高级检索

刮板输送机多永磁电机串联驱动新模式及关键技术

张强, 刘伟, 王聪, 苏金鹏, 刘峻铭, 顾颉颖, 张润鑫

张 强,刘 伟,王 聪,等. 刮板输送机多永磁电机串联驱动新模式及关键技术[J]. 煤炭科学技术,2024,52(2):238−252

. DOI: 10.12438/cst.2023-1396
引用本文:

张 强,刘 伟,王 聪,等. 刮板输送机多永磁电机串联驱动新模式及关键技术[J]. 煤炭科学技术,2024,52(2):238−252

. DOI: 10.12438/cst.2023-1396

ZHANG Qiang,LIU Wei,WANG Cong,et al. New mode and key technology of series drive of multiple permanent magnet motors for scraper conveyor[J]. Coal Science and Technology,2024,52(2):238−252

. DOI: 10.12438/cst.2023-1396
Citation:

ZHANG Qiang,LIU Wei,WANG Cong,et al. New mode and key technology of series drive of multiple permanent magnet motors for scraper conveyor[J]. Coal Science and Technology,2024,52(2):238−252

. DOI: 10.12438/cst.2023-1396

刮板输送机多永磁电机串联驱动新模式及关键技术

基金项目: 

国家自然科学基金重点资助项目(52234005);国家自然科学基金面上资助项目 (52374158)

详细信息
    作者简介:

    张强: (1980—),男,满族,辽宁岫岩人,教授,博士生导师。E-mail:zhangqiangskd@sdust.edu.cn

    通讯作者:

    张润鑫: (1996—),男,河北衡水人,博士研究生。E-mail:skdzrx@sdust.edu.cn

  • 中图分类号: TD421

New mode and key technology of series drive of multiple permanent magnet motors for scraper conveyor

Funds: 

National Natural Science Foundation of China(52234005 、52374158)

  • 摘要:

    装备智能化是煤炭行业高质量发展的必然趋势,伴随着煤矿超大采高、超长工作面的建设,刮板输送机不断朝着重型长运距的方向发展,并且永磁直驱已逐渐取代“异步电机+减速器”成为刮板输送机的主要驱动方式,而传统双驱动刮板输送机存在停机率高、煤流分布不均且能耗大、跟踪性能差的问题,尤其长运距下链条张力波动大造成驱动电机电路涌动,已成为制约我国刮板输送机智能化发展的主要难题。根据刮板输送机面临的主要问题和发展需求,提出了刮板输送机多永磁电机串联“驱动−传动”输送新模式,并阐述了多永磁电机串联驱动刮板输送机这一研究领域涉及的关键技术研究现状,包括刮板输送机故障诊断与状态识别技术、多电机串联驱动“机−电”耦合动力学特性、多永磁电机同步控制技术、多智能体自适应协同控制,对于多驱动刮板输送机的设计研发具有一定的适应性和借鉴性;针对刮板输送机多永磁电机串联驱动系统研究面临的难题,将该系统分为4项关键科学技术:①多驱动刮板输送机新构型设计;②多驱动刮板输送机非线性机−电耦合动力学建模;③多驱动刮板输送机链条张力脉动与主动控制;④串联驱动刮板输送机主动容错与自适应协同控制;从结构设计与优化、整机运维控制实现刮板输送机多永磁电机串联驱动系统技术攻关,提高刮板输送机的智能化水平,促进煤机高端装备的水平和发展。

    Abstract:

    Intelligent equipment is an inevitable trend for the high-quality development of the coal industry, With the construction of super high mining height and super long working face in coal mine, scraper conveyor has been developing towards heavy and long distance, and permanent magnet direct drive has gradually replaced “asynchronous motor + reducer” to become the main driving mode of scraper conveyor. However, the traditional dual-drive scraper conveyor has the problems of high shutdown rate, uneven distribution of coal flow and large energy consumption, poor tracking performance, especially the fluctuation of the chain tension under long transport distance causes the surge of the driving motor circuit, which has become the main problem that limits the intelligent development of scraper conveyor in our country. According to the main problems and development needs of scraper conveyor, this paper puts forward a new mode of scraper conveyor with multiple permanent magnet motors in series “drive - drive”, and expounds the research status of key technologies involved in the research field of scraper conveyor with multiple permanent magnet motors in series. Including the scraper conveyor fault diagnosis and state recognition technology, multi-motor series drive “mechanical-electrical” coupling dynamic characteristics, multi-permanent magnet motor synchronous control technology, multi-agent adaptive cooperative control, for the design and development of multi-drive scraper conveyor has certain adaptability and reference. In view of the difficulties faced by the research of multiple permanent magnet motor series drive system of scraper conveyor, the system is divided into four key science and technology: ① new configuration design of multi-drive scraper conveyor; ② nonlinear mechano-electrical coupling dynamics modeling of multi-drive scraper conveyor; ③ chain tension pulsation and active control of multi-drive scraper conveyor; ④ active fault tolerance and adaptive cooperative control of series drive scraper conveyor. From the structural design and optimization, the whole machine operation and maintenance control to achieve scraper conveyor multiple permanent magnet motor series drive system technology research, improve the scraper conveyor intelligent level, promote the level and development of high-end equipment of coal machinery.

