.1016/j.chemosphere.2021.132227

    [7] 冯向港,葛奋飞,张印民,等. 煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术,2023,29(11):122−132.

    FENG Xianggang,GE Fengfei,ZHANG Yinmin,et al. Research progress and application prospect of high-value utilization of coal gasification slag [J]. Clean Coal Technology,2023,29(11):122−132.

    [8] 张瑞梅,刘定桦,何浩,等. 煤气化细渣综合利用与碳灰分离技术现状[J]. 煤炭工程,2023,55(5):175−182.

    ZHANG Ruimei,LIU Dinghua,HE Hao. Study on residue features and decarbonization of Texaco entrained flow gasifier[J]. Coal Engineering,2023,55(5):175−182.

    [9] 王亚丰. 煤气化产物的矿物学和环境地球化学研究[D]. 北京:中国矿业大学(北京),2021:31−40.

    WANG Yafeng. Study on mineralogy and environmental geochemistry of coal gasification products[D]. Beijing:China University of Mining and Technology-Beijing,2021:31−40.

    [10] 李俏,董阳,JINDER JOW,等. 煤气化渣的基本性能及其应用途径分析[J]. 新型建筑材料,2023,50(3):33−36. doi: 10.3969/j.issn.1001-702X.2023.03.008

    LI Qiao,DONG Yang,JINDER JOW,et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials,2023,50(3):33−36 doi: 10.3969/j.issn.1001-702X.2023.03.008

    [11] 高旭霞,郭晓镭,龚欣. 气流床煤气化渣的特征[J]. 华东理工大学学报(自然科学版),2009,35(5):677−683.

    GAO Xuxia,GUO Xiaolei,GONG Xin. Characterization of slag from entrained-flow coal gasification[J]. Journal of East China University of Science and Technology (Natural Science Edition),2009,35(5):677−683.

    [12] 雷彤. 掺煤气化粗渣水泥稳定基层材料组成及路用性能研究[D]. 西安:长安大学,2017:17-18.

    LEI Tong. Study on composition and pavement performance of cement stabilized base material for coal gasification coarse slag[D]. Xi’an:Chang’an University,2017:17-18.

    [13] 宋瑞领,李静,付亮亮,等. 多喷嘴对置式水煤浆气化炉炉渣特性研究[J]. 洁净煤技术,2018,24(5):43−49.

    SONG Ruiling,LI Jing,FU Liangliang,et al. Characteristics of slags generated from multi-nozzle opposed coal-water slurry gasifier[J]. Clean Coal Technology,2018,24(5):43−49.

    [14] 袁傲,杨靖,张庆,等. 煤气化细渣资源化利用途径及发展趋势[J]. 应用化工,2022,51(3):891−896.

    YUAN Ao,YANG Jing,ZHANG Qing,et al. Ways and development trends of resource utilization of coal gasification fine slag[J]. Applied Chemical Industry,2022,51(3):891−896.

    [15] 范宁,张逸群,樊盼盼,等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术,2022,28(8):145−154.

    FAN Ning,ZHANG Yiqun,FAN Panpan,et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology,2022,28(8):145−154.

    [16] 吴阳. 煤气化灰渣的分选加工利用研究[D]. 西安:西安科技大学,2017:50−62.

    WU Yang. Study on the separation and utilization of gasified residues[D]. Xi’an:Xi’an University of Science and Technology,2017:50−62.

    [17]

    HUO W,ZHOU Z,WANG F,et al. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel,2014,131:59−65. doi: 10.1016/j.fuel.2014.04.058

    [18] 石旭,初茉,董建飞,等. 气流床气化细渣中碳−灰的结合形态及其解离特性[J]. 中国矿业大学学报,2023,52(3):576−584.

    SHI Xu,CHU Mo,DONG Jianfei,et al. Combined morphology and dissociation characteristics of carbon-ash in fine slag of entrained flow gasification[J]. Journal of China University of Mining & Technology,2023,52(3):576−584.

    [19]

    PAN C,LIANG Q,GUO X,et al. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy & Fuels,2016,30(2):1487−1495.

