高级检索

刘 浪,方治余,王双明,等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术,2024,52(2):292−308

. DOI: 10.12438/cst.2023-1485
引用本文:

刘 浪,方治余,王双明,等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术,2024,52(2):292−308

. DOI: 10.12438/cst.2023-1485

LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308

. DOI: 10.12438/cst.2023-1485
Citation:

LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308

. DOI: 10.12438/cst.2023-1485

煤矿充填固碳理论基础与技术构想

基金项目: 

国家自然科学基金资助项目(52074212, 51874229, 51674188)

详细信息
    作者简介:

    刘浪: (1985—),男,陕西靖边人,教授,博士生导师。Tel:029-85583143,E-mail:liulang@xust.edu.cn

    通讯作者:

    王双明: (1955—),男,陕西岐山人,中国工程院院士。Tel:029-85587131,E-mail:sxmtwsm@163.com

  • 中图分类号: TD801

Theoretical basis and technical conception of backfill carbon fixation in coal mine

Funds: 

National Natural Science Foundation of China(52074212, 51874229, 51674188)

  • 摘要:

    在国家“双碳”目标背景下,如何减少煤炭行业的碳排放、实现碳封存已成为亟待解决的难题。煤炭行业作为高碳化石能源生产者和主体碳排放源提供者,在生产和消费过程中引发的大宗固废堆存、大型采空区形成和大量CO2排放是制约煤炭可持续开发利用与绿色健康发展的瓶颈所在。为协同解决二氧化碳封存与矿山固废消纳问题,将大宗固废处置、固废高值化利用、CO2封存、采空区利用有机结合,提出了二氧化碳充填的理念,从碳汇能力评估角度界定了二氧化碳充填的3种类型。具体开展工作包括:① 分析了CO2充填料浆输运过程和矿化反应过程涉及到的基础理论,给出了各个过程的数学方程以及碳封存量计算公式,指出了温度、湿度等因素对矿化反应机理、碳封存量和充填体强度的影响规律。② 总结了现阶段CO2矿化的工艺方法、主要碱性工业固废的CO2封存能力和CO2矿化强化措施。在此基础上提出了基于直接湿法矿化和间接矿化的2种CO2充填材料制备工艺,满足矿井充填的流动性、凝固特性和强度要求。③ 针对CO2充填过程中的CO2物理封存问题,提出了窄条带式胶结充填和综采架后胶结充填2种技术路径,前者通过在弱充填条带中构筑多贯通孔隙的充填体CO2物理封存,后者借助充填支架和链式自行充填挡板在长壁工作面采空区中间断构筑充填带,控制顶板垮落,形成CO2物理化学封存空间。④ 为了评估CO2充填的碳平衡效果,依据全生命周期法界定了CO2充填中碳足迹及碳消纳的计算边界。然后,梳理了CO2充填过程中的碳足迹及碳消纳,分别考虑了CO2的来源、用量、损耗、转化等因素。给出了包括原料运输、充填料浆制备、井下注入与充填等过程中的碳足迹及碳消纳计算方法。研究成果有望降低CO2封存的能耗及成本,对煤炭绿色开采及其可持续开发利用具有深远的意义。

    Abstract:

    Under the national “dual carbon” goal, how to reduce the carbon emissions of the coal industry and achieve carbon storage has become an urgent problem to be solved. The coal industry is the producer of high carbon fossil energy and the main carbon emission source provider. In the process of production and consumption, the accumulation of bulk solid waste, the formation of large goaf and a large amount of CO2 emissions are the bottlenecks that restrict the sustainable development and utilization and the green and healthy development of the coal industry. In order to solve the problem of carbon dioxide storage and mine waste consumption, the bulk solid waste disposal, high-value solid waste utilization, CO2 storage and goaf utilization were organically combined, the concept of carbon dioxide backfill was put forward, and three types of dioxide backfill were defined from the perspective of carbon sink capacity assessment. ① The basic theories involved in the transportation process of CO2 filling slurry and mineralization reaction process are analyzed. The mathematical equations for each process and calculation formulas for carbon sequestration amount are provided. The influence of factors such as temperature and humidity on the mineralization reaction mechanism, carbon sequestration amount, and strength of the backfill body are pointed out. ② The carbonation technological approaches, CO2 sequestration capacity of major alkaline industrial solid wastes and enhancing measures of CO2 mineralization are summarized. On this premise, two types of CO2 backfill materials preparation technique based on direct carbonationand or indirect carbonationand are presented, which can fulfill the criterion of mine backfill in fluidity, solidification characteristics and strength. ③ To solve the problem of decomposed CO2 escaping during CO2 backfill, two technical paths of strip roadway paste backfilling and intermittent backfilling behind packed hydraulic support have been proposed. The former sequesters decomposed CO2 by constructing backfilling bodies with multiple through holes in the weak backfilling strip, while the latter uses packed hydraulic support and chain self-filling baffling to construct backfilling strips in longwall goaf to control roof caving and form a CO2 physicochemical storage space. ④ In order to evaluate the carbon balance effect of CO2 backfill, the calculation boundary of carbon footprint and carbon sequestration in CO2 backfill was defined according to the life cycle method, including the stages of raw material mining, transportation, processing, injection, solidification, etc. Then, the carbon footprint and carbon sequestration in the CO2 backfill process were sorted out, and factors such as the source, dosage, loss, and conversion of CO2 were considered. Next, the calculation methods of carbon footprint and carbon sequestration in the processes of raw material transportation, filling slurry preparation, underground injection and filling were given. The research results are expected to reduce the energy consumption and cost of CO2 storage, and have far-reaching significance for green coal mining and sustainable development and utilization.

  • 随着煤矿开采深度的增加[1],矿井热害问题逐渐严重[2]。矿井常采用井下集中制冷降温系统,将制冷机组的冷冻水通过管网输送至降温地点空冷器进行降温[3]。制冷降温系统中冷冻水在输送过程中受管道布置、管径和长度等因素的影响,存在末端冷量供给不足[4],制冷效率低[5]等问题。

    国内外学者分别对管网水力特性、压力损失和系统优化进行研究。魏立杰等[6]、郑进福等[7]基于节点分析法分析各管段阻力分布。RAHIMI等[8]引入基图和余数图,通过计算管道流量和水头损耗来确定管道直径。窦明等[9]基于图论原理定量研究水量平衡关系,得到不同工况下最佳水系连通方案。SABZKOUHI等[10]分析了管网节点需求、管道摩擦系数、泵扬程与管网水力特性的关系。CHICHERIN等[11]研究了管道中水的压力、密度、速度等对供热管网的阻力影响,得出改变管道粗糙度可显著减小水力损失。CHANG等[12]利用海曾威廉系数和水力损失值来寻找敏感度高的管段。当管网流量供给不平衡会造成区域冷热不均,离心泵与管网不匹配会造成泵可靠性降低和故障多发等问题。由世俊等[13]分析了阀门开度和水泵转速对管网动态响应时间的影响。HONG等[14]提出将单个泵特性曲线与管网水力特性曲线联合优化管网水头和流量。高铁军等[15]建立了阀门−管网拓扑模型,评估和识别关键阀门,提高了阀门可靠性。周璇等[16]动态优化了供热系统热水循环泵的运行频率和各支路电动调节阀的开度降低系统运行能耗。

    降温系统冷冻水管路随着采掘范围增加距离变长,管网复杂造成末端需冷区域冷量供给不足。笔者以赵楼煤矿井下制冷降温管网为例,基于图论原理建立管网拓扑模型,计算节点流量和阻力,得到管网水力和热力特性,提出降温管网优化方法。

    冷冻水通过制冷管网由制冷机组输送到各末端需冷地点,管网输送阻力损失主要包括沿程阻力损失和局部阻力损失2部分[17]

    沿程阻力损失按式(1)计算:

    $$ {h_{\mathrm{f}}} = \lambda \frac{L}{D}\frac{{{v^2}}}{{2g}} $$ (1)

    式中:$ {h_{\mathrm{f}}} $为沿程阻力损失,m;$ \lambda $为沿程阻力系数;$ L $为管长,m;D为管道内径,m;$ v $为流速,m/s;$ g $为重力加速度,取9.8 m/s2

    局部阻力损失主要由管道中的阀门、弯管等组成。产生局部阻力的原因是流体与接触边界相互碰撞产生漩涡。局部损失按式(2)计算:

    $$ {h_{\mathrm{m}}} = \xi \frac{{{v^2}}}{{2g}} $$ (2)