  • 图  1   小保当煤矿450 m综采成套装备

    Figure  1.   Xiaobaodang Coal Mine 450-meter fully mechanized mining complete equipment

    图  2   刮板输送机多永磁电机串联驱动输送模型示意

    Figure  2.   Schematic of multi-permanent magnet motor series drive conveyor model of scraper conveyor

    图  3   多点串联驱动刮板输送机输送示意

    Figure  3.   Transport diagram of multi-point series drive scraper conveyor

    图  4   基于神经网络的多源信息故障诊断模型

    Figure  4.   Multi-source information fault diagnosis model based on neural network

    图  5   全永磁驱动带式输送机机-电耦合动力学模型原理

    Figure  5.   Principle of machine-electric coupling dynamic model of fully permanent magnet driven belt conveyor

    图  6   刮板输送机永磁直驱系统链条动态特性

    Figure  6.   Chain dynamic characteristics of scraper conveyor permanent magnet direct drive system

    图  7   掘进工作面平行智能控制架构

    Figure  7.   Parallel intelligent control architecture for excavation working face

    图  8   煤矿钻锚机器人智能协同控制架构

    Figure  8.   Intelligent collaborative control architecture of coal mine anchor drilling robot

    图  9   刮板输送机多永磁电机串联驱动系统关键技术

    Figure  9.   Key technologies of multi-permanent magnet motor series drive system for scraper conveyor

    图  10   圆环链动力学模型

    Figure  10.   Circular chain dynamics model

    图  11   刮板链变形模式转化力学模型

    Figure  11.   Scraper chain deformation mode transformation mechanical model

    图  12   系数矩阵协调排列示意图

    Figure  12.   Coefficient matrix coordination arrangement diagram

    图  13   多驱动刮板输送机容错控制原理

    Figure  13.   Fault-tolerant control principle of multi-drive scraper conveyor

    表  1   某矿2017—2019年刮板输送机故障统计

    Table  1   Failure statistics of scraper conveyor in a coal mine from 2017 to 2019

    故障位置 传动系统 驱动系统 控制系统 其他结构件
    频次/次 121 61 33 9
    故障占比/% 54.9 26.7 14.5 3.9
    下载: 导出CSV

    表  2   神东矿区2003—2015年刮板输送机故障统计

    Table  2   Scraper conveyor failure statistics in Shendong Mining Area from 2003 to 2015

    故障位置 刮板链传动系统 电机驱动系统 结构件 控制系统 过载
    链条 接链环 刮板 链轮 电机 减速箱 耦合器
    频次/次 48 10 20 38 30 21 8 38 7 8
    停机时间/h 10 9 8 13 8 19 13 11 7 10
    故障占比/% 21.1 4.4 8.8 16.7 13.1 9.1 3.5 16.7 3.1 3.5
    合计/% 51 25.7 16.7 3.1 3.5
    下载: 导出CSV
  • [1] 张 强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−26.

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1−26.

    [2] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:Commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1−18.

    [3]

    ZHANG Qiang,ZHANG Runxin,TIAN Ying. Scraper conveyor structure improvement and performance comparative analysis[J]. Strength of Materials,2020,52(4):683−690. doi: 10.1007/s11223-020-00218-2

    [4]

    REN Weijian,WANG Li,MAO Qinhua,et al. Coupling properties of chain drive system under various and eccentric loads[J]. International Journal of Simulation Modelling,2020,19(4):643−654. doi: 10.2507/IJSIMM19-4-535

    [5] 张 强,王海舰,毛 君,等. 基于压电振动俘能的自供电刮板输送机张力检测系统[J]. 传感技术学报,2015,28(9):1335−1340.

    ZHANG Qiang,WANG Haijian,MAO Jun,et al. Self-Powered tension testing system for scraper conveyor based on piezoelectric vibration energy harvested[J]. Chinese Journal of Sensors and Actuators,2015,28(9):1335−1340.