    [20]

    GUO Y,MA C,ZHANG Y,et al. Comparative study on the structure characteristics,combustion reactivity,and potential environmental impacts of coal gasification fine slag with different particle size fractions[J]. Fuel,2022,311:122493. doi: 10.1016/j.fuel.2021.122493

    [21]

    VAN DYK J C,MELZER S,SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and Fact Sage modelling[J]. Minerals Engineering,2006,19(10):1126−1135. doi: 10.1016/j.mineng.2006.03.008

    [22] 须藤俊男. 黏土矿物学[M]. 北京:地质出版社,1981.
    [23] 尹洪峰,汤云,任耘,等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化,2009,32(4):30−33. doi: 10.3969/j.issn.1004-4248.2009.04.008

    YIN Hongfeng,TANG Yun,REN Yun,et al. Study on the characteristic and application of gasification slag from Texaco gasifier[J]. Coal Conversion,2009,32(4):30−33. doi: 10.3969/j.issn.1004-4248.2009.04.008

    [24] 王守飞. 粉煤气化灰渣制备泡沫陶瓷保温建筑材料[D]. 淮南:安徽理工大学,2019:17−53.

    WANG Shoufei. Foamed ceramic insulation building materials were prepared from gasification ash and slag[D]. Huainan:Anhui University of Science and Technology,2019:17−53.

    [25] 张婷,于露,李宇,等. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究,2020(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039

    ZHANG Ting,YU Lu,LI Yu,et al. Characteristic analysis and application discussion of coal water slurry gasifier slag[J]. Modern Chemical Research,2020(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039

    [26] 冯银平,尹洪峰,袁蝴蝶,等. 利用气化炉渣制备轻质隔热墙体材料的研究[J]. 硅酸盐通报,2014,33(3):497−501.

    FENG Yinping,YIN Hongfeng,YUAN Hudie,et al. Study on the preparation of lightweight heat - insulation wall materials using gasification slag[J]. Bulletin of the Chinese Ceramic Society,2014,33(3):497−501.

    [27] 云正,于鹏超,尹洪峰. 气化炉渣对铁尾矿烧结墙体材料性能的影响[J]. 金属矿山,2010(11):183−186.

    YUN Zheng,YU Pengchao,YIN Hongfeng. Effect of gasification slag on the properties of sintered wall materials with iron ore tailings[J]. Metal Mine,2010(11):183−186.

    [28] 吴海骏. 固体废弃物为原料制备无机多孔材料(膜)及其性能研究[D]. 合肥:合肥工业大学,2015:38−50.

    WU Haijun. The preparation and characterization of inorganic porous material (membrane) from solid waste [D]. Hefei:Hefei University of Technology,2015:38−50.

    [29] 汤云,袁蝴蝶,尹洪峰,等. 几种典型煤气化炉渣的碳热还原氮化过程[J]. 煤炭学报,2016,41(12):3136−3141.

    TANG Yun,YUAN Hudie,YIN Hongfeng,et al. Carbothermal reduction nitridation process of several typical coal gasification slag[J]. Journal of China Coal Society,2016,41(12):3136−3141.

    [30]

    LI Z,ZHANG Y,ZHAO H,et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials,2019,213:265−274. doi: 10.1016/j.conbuildmat.2019.03.163

    [31] 景娟,李兆锋. 航天炉粉煤加压技术气化粗渣的研究[J]. 硅酸盐通报,2018,37(8):2601−2605.

    JING Juan,LI Zhaofeng. Study on the coarse slag from Hangtian pulverized coal pressure gasification technology (HT-L)[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2601−2605.

    [32] 章新喜,章明玥,段超红. 气化炉灰渣中碳的回收方法[P]. 中国:CN101870896B,2015−04−01.
    [33] 高增林,张乾,高晨明等. 水煤浆煤气化粗渣水流分级提炭分质[J]. 化工进展, 2024, 43(3): 1576-1583.

    GAO Zenglin, ZHANG Qian, GAO Chenming, et al. Extraction and separation of carbon from coal water slurry gasification coarse slag by waterflow classifier[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1576-1583.