    式中:$ {h_{\mathrm{m}}} $为局部阻力损失,m;$ \xi $为局部阻力系数。

    则总阻力:

    $$ h = S{Q^2} $$ (3)

    式中:$ h $为管路总阻力,$ h = {h_{\mathrm{f}}} + {h_{\mathrm{m}}} $,m;$ S $为管路阻抗,$ S = 8\left(\lambda \dfrac{L}{D} + \xi \right){({{\text{π}} ^2}{D^4}g)^{ - 1}} $;$ Q $为流量,m3/s。

    管路中总阻力、管路阻抗和流量是管网水力计算中的重要参数,也是水力平衡性的重要指标。管路阻抗大小取决于管道长度、管径、局部阻力系数等[18],但在管路设计完成后,管路阻抗是固定值,管路总阻力随流量变化而变化。

    管网中冷冻水流动时冷量损失主要包括传热损失和水阻摩擦损失2部分[19]。传热损失指冷冻水与周围环境进行对流换热损失的冷量,取决于管道热阻以及管道内冷冻水温度与周围环境温度的温差。管网包括供水管道与回水管道,供水温度低于回水温度,而供水管的冷量损失决定了末端冷量供给。水阻摩擦损失指冷冻水输送过程中摩擦生热导致冷冻水温度升高,最终以热的形式耗散在冷冻水中引起温度升高。

    管网传热温升:

    $$ \Delta {t_{\mathrm{f}}} = AL $$ (4)

    式中:$ \Delta {t_{\mathrm{f}}} $为传热温升,℃;$ A $为单位管道温升,赵楼煤矿制冷管道为聚氨酯发泡保温无缝钢管,经计算,单位管道温升取值为0.001 ℃/m。

    水阻摩擦温升由焦耳−汤姆逊效应[20]计算:

    $$ \Delta {t_{\mathrm{w}}} = \mu L\Delta p $$ (5)

    式中:$ \Delta {t_{\mathrm{w}}} $为水阻摩擦温升,℃;$ \Delta p $为单位长度管道的阻力损失;$ \mu $为摩擦升温系数,取2.4×10−7 ℃/Pa。

    对于管道长度$ L $的管段单位面积总冷量损失:

    $$ q = \frac{D}{4}v\rho {C_{\mathrm{P}}}\frac{{\Delta t}}{L} $$ (6)

    式中:$ q $为传热冷量损失,kJ/(s·m2);$ \rho $为水密度,取1000 kg/m3;$ \Delta t $为管道总温升,℃;$ {C_{\mathrm{P}}} $为水的定压比热容,取4.28 kJ/(kg·℃)。

    总冷量损失为

    $$ {Q_{\mathrm{r}}} = q\sum\limits_{i = 1}^n {\pi {D_i}{L_i}} $$ (7)

    式中:$ {Q_{\mathrm{r}}} $为总冷量损失,kJ/s。

    由式中可看出,决定管网冷量损失的参数包括管长、管径、流速和管段温升。

    赵楼煤矿采用井下集中式制冷降温系统,冷冻水管网布置如图1所示。井下有东部和中部2个制冷硐室,各有1台KM3000型制冷机运行,制冷功率为6.6 MW,单台制冷机可提供流量为0.04 m3/s的3 ℃冷冻水。东部制冷硐室为七采区供冷,中部制冷硐室为五采区供冷。矿井目前安装制冷管路约40 000 m,采用聚氨酯发泡保温无缝钢管,管路连接处使用保温海棉进行处理。

    图  1  井下制冷降温系统管网布置
    Figure  1.  Pipe network layout of underground refrigeration and cooling system

    井下集中制冷降温系统原理如图2所示。制冷机组产生的冷冻水经输冷管路送至末端空冷器实现对风流降温,冷冻水经过空冷器后沿回水管返回至制冷机组,形成冷冻水循环。

    图  2  井下集中制冷系统原理
    Figure  2.  Schematic of downhole centralized refrigeration system

    降温系统建成初期,工作面降温幅度在6 ℃左右,降温效果良好。随着矿井开采范围扩大,需冷区域增大,造成制冷机组与热交换器之间的距离增加,输冷管道较长,沿程阻力增大,管路中含有各种产生局部损失的管路元件,局部阻力增加;水头压力变化和冷冻水沿程冷损增加,制冷效果差,需要优化管网系统。