    [6]

    JIANG S B,ZHANG X,GAO K D,et al. Multi-body dynamics and vibration analysis of chain assembly in armoured face conveyor[J]. International Journal of Simulation Modelling,2017,16(3):458−470. doi: 10.2507/IJSIMM16(3)8.391

    [7]

    ZHANG Xing,MA Yansong,LI Yutan,et al. Tension prediction for the scraper chain through multi-sensor information fusion based on improved Dempster-Shafer evidence theory[J]. Alexandria Engineering Journal,2023,64:41−54. doi: 10.1016/j.aej.2022.08.039

    [8] 毛 君,师建国,张东升,等. 重型刮板输送机动力建模与仿真[J]. 煤炭学报,2008,33(1):103−106.

    MAO Jun. SHI Jianguo,ZHANG Dongsheng,et al. Dynamic modeling and simulation of heavy scraper conveyor[J]. Journal of China Coal Society,2008,33(1):103−106.

    [9]

    LI Jianfeng,ZHU Zhencai,PENG Yuxing,et al. Microstructure and wear characteristics of novel Fe-Ni matrix wear-resistant composites on the middle chute of the scraper conveyor[J]. Journal of Materials Research and Technology,2020,9(1):935−947. doi: 10.1016/j.jmrt.2019.11.033

    [10] 鲍久圣,刘 琴,葛世荣,等. 矿山运输装备智能化技术研究现状及发展趋势[J]. 智能矿山,2020,1(1):78−88.

    BAO Jiusheng,LIU Qin,GE Shirong,et al. Research status and development trend of intelligent technologies for mine transportation equipment[J]. Journal of Intelligent Mine,2020,1(1):78−88.

    [11] 潘旭陽. 刮板输送机高密度永磁直驱电机设计及机-电-控系统耦合研究[D]. 阜新:辽宁工程技术大学,2021.

    PAN Xuyang. Design of high density permanent magnet direct drive motor for scraper conveyor in coal mine Research on the coupling of mechanical electrical control system[D]. Fuxin:Liaoning Technical University,2021.

    [12] 李小凡. 刮板输送机变频驱动控制系统的研究[D]. 太原:太原理工大学,2013.

    LI Xiaofan. The scraper conveyor variable frequency drive control system[D]. Taiyuan:Taiyuan University of Technology,2013.

    [13] 王晓琳,郭 慧,顾 聪. 一种基于电流源逆变驱动的超高速永磁同步电机改进型控制策略[J]. 中国电机工程学报,2022,42(7):2733−2744.

    WANG Xiaolin,GUO Hui,GU Cong. An improved control strategy for the ultra-high-speed permanent magnet synchronous motor based on the current source inverter[J]. Proceedings of the CSEE,2022,42(7):2733−2744.

    [14] 张 磊,鲍久圣,葛世荣,等. 永磁驱动技术及其在矿山装备领域的应用现状[J]. 煤炭科学技术,2022,50(3):275−284.

    ZHANG Lei,BAO Jiusheng,GE Shirong,et al. Permanent magnet driving technology and its application status in the field of mining equipment[J]. Coal Science and Technology,2022,50(3):275−284.

    [15]

    LU En,LI Wei,YANG Xuefeng,et al. Composite sliding mode control of a permanent magnet direct-driven system for a mining scraper conveyor[J]. IEEE Access,2017,5:22399−22408. doi: 10.1109/ACCESS.2017.2761846

    [16] 靳剑兵. 基于CANopen协议的双机驱动系统协同控制研究[D]. 太原:太原理工大学,2020.

    JIN Jianbing. Research on cooperative control system of two-motor based on canopen protocol[D]. Taiyuan:Taiyuan University of Technology,2020.

    [17] 靳剑兵,张红娟,耿嘉胜,等. 永磁同步电机驱动刮板输送机协同控制[J]. 煤矿机械,2019,40(11):131−134.

    JIN Jianbing,ZHANG Hongjuan,GENG Jiasheng,et al. Synergistic control of scraper conveyor driven by permanent magnet synchronous motors[J]. Coal Mine Machinery,2019,40(11):131−134.

    [18] 路 恩. 矿用刮板输送机永磁直驱系统速度控制策略研究[D]. 徐州:中国矿业大学,2018.

    LU En. Study on the speed control strategy of permanent magnet direct-drive system for mining scraper conveyor[D]. Xu Zhou:China University of Mining and Technology,2018.

    [19] 朱海强. 永磁直驱式刮板输送机系统动态特性及功率平衡研究[D]. 镇江:江苏大学,2021.

    ZHU Haiqiang. Research on dynamic characteristics permanent magnet direct-drive and power balance of scraper system[D]. Zhenjiang:Jiangsu University,2021.