    [34] 史磊,邱国华,李楠,等. 循环流化床锅炉处理煤气化炉渣的综合利用模式探索[J]. 中国资源综合利用,2021,39(6):77−79,82.

    SHI Lei,QIU Guohua,LI Nan,et al. Exploration on the comprehensive utilization mode of coal gasification slag treated by circulating fluidized bed boiler[J]. China Resources Comprehensive Utilization,2021,39(6):77−79,82.

    [35]

    DAI G,ZHENG S,WANG X,et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management,2020,271:111009. doi: 10.1016/j.jenvman.2020.111009

    [36] 晁岳建,王洪记. 循环流化床锅炉掺烧气化渣和煤泥的可行性研究[J]. 化肥工业,2015,42(3):48−50. doi: 10.3969/j.issn.1006-7779.2015.03.015

    CHAO Yuejian,WANG Hongji. Feasibility study of circulating fluidized bed boiler blending burning gasification slag and coal slime[J]. Fertilizer Industry,2015,42(3):48−50. doi: 10.3969/j.issn.1006-7779.2015.03.015

    [37] 李慧泽,董连平,鲍卫仁,等. 基于视密度的煤气化渣水介质旋流炭−灰分离[J]. 化工进展,2021,40(3):1344−1353.

    LI Huize,DONG Lianping,BAO Weiren,et al. Carbon-ash separation of coal gasification slag in swirling water based on apparent density[J]. Chemical Industry and Engineering Progress,2021,40(3):1344−1353.

    [38] 任振玚,井云环,樊盼盼,等. 气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究[J]. 煤炭学报,2021,46(4):1164−1172.

    REN Zhenyang,JING Yunhuan,FAN Panpan,et al. Experimental study on the water-medium gravity separation of gasification slag and the preparation of desulfurization and denitrification activated coke using separated carbon[J]. Journal of China Coal Society,2021,46(4):1164−1172.

    [39] 杨进进,樊盼盼,樊晓婷,等. 煤气化细渣碳灰分离技术研究进展[J]. 洁净煤技术,2023,29(7):51−64.

    YANG Jinjin,FAN Panpan,FAN Xiaoting,et al. Research progress of carbon ash separation technology on coal gasification fine slag[J]. Clean Coal Technology,2023,29(7):51−64.

    [40] 程延化. 月桂酸对煤气化细渣浮选的促进作用研究[J]. 现代矿业,2022,38(7):162−167. doi: 10.3969/j.issn.1674-6082.2022.07.040

    CHENG Yanhua. Study on the promotion effect of lauric acid on flotation of coal gasification fine slag[J]. Modern Mining,2022,38(7):162−167. doi: 10.3969/j.issn.1674-6082.2022.07.040

    [41] 张海军,王海楠,李文峰,等. 一种气化渣浮选捕收剂及其制备方法[P]. 中国:CN113351376B,2023−03−31.
    [42]

    SHI D,ZHANG J,HOU X,et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of the Total Environment,2021(8):151856.

    [43] 王晓波,符剑刚,赵迪,等. 煤气化细渣载体浮选提质研究[J]. 煤炭工程,2021,53(1):155−159.

    WANG Xiaobo,FU Jiangang,ZHAO Di,et al. Flotation and quality improvement of gasified fine slag carrier[J]. Coal Engineering,2021,53(1):155−159.

    [44] 于伟,王学斌,白永辉,等. 煤气化细渣浮选脱碳试验研究[J]. 洁净煤技术,2021,27(3):81−87.

    YU Wei,WANG Xuebin,BAI Yonghui,et al. Experimental study on decarbonization of coal gasification fine slag by flotation[J]. Clean Coal Technology,2021,27(3):81−87.

    [45]

    GUO F,ZHAO X,GUO Y,et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,585:124148.

    [46] 张晓峰,王玉飞,范晓勇,等. 煤气化细渣浮选脱碳分析[J]. 能源化工,2016,37(5):54−57.