    根据赵楼煤矿井下制冷降温管网布置图,建立了与之对应的拓扑模型,管网模型包括节点与管段。各末端支路依次编号,节点之间通过管段连接,节点为管段产生流动损失的位置,如图3所示。

    图  3  赵楼煤矿降温管网拓扑图
    Figure  3.  Cooling pipe network topology diagram of Zhaolou Coal Mine

    为方便管网水力和热力特性辨识,对管网系统模型进行适当简化:①冷水机组及水泵等制冷机房设备合并作为管网的1个节点;②对于相邻且中间无节点的管道,均视为同一管道简化处理;③冷冻水系统是闭式循环,回水管和输水管对偶,管网节点既代表输水管节点也表示回水管节点。

    七采区降温管网有1个冷冻水源,即东部制冷机组(E1),冷冻水流量0.04 m3/s。输水管网共有15个节点,14根管段。主要输水管为沿南部1号辅助运输大巷和二集辅助巷布置的管道。管网基本信息及设定见表1

    表  1  七采区降温管网信息
    Table  1.  Information of cooling pipe network in Seventh mining area
    管段 管段位置 管长
    L/m
    管径
    D/m
    标高/m 流量
    Q/(m3·s−1)
    Si Si+1
    E1-2 南部1号辅助
    运输巷
    178.8 0.377 −858.3 −857.1 0.04
    E2-3 南部1号辅助
    运输巷
    810.7 0.377 −857.1 −855.6 0.023
    E3-4 南部1号辅助
    运输巷
    956.22 0.325 −855.6 −853.5 0.023
    E4-5 南部1号辅助
    运输巷
    1134.5 0.219 −853.5 −923.9 0.023
    E5-6 南部1号辅助
    运输巷
    341.02 0.219 −923.9 −853.4 0.012
    E5-7 二集辅助巷 168.52 0.219 −923.9 −923.3 0.012
    E7-8 二集辅助巷 1481.3 0.273 −923.3 −927.1 0.012
    E2-9 一集轨道
    下山
    898.21 0.273 −857.1 −910.0 0.017
    E8-10 7302运输巷 1596.5 0.159 −927.1 −792.0 0.006
    E10-11 7302工作面 300 0.159 −792 −861.9 0.006
    E8-12 二集辅助巷 325 0.159 −927.1 −924.9 0.006
    E12-13 7302轨道
    巷道
    1250 0.159 −924.9 −829.7 0.003
    E12-14 二集辅助巷 370 0.159 −924.9 1015.0 0.003
    E9-15 一集轨道
    下山
    560.67 0.159 −910.0 −945.0 0.017
    下载: 导出CSV 
    | 显示表格

    五采区降温管网有1个冷冻水源,即中部制冷机组(M1),冷冻水流量0.04 m3/s。输水管网共有15个节点,14根管段。管网基本信息设定见表2

    表  2  五采区降温管网信息
    Table  2.  Information of cooling pipe network in Fifth mining area
    管段 管段位置 管长
    L/m
    管径
    D/m
    标高/m 流量
    Q/(m3·s−1)
    Si Si+1
    M1-2 南部2号辅助
    运输大巷
    613 0.325 −848.9 −849.2 0.015
    M2-3 南部2号辅助
    运输大巷
    419 0.159 −849.2 −822.5 0.007
    M3-4 5309运输巷 675 0.159 −822.5 −892.2 0.004
    M3-5 南部2号辅助
    运输大巷
    274 0.159 −822.5 −782.7 0.004
    M5-6 5309轨道巷 693 0.159 −782.7 −865.1 0.004
    M2-7 2号辅助6号
    联络巷
    250 0.159 −849.2 −840 0.007
    M7-8 5304轨道巷 993 0.159 −840 −808.9 0.003
    M7-9 2号辅助6号
    联络巷
    218 0.273 −840 −803.3 0.004
    M9-10 5304运输巷 980 0.159 −803.3 −772.2 0.002
    M9-11 2号辅助6号
    联络巷
    207 0.273 −803.3 −778.4 0.002
    M11-12 5305运输巷 1110 0.159 −778.4 −732.8 0.001
    M11-13 2号辅助6号
    联络巷
    700 0.159 −778.4 −761.2 0.001
    M1-14 中部辅运
    大巷
    855 0.159 −848.9 −900 0.010
    M1-15 南部2号辅助
    运输大巷
    1236 0.159 −848.9 −853.3 0.015
    下载: 导出CSV 
    | 显示表格

