Abstract:
In order to solve the problems of ignoring multi-dimensional load characteristics, cumbersome modeling process and long design cycle in the design process of hydraulic support in steeply dipping angle coal seam, combined with the load characteristics of hydraulic support in large dip angle pseudo-inclined working face, the design system of large dip angle hydraulic support is developed. Based on the comprehensive research methods of motion simulation, strength test and physical experiment, taking the design of ZY5000/15.5/38 hydraulic support for steeply dipping angle coal seam as an example, the mechanical model is established according to the multi-dimensional stress characteristics of hydraulic support in large dip angle pseudo-inclined stope. The spatial load characteristics of large dip angle hydraulic support are analyzed, and the mechanical linear matrix of top beam and shield beam of hydraulic support in pseudo-inclined working face is established. The design system of hydraulic support is built by using VB.NET as the development language combined with linear matrix and SOLIDWORKS secondary development modeling software, and a good human-computer interaction user interface is developed. The research and analysis show that the trajectory range of the front end of the top beam of the model hydraulic support generated by the system is about 48 mm, and the trajectory curve of the front end of the top beam of the support satisfies the characteristics of double torsion line. The maximum stress value of the model support is 146.7 MPa, which is far less than the equivalent stress value of the material yield, and the maximum deformation displacement is not more than 0.531 mm. The working resistance of the physical model hydraulic support with a similarity ratio of 1:5 is about 38 kN. The loading characteristics of the top beam and the shield beam of the support are tested under different conditions. The mechanical data of the model support in the experiment are basically consistent with the mechanical data generated by the system, and the experiment meets the motion requirements and bearing characteristics of the support in the stages of initial support, resistance increase, constant resistance and pressure relief. The research results reflect the good adaptability of the model hydraulic support under the design system, which has certain scientific and practical significance for enriching the design theory of hydraulic support in steeply dipping angle coal seam and guiding the design and production of hydraulic support.