    ZHANG Xiaofeng,WANG Yufei,FAN Xiaoyong,et al. Analysis on decarbonization of coal gasification fine slag flotation[J]. Energy and Chemical Industry,2016,37(5):54−57.

    [47] 史达,张建波,杨晨年,等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术,2020,26(6):1−10.

    SHI Da,ZHANG Jianbo,YANG Chennian,et al. Research progress of the decarburization technology of coal gasification ash slag[J]. Clean Coal Technology,2020,26(6):1−10.

    [48] 黄海珊. 机械活化强化气化细渣炭灰分离机制及精炭吸附性能研究[D]. 徐州:中国矿业大学,2022:34−64.

    HUANG Haishan. Research on enhancing mechanism of mechanical activation on the carbon-ash separation of gasification fine slag and adsorption properties of fine carbon[D]. Xuzhou:China University of Mining and Technology,2022:34−64.

    [49]

    WANG W,LIU D,TU Y,et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel,2020,278:118195. doi: 10.1016/j.fuel.2020.118195

    [50] 赵世永,吴阳,李博. Texaco气化炉灰渣理化特性与脱碳研究[J]. 煤炭工程,2016,48(9):29−32.

    ZHAO Shiyong,WU Yang,LI Bo. Study on residue features and decarbonization of Texaco entrained flow gasifier[J]. Coal Engineering,2016,48(9):29−32.

    [51]

    ZHANG R,GUO F,XIA Y,et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste Management,2019,98:29−36. doi: 10.1016/j.wasman.2019.08.014

    [52] 刘娟红,许鹏玉,周昱程,等. 改性煤气化渣用于矿山充填的试验研究[J]. 硅酸盐通报,2020,39(8):2528−2535.

    LIU Juanhong,XU Pengyu,ZHOU Yucheng,et al. Experimental study on modified coal gasification slag Used for Mine Filling[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2528−2535.

    [53] 屈慧升,索永录,刘浪,等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973.

    QU Huisheng,SUO Yonglu,LIU Lang,et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. Journal of China Coal Society,2022,47(5):1958−1973.

    [54] 徐阳,徐再刚,谢红飞,等. 煤气化渣高水充填材料的制备及其性能研究[J]. 煤矿安全,2020,51(9):41−46.

    XU Yang,XU Zaigang,XIE Hongfei,et al. Preparation and properties of high water filling material from coal gasification slag[J]. Safety in Coal Mines,2020,51(9):41−46,51.

    [55] 武立波,宋牧原,谢鑫,等. 中国煤气化渣建筑材料资源化利用现状综述[J]. 科学技术与工程,2021,21(16):6565−6574. doi: 10.3969/j.issn.1671-1815.2021.16.004

    WU Libo,SONG Muyuan,XIE Xin,et al. A review on resource utilization of coal gasification slag as building materials in China[J]. Science Technology and Engineering,2021,21(16):6565−6574. doi: 10.3969/j.issn.1671-1815.2021.16.004

    [56] 郭照恒,杨文,祝小靓,等. 不同比表面积煤气化渣掺合料活性及力学性能研究[J]. 硅酸盐通报,2020,39(11):3567−3573,3588.

    GUO Zhaoheng,YANG Wen,ZHU Xiaoliang,et al. Activity and mechanical properties of coal gasification slag admixture with different specific surface area[J]. Bulletin of the Chinese Ceramic Society,2020,39(11):3567−3573.

    [57] 李冠杰,郝广成,雒锋. 煤气化渣对环氧树脂砂浆道路修补材料性能的影响[J]. 粉煤灰综合利用,2019(3):13−17. doi: 10.3969/j.issn.1005-8249.2019.03.004

    LI Guanjie,HAO Guangcheng,LUO Feng. Effect of coal gasification ash on the properties of road repair materials of epoxy resin mortar[J]. Fly Ash Comprehensive Utilization,2019(3):13−17. doi: 10.3969/j.issn.1005-8249.2019.03.004

    [58] 申改燕,李金洲,王敬. 关于煤化工气化炉渣资源化利用技术的探讨[J]. 能源与节能,2020(7):58−59. doi: 10.3969/j.issn.2095-0802.2020.07.024

    SHEN Gaiyan,LI Jinzhou,WANG Jing. Discussion on Resource Utilization Technology of Coal Chemical Gasification Slag[J]. Energy and Energy Conservation,2020(7):58−59. doi: 10.3969/j.issn.2095-0802.2020.07.024

    [59] 傅博,马梦凡,申旺,等. 气化渣对硅酸盐水泥强度和微观结构的影响研究[J]. 硅酸盐通报,2020,39(8):2523−2527.

