高级检索

顾及地表覆被差异的卫星遥感煤火识别方法

马子钧, 李元元, 武静, 欧阳子琪, 王明伟, 邱天翔, 许志华

马子钧,李元元,武 静,等. 顾及地表覆被差异的卫星遥感煤火识别方法[J]. 煤炭科学技术,2023,51(S2):92−103

. DOI: 10.12438/cst.2023-1460
引用本文:

马子钧,李元元,武 静,等. 顾及地表覆被差异的卫星遥感煤火识别方法[J]. 煤炭科学技术,2023,51(S2):92−103

. DOI: 10.12438/cst.2023-1460

MA Zijun,LI Yuanyuan,WU Jing,et al. Coal fire identification through satellite remote sensing considering the landscapes[J]. Coal Science and Technology,2023,51(S2):92−103

. DOI: 10.12438/cst.2023-1460
Citation:

MA Zijun,LI Yuanyuan,WU Jing,et al. Coal fire identification through satellite remote sensing considering the landscapes[J]. Coal Science and Technology,2023,51(S2):92−103

. DOI: 10.12438/cst.2023-1460

顾及地表覆被差异的卫星遥感煤火识别方法

基金项目: 

国家自然科学基金资助项目(42371448);中央高校基本科研业务费资助项目(2023ZKPYDC11)

详细信息
    作者简介:

    马子钧: (1988—),男,内蒙古乌海人,工程师,博士研究生。E-mail:mazijunwhs@163.com

    通讯作者:

    许志华: (1987—),男,河北保定人,副教授、博士生导师。E-mail:z.xu@cumtb.edu.cn

  • 中图分类号: TD75

Coal fire identification through satellite remote sensing considering the landscapes

Funds: 

National Natural Science Foundation of China(42371448); Fundamental Research Funds for Central Universities (2023ZKPYDC11)

  • 摘要:

    我国矿区煤火问题严重,已成为破坏区域环境和能源安全的重大威胁。及时、准确地掌握煤火分布范围,厘清其时空演化规律,对于煤火区控制和治理具有重要意义。提出了一种顾及地表覆被差异的卫星遥感煤火识别方法。首先,以Landsat卫星影像为基础,利用辐射传导方程法进行大气校正,反演绝对地表温度;其次,采用支持向量机的监督分类方法,获取地表土地覆被类型,并以此为约束确定煤火热异常区域;最后,采用回归分析方法推演煤火时空分布特征,构建煤火预测模型。选取内蒙古自治区乌海市为研究区,以2018—2023年的Landsat-8/9时序卫星影像为数据源,开展煤火异常区识别和预测试验。结果表明:本文所提方法对煤火识别结果与实地核实和低空监测结果一致,预测煤火区域与卫星反演结果一致,印证了本文方法对大区域煤火“扫靶式”识别的可靠性,为矿区煤火及时发现、时空演化规律分析及修复治理提供了可靠的技术支持。

    Abstract:

    Coal fire is a serious problem in China’s mining areas, which has become a major threat to regional environment and energy security. The timely and accurate grasp of the distribution range of coal fires and the clarification of their spatiotemporal evolution law are crucial for effective control and management in coal fire areas. In this paper, a coal fire identification method based on satellite remote sensing considering the difference of land cover is proposed. Firstly, based on Landsat satellite images, the atmospheric correction was carried out using the radiative conduction equation method to invert the absolute surface temperature. Secondly, the supervised classification method of support vector machine is used to obtain the land cover type and determine the abnormal region of coal fire. Finally, the distribution characteristics of coal fire in time and space are deduced by regression analysis method, and the coal fire prediction model is constructed. Wuhai City, Inner Mongolia Autonomous Region is selected as the research area, and the Landsat time series satellite images from 2018—2023 are used as the data source to carry out the coal fire anomaly identification and prediction experiment. The results show that the coal fire identification results of the proposed method are consistent with the field verification and low-level monitoring results, and the predicted region and coal fire degree are consistent with the satellite inversion results, which confirms the reliability of the proposed method for the “sweep target” identification of coal fires in large areas, and provides reliable technical support for the timely discovery of coal fires in mining areas, the analysis of space-time evolution laws, and the restoration and treatment of coal fires.