    [20]

    SWIDER J,HERBU K,SZEWERDA K. Control of selected operational parameters of the scraper conveyor to improve its working conditions[J]. Advances in Inelligent Systems and Computing,2019,934:395−405.

    [21] 张 强,赵广浩,田 莹. 一种多点驱动刮板输送机同步性控制系统[P]. 中国:ZL202210142661.2,2022-04-26.
    [22] 王新成. 刮板输送机多电机驱动功率平衡控制系统的研究[J]. 机械管理开发,2020,35(4):75−76,79.

    WANG Xincheng. Research on power balance control system for multi-motor drive of scraper conveyor[J]. Mechanical Management and Development,2020,35(4):75−76,79.

    [23] 吴佳佳. 矿用多电机驱动刮板输送机功率平衡控制研究[J]. 机械管理开发,2020,35(12):262−264.

    WANG Jiajia. The power balance control of multi-motor drive scraper conveyor[J]. Mechanical Management and Development,2020,35(12):262−264.

    [24] 李小虎. 多电机驱动刮板输送机变频控制研究[J]. 机械管理开发,2022,37(12):268−269.

    LI Xiaohu. Research on frequency control of multi-motor driven scraper conveyor[J]. Mechanical Management and Development,2022,37(12):268−269.

    [25] 司 垒,李嘉豪,谭 超,等. 矿用刮板输送机垂直冲击下负载电流特性研究[J]. 煤炭科学技术,2023,51(2):400−411.

    SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400−411.

    [26]

    KONG Weikang,WANG Jixin,KONG Dewen,et al. Motor shifting and torque distribution control of a multi-motor driving system in electric construction vehicles[J]. Advances in Mechanical Engineering,2021,13(6):1−11.

    [27] 闫茂德,姚盈盈,朱 旭. 分布式多电机驱动机械手系统的协调跟踪[J]. 控制工程,2018,25(6):1071−1076.

    YAN Maode,YAO Yingying,ZHU Xu. Coordinated tracking for distributed multiple electrically-driven manipulators systems[J]. Control Engineering of China,2018,25(6):1071−1076.

    [28] 黄 皓,涂群章,蒋成明,等. 工程车辆多电机驱动系统同步协调控制策略[J]. 装备制造技术,2017(11):7−11.

    HUANG Hao,TU Qunzhang,JIANG Chengming,et al. Synchronous and coordinated control strategy of multi-motor driving system for engineering vehicles[J]. Equipment Manufacturing Technology,2017(11):7−11.

    [29] 付周兴,赵峻岭,郝 帅. 多电机驱动带式输送机系统的功率平衡控制[J]. 西安科技大学学报,2009,29(4):478−481,486.

    FU Zhouxing,ZHAO Junling,HAO Shuai. Power balance control of multi-motor for belt conveyor system[J]. Journal of Xi'an University of Science and Technology,2009,29(4):478−481,486.

    [30] 杨 征,丁彦雄,薛晨晓. 小保当煤矿450 m智能超长工作面关键技术及装备研发与应用[J]. 智能矿山,2023,4(7):9−15.
    [31] 王宏建,袁小春. 哈拉沟煤矿千万吨矿井先进生产技术实践[J]. 中国煤炭,2022,48(S1):328−333.

    WANG Hongjian,YUAN Xiaochun. Practice of advanced production technology in Halagou Coal Mine with ten-million-ton production capacity[J]. China Coal,2022,48(S1):328−333.

    [32] 崔卫秀,穆润青,解鸿章,等. 500 m超长工作面刮板智能输送技术研究[J/OL]. 煤炭科学技术,1−10 [2023-10-03]. https://link.cnki.net/urlid/11.2402.TD.20230921.1538.002

    CUI Weixiu,MU Runqing,XIE Hongzhang,et al. Research on intelligent conveying technology of 500 m ultra-long face scraper[J/OL]. Coal Science and Technology,1−10 [2023-10-03]. https://link.cnki.net/urlid/11.2402.TD.20230921.1538.002

    [33] 谢春雪. 综采工作面输送机刮板链条体系扭摆振动特性研究[D]. 阜新:辽宁工程技术大学,2019.

    XIE Chunxue. Research on torsional vibration characteristics of conveyor scraper chain system in fully mechanized coal face [D]. Fuxin:Liaoning Technical University,2019.

    [34]

    JIAN H,YINGCHAO S,PEIZHE Z,et al. Failure analysis of scraper conveyor based on fault tree and optimal design of new scraper with polyurethane material[J]. Journal of Materials Research and Technology,2022,18:4533−4548. doi: 10.1016/j.jmrt.2022.04.135

    [35] 白 晶,谢明军. 神东矿区刮板输送机故障统计分析[J]. 煤矿机械,2016,37(11):141−143.