    FU Bo,MA Mengfan,SHEN Wang,et al. Influence of coal gasification slag on strength and microstructure of Portland cement[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2523−2527.

    [60]

    LUO F,JIANG Y,WEI C. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials,2021,269:121259. doi: 10.1016/j.conbuildmat.2020.121259

    [61] 刘艳丽,李强,陈占飞,等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术,2022,50(11):251-257.

    LIU Yanli,LI Qiang,CHEN Zhanfei,et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology,2022,50(11):251-257.

    [62] 谢紫珺. 底泥陶粒制备及生态毯水处理效果研究[D]. 宜昌:三峡大学,2022:26−45.

    XIE Zijun. Research on preparation of sediment ceramsite and water treatment effect of ecological blanket[D]. Yichang:China Three Gorges University,2022:26−45.

    [63] 张凯,刘舒豪,张日新,等. 免烧法煤气化粗渣制备陶粒工艺及其性能研究[J]. 煤炭科学技术,2018,46(10):222−227.

    ZHANG Kai,LIU Shuhao,ZHANG Rixin,et al. Research on preparation of non-sintered ceramsite from gasification cinder and its performance[J]. Coal Science and Technology,2018,46(10):222−227.

    [64]

    ZHAO S,YAO L,HE H,et al. Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag[J]. Archives of Environmental Protection,2019,45(2):84−90.

    [65]

    CHEN L,CHOU M M,CHOU S J,et al. Producing fired bricks using coal slag from a gasification plant in Indian[C]//World of Coal Ash (WOCA) Conference,Lexington,2009.

    [66] 何桂玉,包宗义. 采用煤气化废渣制造的免烧砖及其制造方法[P]. 中国:CN111662054A,2020−09−15.
    [67]

    ACOSTA A,IGLESIAS I,AINETO M,et al. Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing[J]. Waste Management,2002,22(8):887−891. doi: 10.1016/S0956-053X(02)00075-2

    [68] 章丽萍,温晓东,马圣存,等. 煤间接液化残渣制备免烧砖研究[J]. 煤炭工程,2015,44(2):354−358.

    ZHANG Liping,WEN Xiaodong,MA Shengcun,et al. Research on making non - burnt brick from indirect coal liquefaction residues[J]. Journal of China University of Mining & Technology,2015,44(2):354−358.

    [69] 张成,裴超. 煤气化渣生产蒸压砖的技术研究[J]. 砖瓦世界,2019(10):49−52.

    ZHANG Cheng,PEI Chao. Technological research on production of autoclaved bricks from coal gasification slag[J]. Brick & Tile World,2019(10):49−52.

    [70] 牛国峰. 煤气化渣制备烧结墙体材料工艺及烧结机理研究[D]. 包头:内蒙古科技大学,2021:19−47.

    NIU Guofeng. Study on the process and burning mechanism of coal gasification slag for preparing sintered wall materials[D]. Baotou:Inner Mongolia University of Science and Technology,2021:19−47.

    [71] 魏召召. 一种掺有煤气化渣的有机肥及其制备方法[P]. 中国:CN105777427A,2016−07−20.
    [72]

    ZHU D,XUE B,JIANG Y,et al. Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer[J]. Environmental Science and Pollution Research,2019,26(6):5925−5933. doi: 10.1007/s11356-018-4013-8

    [73]

    ZHU D,MIAO S,XUE B,et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water,Air,& Soil Pollution,2019,230(7):1−11.