  • 图  1   乌海市试验区矿产资源分布

    Figure  1.   Mineral resources distribution map of experimental area of Wuhai City

    图  2   顾及地表覆被差异的卫星遥感煤火识别技术路线

    注:归一化植被指数(Normalized Differnce Vegetation Index, NDVI);植被覆盖度(Fractional Vegetation Cover, FVC);地表温度(Land Surface Temperature, LST)

    Figure  2.   Technical route of coal fire identification by satellite remote sensing considering land cover difference

    图  3   2018—2023年乌海市地表绝对温度遥感反演结果

    Figure  3.   Absolute surface temperature remote sensing inversion results for Wuhai City from 2018 to 2023

    图  4   2018—2023年乌海市地表相对温度

    Figure  4.   Relative surface temperature in Wuhai City from 2018 to 2023

    图  5   2018—2023年乌海市高温异常区范围(叠加到卫星影像)

    Figure  5.   Range of high temperature anomalies in Wuhai City from 2018 to 2023 (superimposed on the landsat images)

    图  6   2018—2023年乌海市高温异常区范围(叠加到行政区划图)

    Figure  6.   Range of high temperature anomalies in Wuhai City from 2018 to 2023 (Superimposed on the administrative territorial map)

    图  7   乌海市2022年土地利用现状分类

    Figure  7.   Wuhai city’s 2022 land use status classification

    图  8   剔除地类影响因素后2018—2023年乌海市煤火识别结果(叠加到卫星影像)

    Figure  8.   Results of coal fire identification in Wuhai City from 2018 to 2023 , after removing the Earth-type influencing factors(superimposed on landsat images)

    图  9   剔除地类影响因素后2018—2023年乌海市煤火识别结果(叠加到行政区划图)

    Figure  9.   Results of distribution of coal fire anomalies in administrative division of Wuhai City from 2018 to 2023, after excluding influence of land type (Superimposed on administrative territorial map)

    图  10   基于低空热红外遥感的矿区级卫星遥感煤火反演结果验证

    Figure  10.   Verification of coal fire inversion results achieved by Landsat images using the low altitude thermal infrared remote sensing as reference

    图  11   2023年1—10月乌达区煤火异常区分布

    Figure  11.   Distribution map of coal fire anomaly in Wuda District from January 2023 to October 2023

    图  12   乌达区煤火预测与遥感反演结果对比

    Figure  12.   Comparison of coal fire results achieved by regression forecasting and Landsat image identification in Wuda District

    图  13   2023年1—10月苏海图矿区煤火异常区分布

    Figure  13.   Distribution map of coal fire anomaly in Suhaitu mining area from January 2023 to October 2023

    图  14   苏海图煤火范围识别结果对比

    Figure  14.   Comparison of coal fire results achieved by regression forecasting and Landsat image identification in Suhaitu mining area

    表  1   卫星数据

    Table  1   Satellite data

    日期 卫星
    2023−01−26 Landsat8
    2023−02−19 Landsat9
    2023−03−31 Landsat8
    2023−04−16 Landsat8
    2023−05−18 Landsat8
    2023−06−19 Landsat8
    2023−07−05 Landsat8
    2023−08−30 Landsat9
    2023−09−15 Landsat9
    2023−10−09 Landsat8
    下载: 导出CSV
  • [1] 高玉荣,隋 刚,张新军,等. 遥感方法在宁武煤田煤火识别中的应用[J]. 煤炭科学技术,2023,51(5):133−139.

    GAO Yurong,SUI Gang,ZHANG Xinjun,et al. Application of remote sensing method in coal fire identification in Ningwu Coalfield[J]. Coal Science and Technology,2023,51(5):133−139.

    [2]

    YU B,SHE J,LIU G,et al. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data:a case study of Midong District,Urumqi,China[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,190:144−164. doi: 10.1016/j.isprsjprs.2022.06.007

    [3]

    HUAIZHAN LI,GUANGLI GUO,et al. New evaluation methods for coal loss due to underground coal fires[J]. Combustion Science and Technology,2021,193(6):1022−1041. doi: 10.1080/00102202.2019.1680652

    [4] 于 浩,包兴东. 新疆硫磺沟煤火治理区地表热异常遥感监测研究[J]. 中国煤炭,2023,49(7):74−80.