    BAI Jing,XIE Mingjun. Scraper conveyor fault statistics and analysis of shendong mining[J]. Coal Mine Machinery,2016,37(11):141−143.

    [36] 焦宏章,杨兆建,王淑平. 刮板输送机链轮传动系统接触动力学仿真分析[J]. 煤炭学报,2012,37(S2):494−498.

    JIAO Hongzhang,YANG Zhaojian,WANG Shuping. Contact dynamics simulation analysis for sprocket transmission system of scraper conveyor[J]. Journal of China Coal Society,2012,37(S2):494−498.

    [37] 张永强. 矿用重型刮板输送机传动部故障诊断关键技术研究[D]. 西安:西安科技大学,2017.

    ZHANG Yongqiang. Research on key technology of fault diagnosis for mining heavy scraper conveyor transmission section [D]. Xi’an:Xi’an University of Science and Technology,2017.

    [38] 胡 珂. 基于振动频谱分析的刮板输送机减速器故障诊断. 能源与节能,2023(1):125−128.

    HU Ke. Fault diagnosis of scraper conveyor reducer based on vibration spectrum analysis[J]. Energy and Conservation,2023(1):125−128.

    [39] 丁 华,吕彦宝,崔红伟,等. 基于分布式深度神经网络的刮板输送机启停工况故障诊断方法[J]. 振动与冲击,2023,42(18):112−122,249.

    DING Hua,LYU Yanbao,CUI Hongwei,et al. Fault diagnosis method for scraper conveyors under start-top condition based on a distributed deep neural network[J]. Journal of Vibration and Shock,2023,42(18):112−122,249.

    [40] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225−239.

    WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyorr[J]. Coal Science and Technology,2022,50(12):225−239.

    [41] 于 林. 矿用重型刮板输送机断链故障监测传感器研究[J]. 煤炭学报,2011,36(11):1934−1937.

    YU Lin. Research on sensor used to detect chain-roken on armoured face conveyor[J]. Journal of China Coal Society,2011,36(11):1934−1937.

    [42] 张 强,吴泽光,祁 秀,等. 刮板输送机远程动态监测及故障诊断系统研究[J]. 仪表技术与传感器,2016(5):51−53,60.

    ZHANG Qiang,WU Zeguang,QI Xiu,et al. Research on Remote Dynamic Monitoring and Fault Diagnosis System for Scraper Conveyor[J]. Instrument Technique and Sensor,2016(5):51−53,60.

    [43] 张 强,王 禹,王海舰,等. 双端驱动刮板输送机机电耦合模型及动力学仿真分析[J]. 煤炭科学技术,2019,47(1):159−165.

    ZHANG Qiang,WANG Yu,WANG Haijian,et al. Electromechanical coupling model and dynamics simulation analysis of two-motor drive scraper conveyor[J]. Coal Science and Technology,2019,47(1):159−165.

    [44] 张 强,郭 桐,王海舰,等. 基于微应变的刮板输送机张力测试系统及特性分析[J]. 仪表技术与传感器,2016(6):72−74.

    ZHANG Qiang,GUO Tong,WANG Haijian,et al. Research of tension testing system and characteristic analysis for scraper conveyor based on micro strain[J]. Instrument Technique and Sensor,2016(6):72−74.

    [45] 张 强,王海舰,毛 君,等. 刮板输送机系统机电耦合模型及仿真分析[J]. 中国机械工程,2015,26(23):3134−3139.

    ZHANG Qiang,WANG Haijian,MAO Jun,et al. Electromechanical coupling modeling and simulation analysis of scraper conveyor system[J]. China Mechanical Engineering,2015,26(23):3134−3139.

    [46] 张艳妮,马宪民,张永强. 基于GSCV-SVM的输送机多故障在线诊断[J]. 煤炭技术,2014,33(12):285−287.

    ZHANG Yanni,MA Xianmin,ZHANG Yongqiang. Application of GSCV-SVM to fault diagnosis for coal scraper conveyor[J]. Coal Technology,2014,33(12):285−287.

    [47] 董 刚,马宏伟,南源桐,等. 刮板输送机飘链故障诊断技术研究[J]. 煤炭科学技术,2017,45(5):41−46.

    DONG Gang,MA Hongwei,NAN Yuantong,et al. Study on diagnosis technology of flying chain fault in scraper conveyor[J]. Coal Science and Technology,2017,45(5):41−46.

    [48] 薛涛平. 基于BP神经网络的刮板输送机传动部智能故障诊断系统的设计与实现[J]. 机械管理开发,2020,35(1):127−129.