    [74]

    ZHU D,ZUO J,JIANG Y,et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment,2020,707:136102. doi: 10.1016/j.scitotenv.2019.136102

    [75] 路春亚. 煤气化渣对农业废弃物堆肥过程中抗生素抗性基因的影响[D]. 咸阳:西北农林科技大学,2019:18−32.

    LU Chunya. Effects of coal gasification slag on antibiotic resistance genes during agricultural waste composting[D]. Xianyang:Northwest A&F University,2019:18−32.

    [76]

    LIU T,AWASTHI M K,AWASTHI S K,et al. Influence of fine coal gasification slag on greenhouse gases emission and volatile fatty acids during pig manure composting[J]. Bioresource Technology,2020,316:123915. doi: 10.1016/j.biortech.2020.123915

    [77] 李强,孙利鹏,亢福仁,等. 煤气化渣−沙土复配对毛乌素沙地苜蓿生长及重金属迁移的影响[C]// 中国环境科学学会2019年科学技术年会, 西安,2019.

    LI Qiang,SUN Lipeng,KANG Furen,et al. Effects of coal gasification slag and sand compound soil on alfalfa growth and heavy metal migration in mu us sandy land[C]// 2019 CSES Annual Conference on Environmental Science and Technolog,Xi’an,2019.

    [78] 刘娜,李强,孙利鹏,等. 增施养分对复配气化渣−沙土的激发效应研究[J]. 榆林学院学报,2021,31(2):28−31.

    LIU Na,LI Qiang,SUN Lipeng,et al. Study on the Excitation effect of adding nutrient on gasified slag-sand soil[J]. Journal of Yulin University,2021,31(2):28−31.

    [79] 相微微,李夏隆,严加坤,等. 榆林煤气化渣重金属生物有效性评价[J]. 农业环境科学学报,2021,40(5):1097−1105. doi: 10.11654/jaes.2020-1326

    XIANG Weiwei,LI Xialong,YAN Jiakun,et al. Bioavailability evaluation of heavy metals in Yulin coal gasification slag[J]. Journal of Agro-Environment Science,2021,40(5):1097−1105. doi: 10.11654/jaes.2020-1326

    [80] 普煜,马永成,陈樑,等. 鲁奇炉渣在废水净化中的应用研究[J]. 工业水处理,2007,27(5):59−62. doi: 10.3969/j.issn.1005-829X.2007.05.018

    PU Yu,MA Yongcheng,CHEN Liang,et al. Application of Lurgi slag to wastewater purification[J]. Industrial Water Treatment,2007,27(5):59−62. doi: 10.3969/j.issn.1005-829X.2007.05.018

    [81] 刘转年,全海山,舒瑞,等. 煤气发生炉炉渣改性和吸附性能[J]. 环境工程学报,2013,7(3):1139−1144.

    LIU Zhuannian,QUAN Haishan,SHU Rui,et al. Modification and adsorption property of gas furnace slag[J]. Chinese Journal of Environmental Engineering,2013,7(3):1139−1144.

    [82]

    DUAN L,HU X,SUN D,et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering,2020,37(7):1166−1173. doi: 10.1007/s11814-020-0546-x

    [83] 凌琪,李尚尚,伍昌年,等. 投加气化渣对DMBR处理造纸废水污泥性能及膜污染的影响[J]. 阜阳师范学院学报(自然科学版),2018,35(2):15−20.

    LING Qi,LI Shangshang,WU Changnian,et al. Effect of dosing gasification slag on sludge performance and membrane fouling of papermaking wastewater from DMBR treatment[J]. Journal of Fuyang Normal University (Natural Science),2018,35(2):15−20.

    [84] 董茹,陈碧. 气化炉渣吸附剂的制备及其处理洗煤废水效果的研究[J]. 当代化工,2019,48(6):1149−1153. doi: 10.3969/j.issn.1671-0460.2019.06.009

    DONG Ru,CHEN Bi. Preparation of waste slag based adsorbent and its application effect in coal washing wastewater treatment[J]. Contemporary Chemical Industry,2019,48(6):1149−1153. doi: 10.3969/j.issn.1671-0460.2019.06.009

    [85] 胡俊阳,黄阳,王维清,等. 煤气化炉渣浮选精炭在染色废水中的应用[J]. 环境工程,2018,36(3):59−63.