    YU Hao, BAO Xingdong. Research on the remote sensing monitoring of surface thermal anomaly in Liuhuanggou coal fire control area in Xiniang[J]. China Coal,2023,49(7):74−80.

    [5] 宋吾军,王雁鸣,邵振鲁. 高密度电法与磁法探测煤田火区的数值模拟[J]. 煤炭学报,2016,41(4):899−908.

    SONG Wujun,WANG Yanming,SHAO Zhenlu,et al. Numerical simulation of electrical resistance tomography method and magnetic method in detecting coal fires[J]. Journal of China Coal Society,2016,41(4):899−908.

    [6] 吴 璋,张振振,李雄伟,等. 基于不同高度异常交叉约束反演的航空磁法探测遗煤火区[J]. 煤炭技术,2023,42(6):133−136.

    WU Zhang,ZHANG Zhenzhen,LI Xiongwei,et al. Aeromagnetic Method for detecting residual coal fire area based on cross constraint inversion of different heioht[J]. Coal Technology,2023,42(6):133−136.

    [7] 杨 峰,彭苏萍,马建伟,等. 乌达煤田地下燃烧状况雷达探测谱分析算法[J]. 煤炭学报,2010,35(5):770−775.

    YANG Feng,PENG Suping,MA Jianwei,et al. Spectral analysis for ground penetrating radar surveys of the underground coal fire in Wuda Coal Mine[J]. Journal of China Coal Society,2010,35(5):770−775.

    [8] 贺 强. 双碳目标下我国西部地区地下煤火探测技术研究进展[J]. 中国煤炭地质,2022,34(4):8−13.

    HE Qiang. Research Procress of underground coal fire detection technology in Western China under carbon peaking and carbon neutrality goals[J]. Coal Geology of China,2022,34(4):8−13.

    [9]

    DUNNINGTON L,NAKAGAWA M. Fast and safe gas detection from underground coal fire by drone fly over[J]. Environmental Pollution 2017,229:139−145.

    [10]

    MUJAWDIYA R,CHATTERJEE R S,KUMAR D. MODIS land surface temperature time series decomposition for detecting and characterizing temporal intensity variations of coal fire induced thermal anomalies in Jharia coalfield,India[J]. Geocarto International,2022,37(8):2160−2-74. doi: 10.1080/10106049.2020.1818853

    [11] 李 昂. 测氡探火技术在东山煤矿观家峪进风井火区治理中的应用[J]. 煤炭技术,2008,168(3):65−67.

    LI Ang. Application of Radon measure technique for fire exploration extinguishing in ventilating shaft of Dongshan coal mine[J]. Coal Technology,2008,168(3):65−67.

    [12] 赵禾苗,阿里木江·卡斯木. 基于Landsat数据的乌鲁木齐市热环境时空演化特征分析[J]. 生态科学,2021,40(6):21−29.

    ZHAO hemiao,ALIMUJIANG,Kasimu. Spatial and temporal evolution of thermal environment in Urumgi based on Landsat data[J]. Ecological Science,2021,40(6):21−29.

    [13] 汪云甲,原 刚,王 腾,等. 煤田隐蔽火源多源遥感探测研究[J]. 武汉大学学报(信息科学版),2022,47(10):1651−1661.

    WANG Yunia,YUAN Gang,WANG Teng,et al. Research on Multi-source remote sensing detection of concealed fire sources in coalfields[J]. Geomatics and Information Science of Wuhan University,2022,47(10):1651−1661.

    [14] 李 峰,梁汉东,赵小平,等. 内蒙古乌达煤田煤火治理效果的遥感监测与评估[J]. 国土资源遥感,2017,29(3):217−223.

    LI Feng,LIANG Handong,ZHAO Xiaoping,et al. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. Remote Sensing for Land and Resources,2017,29(3):217−223.

    [15]

    LIU J,WANG Y,LI Y,et al. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers:a case study of miquan coal fire zone in Xinjiang,China[J]. IEEE Access,2019,7:164492−164506.