    XUE Taoping. Design and implementation of intelligent fault diagnosis system for transmission part of the scraper conveyor based on BP neural[J]. Mechanical Management and Development,2020,35(1):127−129.

    [49] 于国英,张小丽,张 涛. 基于模糊神经网络的刮板输送机故障诊断[J]. 煤矿机械,2020,41(1):174−176.

    YU Guoying,ZHANG Xiaoli,ZHANG Tao. Fault diagnosis of scraper conveyor based on fuzzy neural network[J]. Coal Mine Machinery,2020,41(1):174−176.

    [50]

    HE Haitao,ZHAO Shuanfeng,GUO Wei,et al. Multi-fault recognition of gear based on wavelet image fusion and deep neural network[J]. AIP Advances,2021,11(12):125025. doi: 10.1063/5.0066581

    [51]

    WANG Zisheng,LI Bo,LIANG Chao,et al. Response analysis of a scraper conveyor under chain faults based on MBD-DEM-FEM[J]. Strojniski Vestnik-Journal of Mechanical Engineering,2021,67(10):501−516. doi: 10.5545/sv-jme.2021.7300

    [52] 尤秀松,葛世荣,郭一楠,等. 智采工作面三机数字孪生驱动控制架构[J/OL]. 煤炭学报:1−11[2023-12-05]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230926.1756.004.html.

    YOU Xiusong,GE Shirong,GUO Yinan,et al. Digital twin-driven Control construction for Three machines of Smart Coal Mining Face[J/OL]. Journal of China Coal Society:1−11[2023-12-05]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230926.1756.004.html.

    [53] 张 磊. 全永磁驱动带式输送机机-电耦合动力学研究[D]. 徐州:中国矿业大学,2022.

    ZHANG Lei. Research on electromechanical coupling dynamics of all permanent magnet driving belt conveyor[D]. Xuzhou:China University of Mining and Technology,2022.

    [54] 张 磊,郝建伟,鲍久圣,等. 全永磁驱动带式输送机控制策略及动力学行为[J]. 机械工程学报,2022,58(21):134−147. doi: 10.3901/JME.2022.21.134

    ZHANG Lei,HAO Jianwei,BAO Jiusheng,et al. Control strategy and dynamic behavior of full permanent magnet driving belt conveyor[J]. Journal of Mechanical Engineering,2022,58(21):134−147. doi: 10.3901/JME.2022.21.134

    [55]

    IDRISS M M T,DOLVIS G L,DAVID Y. Multistability analysis and nonlinear vibration for generator set in series hybrid electric vehicle through electromechanical coupling.[J]. Chaos (Woodbury,N. Y. ),2021,31(7):073126−073126. doi: 10.1063/5.0057761

    [56] 叶宇豪,彭 飞,黄允凯. 多电机同步运动控制技术综述[J]. 电工技术学报,2021,36(14):2922−2935.

    YE Yuhao,PENG Fei,HUANG Yunkai. Overview of multi-motor synchronous motion control technology[J]. Transactions of China Electrotechnical Society,2021,36(14):2922−2935.

    [57] 代嘉惠. 大功率本安驱动煤矿救援机器人定位与建图算法研究[D]. 重庆:重庆大学,2019.

    DAI Jiahui. Study on localization and mapping algorithm of high-power intrinsically safe coal mine rescue robot[D]. Chongqing:Chongqing University,2019.

    [58] 刘宁鹏,黄苏丹,曹广忠,等. 基于数据驱动的永磁同步直线电机阻尼系数解算方法[J]. 微电机,2023,56(3):1−5,29.

    LIU Ningpeng,HUANG Sudan,CAO Guangzhong,et al. Data-drive-based damping coefficient calculation method of permanent magnet synchronous linear motors[J]. Micromotors,2023,56(3):1−5,29.

    [59] 钟佩思,王祥文,张 超,等. 基于混沌粒子群算法的机器人动力学参数辨识[J]. 仪表技术与传感器,2023(8):107−113.

    ZHONG Peisi,WANG Xiangwen,ZHANG Chao,et al. Robot dynamic parameter identification based on chaotic particle swarm optimization algorithm[J]. Instrument Technique and Sensor,2023(8):107−113.

    [60] 钱佳伟. 基于频域极大似然估计的新能源发电系统参数辨识方法研究[D]. 杭州:浙江大学,2022.

    QIAN Jiawei. Research on parameter identification method of renewable energy generation system based on frequency-domain maximum likelihood estimation[D]. Hangzhou:Zhejiang University,2022.