    HU Junyang,HUANG Yang,WANG Weiqing,et al. Applied of concentrate carbon from coal gasification slag by flotation on dyeing wastewater[J]. Environmental Engineering,2018,36(3):59−63.

    [86]

    DENG X. Study on adsorption performance of ce-loaded coal gasification slag to congo red[J]. Academic Journal of Engineering and Technology Science,2019,2(5).

    [87] 刘冬雪,胡俊阳,冯启明,等. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化,2018,41(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012

    LIU Dongxue,HU Junyang,FENG Qiming,et al. Study on flotation of coal gasification slag and preparation of activated carbon from carbon concentrate[J]. Coal Conversion,2018,41(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012

    [88]

    XU Y,CHAI X. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology,2018,39(3):382−391. doi: 10.1080/09593330.2017.1301569

    [89] 朱仁帅,吕飞勇,汤茜,等. 利用水煤浆气化炉飞灰合成吸附材料的研究[J]. 粉煤灰综合利用,2017(3):12−15. doi: 10.3969/j.issn.1005-8249.2017.03.003

    ZHU Renshuai,LYU Feiyong,TANG Qian,et al. Study on synthesis of adsorbent from fly ash of coal-water slurry gasifier[J]. Fly Ash Comprehensive Utilization,2017(3):12−15. doi: 10.3969/j.issn.1005-8249.2017.03.003

    [90]

    JI W,FENG N,ZHAO P,et al. Synthesis of single-phase zeolite a by coal gasification fine slag from Ningdong and its application as a high-efficiency adsorbent for Cu2+ and Pb2+ in simulated waste water[J]. ChemEngineering,2020,4(4):65. doi: 10.3390/chemengineering4040065

    [91] 姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 长春:吉林大学,2018:33−41.

    YAO Yangyang. Preparation and performance of activated carbon/zeolite composite adsorptive materials from coal gasification coarse slag[D]. Changchun:Jilin University,2018:33−41.

    [92]

    WU Y,XUE K,MA Q,et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials,2021,312:110742. doi: 10.1016/j.micromeso.2020.110742

    [93]

    MA X,LI Y,XU D,et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management,2022,305:114404. doi: 10.1016/j.jenvman.2021.114404

    [94] 顾彧彦,乔秀臣. 煤气化细渣制备碳硅复合材料吸附去除水中Pb2+[J]. 化工环保,2019,39(1):87−93. doi: 10.3969/j.issn.1006-1878.2019.01.017

    GU Yuyan,QIAO Xiuchen. Adsorption of Pb2+ from water by carbon-silica composite prepared from coal gasification fine slag[J]. Environmental Protection of Chemical Industry,2019,39(1):87−93. doi: 10.3969/j.issn.1006-1878.2019.01.017

    [95] 何玟玟. 改性壳聚糖/煤气化渣复合材料的制备及其吸附性能研究[D]. 西安:西安科技大学,2021:16−40.

    HE Wenwen. Preparation of modified chitosan/coal gasification slag composite materials and study on adsorption performance [D]. Xi’an:Xi’an University of Science and Technology,2021:16−40.

    [96] 马超,王兵,樊盼盼,等. 煤气化渣基氨氮吸附剂的制备及吸附性能研究[J]. 洁净煤技术,2021,27(3):109−115.

    MA Chao,WANG Bing,FAN Panpan,et al. Research on preparation and adsorption properties of ammonia nitrogen sorbent based on coal gasification slag[J]. Clean Coal Technology,2021,27(3):109−115.

    [97]

    ZHANG J,ZUO J,AI W,et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science,2021,537:147938. doi: 10.1016/j.apsusc.2020.147938

    [98] 胡文豪,张建波,李少鹏,等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术,2019,25(1):154−159.

    HU Wenhao,ZHANG Jianbo,LI Shaopeng,et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology,2019,25(1):154−159.

    [99] 刘硕. 煤气化细渣制备介孔材料及净水剂研究[D]. 长春:吉林大学,2019:65−68.