    [16]

    LI F,LI J,LIU X,et al. Coal fire detection and evolution of trend analysis based on CBERS-04 thermal infrared imagery[J]. Environmental Earth Sciences,2020,79(16):1−15.

    [17]

    KARANAM V,MOTAGH M,GARG S,et al. Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields,Jharkhand,India[J]. International Journal of Applied Earth Observation and Geoinformation,2021,102:24−39.

    [18]

    BISWAL S S,GORAI A K. Studying the coal fire dynamics in Jharia coalfield,India using time-series analysis of satellite data[J]. Remote Sensing Applications:Society and Environment,2021,23:52−64

    [19] 周兆玺,省天琛,李小刚,等. AW3D30 DEM、SRTM DEM和ASTER GDEM三种开源数据精度对比分析[J]. 青海科技,2023,30(6):46−51.
    [20]

    CHEN H,WANG Q,SHEN Y. Decision tree support vector machine based on genetic algorithm for multi-class classification[J]. Systems Engineering & Electronics Journal of,2011,22(2):p. 322−326.

    [21] 侯宇初,张冬有. 基于Landsat8遥感影像的地表温度反演方法对比研究[J]. 中国农学通报,2019,35(10):142−147.

    HOU Yuchu,ZHANG Dongyou. Comparison Study on land surface temperature retrieval algorithms based on Landsat 8 remote sensing image[J]. Chinese Agricultural Science Bulletin,2019,35(10):142−147.

    [22] 张晓敏,刘知微,方 寒,等. 基于Landsat 8 TIRS地表温度数据反演的深圳城市热岛效应时空分布及土地利用的影响[J]. 气候与环境研究,2023,28(3):242−250.

    ZHANG Xiaomin,LIU Zhiwei,FANG Han,et al. Spatiotemporal Distribution of an urban heat island and the influence of land use over Shenzhen based on Landsat 8 TIRS lmage data in 2014-2021[J]. Climatic and Environmental Research,2023,28(3):242−250.

    [23]

    YAN S,SHI K,LI Y,et al. Integration of satellite remote sensing data in underground coal fire detection:A case study of the Fukang region,Xinjiang,China[J]. Frontiers of Earth Science,2020,14:1−12. doi: 10.1007/s11707-019-0757-9

    [24]

    ZHANG J,WANG Y,WANG Z. Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ data[J]. International Journal of Remote Sensing,2007,28(10):2383−2390. doi: 10.1080/01431160701236811

    [25] 周 珂,陈磊阳,沈夏炯,等. 基于Landsat-8的开封城区不透水面提取[J]. 地理空间信息,2019,17(8):88−91,115,11−12.

    ZHOU Ke,CHEN Leiyang,SHEN Xiajiong,et al. Impervious Surface Extraction of Kaifeng Urban Area Based on Landsat-8[J]. Geospatial Information,2019,17(8):88−91,115,11−12.

    [26] 许江蕾. 基于多元回归预测的高光谱图像无损压缩[D]. 西安:西安电子科技大学,2014.

    XU Jianglei. Multiple Regression prediction-based lossless compression of hyperspectral images[D]. Xi’an:Xidian University,2014.

    [27] 苗回归,黄 飞,李树清,等. 基于数值模拟−多元线性回归的大断面隧道平均瓦斯浓度检测位置研究[J]. 现代隧道技术,2023,60(5):128−135.

    MIAO Huigui,HUANC Fei,LI Shuqing,et al. Study on Detection location of average gas concentration in a large section tunnel based on numerical simulation-multiple linear regression[J]. Modern Tunnelling Technology,2023,60(5):128−135.

    [28] 邱程锦,王 坚,刘立聪,等. 遥感技术在乌达煤田火灾监测中的应用[J]. 煤炭工程,2012(8):130−133.

    QIU Jinching,WANG Jian,LIU Licong,et al. Remote Sensing technology applied to fire disaster monitoring and measuring of Wuda coalfield[J]. Coal Engineering,2012(8):130−133.

图(14)  /  表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  3
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 网络出版日期:  2024-04-06
  • 刊出日期:  2023-12-29

目录

    /

    返回文章
    返回