    [61] 李家铮,张 禹,赵文川,等. 基于递推最小二乘法的SCARA机器人动力学参数辨识研究[J]. 机床与液压,2021,49(6):22−26.

    LI Jiazheng,ZHANG Yu,ZHAO Wenchuan,et al. Research on dynamic parameter identification of SCARA robot based on recursive least squares[J]. Machine Tool & Hydraulics,2021,49(6):22−26.

    [62] 徐 征,张 弓,汪火明,等. 基于深度循环神经网络的协作机器人动力学误差补偿[J]. 工程科学学报,2021,43(7):995−1002.

    XU Zheng,ZHANG Gong,WANG Huoming,et al. Error compensation of collaborative robot dynamics based on deep recurrent neural network[J]. Chinese Journal of Engineering,2021,43(7):995−1002.

    [63] 郝建伟. 多永磁电机直驱带式输送机自抗扰协同控制策略研究[D]. 徐州:中国矿业大学,2022.

    HAO Jianwei. Study on active disturbance rejection cooperative control strategy of multi permanent magnet motor direct drive belt conveyor[D]. Xuzhou:China University of Mining and Technology,2022.

    [64] 王洋洋,鲍久圣,葛世荣,等. 刮板输送机永磁直驱系统机-电耦合模型仿真与试验[J]. 煤炭学报,2020,45(6):2127−2139.

    WANG Yangyang,BAO Jiusheng,GE Shirong,et al. Simulation and experimental study on electromechanical coupling model of permanent magnet direct drive system for scraper conveyor[J]. Journal of China Coal Society,2020,45(6):2127−2139.

    [65] 李 慧,刘星桥,李 景,等. 多电机同步协调系统控制策略[J]. 电机与控制应用,2014,41(4):6−11.

    LI Hui,LIU Xingqiao,LI Jing,et al. Summary of multi-motor synchronization and coordination system control strategy[J]. Electric Machines & Control Application,2014,41(4):6−11.

    [66] 姜晓平,朱 奕,伞 冶. 大功率随动试验台多永磁同步电机同步控制[J]. 电机与控制学报,2014,18(4):88−95.

    JIANG Xiaoping,ZHU Yi,SAN Ye. Synchronization control of multiple permanent magnet synchronous motors in high-power servo test stands[J]. Electric Machines and Control,2014,18(4):88−95.

    [67] 薛 薇,李永丽,路鸦立. 永磁同步电机分数阶智能积分调速控制[J]. 电机与控制学报,2015,19(5):67−73.

    XUE Wei,LI Yongli,LU Yali. Application of fractional intelligent integral controller for PMSM[J]. Electric Machines and Control,2015,19(5):67−73.

    [68] 庄吉庆,鲍久圣,刘 勇,等. 千米深井特大型箕斗直线电机辅助提升系统及控制策略[J]. 煤炭科学技术,2022,50(10):207−215.

    ZHUANG Qingji,BAO Jiusheng,LIU Yong,et al. Linear motor-assisted hoisting system and control strategy for extra-large skip in kilometer-deep wells[J]. Coal Science and Technology,2022,50(10):207−215.

    [69] 刘自程,郑泽东,彭 凌,等. 船舶电力推进中十五相感应电机同轴运行及容错控制策略[J]. 电工技术学报,2014,29(3):65−74.

    LIU Zicheng,ZHENG Zedong,PENG Ling,et al. Fixed joint double fifteen-phase induction motor control and fault-tolerant control in ship propulsion system[J]. Transactions of China Electrotechnical Society,2014,29(3):65−74.

    [70] 王 宇,张成糕,郝雯娟. 永磁电机及其驱动系统容错技术综述[J]. 中国电机工程学报,2022,42(1):351−372.

    WANG Yu,ZHANG Chenggao,HAO Wenjuan. Overview of fault-tolerant technologies of permanent magnet brushless machine and its control system[J]. Proceedings of the CSEE,2022,42(1):351−372.

    [71]

    LI Jiaxin,AN Hui,LU Yanjun,et al. On the sensorless synchronous direct drive control of permanent magnet motor for three-blade roots vacuum pump[J]. Energy Reports,2023,9(8):828−837.

    [72] 杨小林,葛世荣,祖洪斌,等. 带式输送机永磁智能驱动系统及其控制策略[J]. 煤炭学报,2020,45(6):2116−2126.

    YANG Xiaolin,GE Shirong,ZU Hongbin,et al. Permanent magnet intelligent drive system and control strategy of belt conveyor[J]. Journal of China Coal Society,2020,45(6):2116−2126.