    LIU Shuo. Study on Preparation of Mesoporous Materials and Water Purifying Agent from Coal Gasification Fine Slag[D]. Changchun:Jilin University,2019:65−68.

    [100] 赵永彬,吴海骏,张学斌,等. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术,2016,22(5):7−11.

    ZHAO Yongbin,WU Haijun,ZHANG Xuebin,et al. Fabrication of porous ceramic from coal gasification residual[J]. Clean Coal Technology,2016,22(5):7−11.

    [101] 王守飞,李寒旭,何军. 正交试验法筛选煤气化灰渣制备泡沫陶瓷工艺条件[J]. 山东化工,2019,48(7):32−34.

    WANG Shoufei,LI Hanxu,HE Jun. The Technological conditions of preparing foamed ceramics from coal gasification ash and slag were screened by orthogonal test[J]. Shandong Chemical Industry,2019,48(7):32−34.

    [102]

    TANG Y,YIN H,YUAN H,et al. Phase and morphological transformation stages during carbothermal reduction nitridation process:from coal gasification slag wastes to Ca-α-SiAlON powders[J]. Advanced Powder Technology,2016,27(5):2232−2237. doi: 10.1016/j.apt.2016.08.008

    [103]

    YIN H F, TANG Y. Preparation of Ca-α-Sialon-SiC multiphase ceramics from gasification slag[C]//Materials Science Forum. Trans Tech Publications Ltd, 2011, 695: 328-331.

    [104]

    HAN F,GAO Y,HUO Q,et al. Characteristics of vanadium-based coal gasification slag and the NH3-selective catalytic reduction of NO[J]. Catalysts,2018,8(8):327. doi: 10.3390/catal8080327

    [105]

    ZHANG J,ZUO J,JIANG Y,et al. Synthesis and characterization of composite conductive powders prepared by Sb-SnO2-coated coal gasification fine slag porous microbeads[J]. Powder Technology,2021,385:409−417. doi: 10.1016/j.powtec.2021.03.003

    [106]

    AI W,LIU S,ZHANG J,et al. Mechanical and nonisothermal crystallization properties of coal gasification fine slag glass bead-filled polypropylene composites[J]. Journal of Applied Polymer Science,2019,136(30):47803. doi: 10.1002/app.47803

    [107]

    AI W,XUE B,WEI C,et al. Mechanical and thermal properties of coal gasification fine slag reinforced low density polyethylene composites[J]. Journal of Applied Polymer Science,2018,135(17):46203. doi: 10.1002/app.46203

  • 期刊类型引用(7)

    1. 丁天昱,王龙江,鱼涛,陈刚. 煤气化渣的改性及其在水泥增强中的应用研究. 化工技术与开发. 2025(Z1): 66-69 . 百度学术
    2. 李飞,王福宁,金涛,朱建华,刘向辉. 大宗煤基固废利用研究现状与展望. 山东化工. 2025(01): 75-78 . 百度学术
    3. 周柏屹,王浩南,夏良志. 气化渣破碎与预干燥过程数值仿真及实验研究. 现代化工. 2024(S2): 359-365 . 百度学术
    4. 杨帆. 煤气化过程中副产物气化渣的综合利用技术研究. 化工管理. 2024(31): 90-93 . 百度学术
    5. 周季龙,王亚茹,魏怡菲,孙建平,孙伟,岳彤. 气化渣酸浸液去除铁铬及聚合氯化铝制备. 中国有色金属学报. 2024(12): 4111-4125 . 百度学术
    6. 程臻赟,王占银,傅博,雷华,苏梦,丁楠,陈美庆. 煤气化渣黏土复合地基填料力学特性研究. 江西建材. 2024(10): 217-220 . 百度学术
    7. 傅博,程臻赟,雷华. 助磨剂对气化渣球磨特性的影响. 化学反应工程与工艺. 2024(06): 516-520+539 . 百度学术

    其他类型引用(2)

图(10)  /  表(7)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  18
  • PDF下载量:  69
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-08-07
  • 网络出版日期:  2024-07-16
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回