    [73]

    ZHOU Sihui,SUI Shuai,TONG Shaocheng. Adaptive neural networks optimal control of permanent magnet synchronous motor system with state constraints[J]. Neurocomputing,2022,504:132−140. doi: 10.1016/j.neucom.2022.06.114

    [74]

    LI Zhongkui,REN Wei,LIU Xiangdong,et al. Consensus of multi-Agent systems with general Linear and lipschitz nonlinear dynamics using distributed adaptive protocols[J]. IEEE Transactions on Automatic Control,2013,58(7):1786−1791. doi: 10.1109/TAC.2012.2235715

    [75]

    YU Wenwu,CHEN Guanrong,CAO Ming,et al. Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics[J]. IEEE Transactions on Systems,2010,40(3):881−891.

    [76]

    DENG Chao,YANG Guanghong. Cooperative adaptive output feedback control for nonlinear multi-agent systems with actuator failures[J]. Neurocomputing,2016,199(26):50−57.

    [77]

    LOWE R,WU Y,TAMAR A,et al. Multi-agent actor-critic for mixed cooperative competitive environments[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY,USA:Curran Associates Inc,2017:6382−6393.

    [78]

    FOERSTER J N,FARQUHAR G,AFOURAS T,et al. Counterfactual multi-agent policy gradients[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California USA:AAAI,2018:2974−2981.

    [79]

    SCHUITEMA E. Reinforcement learning on autonomous humanoid robots[D]. Delft:Delft University of Technology,2012.

    [80]

    MATIGNON L,LAURENT G J. Design of semi-decentralized control laws for distributed-air-jet micromanipulators by reinforcement learning[C]//International Conference on Intelligent Robots and Systems. IEEE/RSJ,2009:3277−3283.

    [81] 李义军,孙翼森,迟科华,等. 考虑负载特性的异步电动机参数辨识方法研究[J]. 电气应用,2022,41(6):33−38.

    LI Yijun,SUN Yilin,CHI Kehua,et al. A method of parameter identification of asynchronous motor considering load parameters[J]. Application Research,2022,41(6):33−38.

    [82]

    WANG T,LIAO R,BA J,et al. Nervenet:Learning structured policy with graph neural networks[C]//International Conference on Learning Representations. IEEE/RSJ,2018.

    [83] 陈亮名. 考虑约束的多智能体Euler-Lagrange系统编队-包含控制[D]. 哈尔滨:哈尔滨工业大学,2019.

    CHEN Liangming. Formation-containment control of multi-agent euler-lagrange systems with constraints[D]. Harbin:Harbin Institute of Technology,2019.

    [84] 杨 涛,杨 博,殷允强,等. 多智能体系统协同控制与优化专刊序言[J]. 控制与决策,2023,38(5):1153−1158.

    YANG Tao,YANG Bo,YIN Yunqiang,et al. Guest editorial of special issue on cooperative control and optimization for multi-agent systems[J]. Control and Decision,2023,38(5):1153−1158.

    [85] 王 岩,张旭辉,曹现刚,等. 掘进工作面数字孪生体构建与平行智能控制方法[J]. 煤炭学报,2022,47(S1):384−394.

    WANG Yan,ZHANG Xuhui,CAO Xiangang,et al. Construction of digital twin and parallel intelligent control method for excavation face[J]. Journal of China Coal Society,2022,47(S1):384−394.

    [86] 马宏伟,孙思雅,王川伟,等. 多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J]. 煤炭学报,2023,48(1):497−509.

    MA Hongwei,SUN Siya,WANG Chuanwei,et al. Key technology of drilling anchor robot with muli-manipulator and multi-rig cooperation in the coal mine roadway[J]. Journal of China Coal Society,2023,48(1):497−509.

    [87] 刘治翔,谢春雪,毛 君,等. 基于物料分布特征的刮板输送机运行阻力分析[J]. 煤炭学报,2018,43(4):1155−1161.

    LIU Zhixiang,XIE Chunxue,MAO Jun,et al. Analysis of operation resistance of scraper conveyor based on material distribution characteristics[J]. Journal of China Coal Society,2018,43(4):1155−1161.

    [88]

    SU Jinpeng,ZHANG Kun,ZHANG Qiang,et al. Vibration analysis of coupled straight-curved beam systems with arbitrary discontinuities subjected to various harmonic forces[J]. Archive of Applied Mechanics,2020,90(5):2071−2090.

    [89]

    ZHANG Kun,SUN Zhengxian,SU Jinpeng,et al. Identification and modelling of dynamic parameters for round link chains subject to axial loads[J]. Scientific Reports,2022,12:16155. doi: 10.1038/s41598-022-19207-3

图(13)  /  表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  23
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-02
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-02-22

目录

    /

    返回文章
    返回