    图3a知,当东部制冷硐室(E1)的节点流量为0.04 m3/s时,七采区降温系统处于稳态水力变化中,冷冻水从东部制冷硐室流出沿南部1号辅助运输大巷在节点E2分别向管段E2-3-4-5和E2-9供水,流量为0.023和0.017 m3/s。在节点E5分别流向E5-6和E5-7-8,其中E5-7-8是布置在二集辅助巷流向工作面的支管,流量为0.012 m3/s。在节点E8处冷冻水流向7302工作面,其中管段E8-10、E8-12流量为0.006 m3/s,管段E12-13、E12-14流量是0.003 m3/s。流入工作面冷冻水流量小于0.008 m3/s,主要原因是主管E2-3-4-5管径逐渐缩小,同时在支路分流的作用下,远离制冷硐室的节点E10、E11、E13流量偏小;而E2-9管径较大,导致大量冷冻水流向一集轨道下山巷道。

    五采区管网对5304、5305、5309工作面进行降温,如图3b所示,主管是布置在南部2号辅助运输大巷中的M1-2-3-5,供水管路支管较多。当中部制冷硐室(M1)节点流量为0.04 m3/s时,流入5305运输顺槽冷冻水流量为0.001 m3/s,3个工作面输水流量均小于0.005 m3/s,主要是管网支管多,串联布置时,靠近制冷硐室的支管流入的冷冻水流量较大。

    七采区管网总长度达20700 m,管段管径为0.159~0.377 m不等,如图4所示,沿程总损失为7 m,E2-3-4-5管段流量不变,管长分别为810.7、956.2、1134 m,管径由0.377 m缩小至0.219 m,冷冻水流速增加,沿程损失分别为0.10、0.24、1.96 m,千米管长损失为0.12、0.25、1.74 m。当冷冻水流量不变时,管径变化导致管道水流速变化时,千米管长损失也随之变化;而冷冻水在管道中流经的长度越长时,沿程损失越大。七采区局部损失共0.093 m,主要由弯管、三通、变径管产生。节点E2、E5、E8、E12是三通分流处,E3、E4为管段变径处,E15为弯管。局部损失最大节点为E15,损失0.036 m,原因是管径偏小,当冷冻水流量较大时,造成局部损失大。

    图  4  七采区管网损失
    Figure  4.  Loss of pipe network in Seventh mining area

    五采区管网总长度约18400 m,沿程总损失22.7 m,如图5所示。沿程损失集中在M1-14、M1-15,分别为4.29、12.9 m;冷冻水在节点M1分别向管段M1-2、M1-14、M1-15供水,千米管长损失为1.97、5.02、10.43 m;其中M1-14、M1-15冷冻水流速较大,分别为0.18、0.26 m/s,说明当冷冻水流速越大、管径过小时,单位管长损失越大。五采区中产生局部损失的管道附件多,M1、M2、M3、M5、M7、M9、M11均为三通分流处,局部损失均小于0.001 m,原因是冷冻水流量小,流速较小,局部损失少。

    图  5  五采区管网损失
    Figure  5.  Loss of pipe network in Fifth mining area

    井下制冷降温管网中压降较大的管段有E5-6、E8-10、E10-11、E12-13、E12-14,分别为1.3×106、1.4×106、2×106、9.2×105、9.3×105 Pa,位于二集辅助巷和7302工作面。此管段两端节点高差分别为70.5、135.1、69.9、90.2、90.5 m,管路之间的高差造成冷冻水流经时所需能量大,管段压降增大。

    赵楼煤矿降温系统每千米温升在2~4 ℃,其中七采区温度变化大,主要原因是七采区需冷区域与东部制冷硐室距离远、沿程损失大,末端温度较高,如图6图7所示。

    图  6  七采区温升
    Figure  6.  Temperature rise in Seventh mining area
    图  7  五采区温升
    Figure  7.  Temperature rise in Fifth mining area

    当制冷硐室冷冻水输/回水温度3 ℃/16 ℃时,七采区降温管网各节点温度变化较大,节点E11在7302工作面上,距离制冷硐室最远,输水长度6700 m,冷冻水温度高达13.9 ℃;节点E13、E14温度大于13 ℃,布置在7302轨道巷、七采区辅助巷附近,输水长度大于5000 m,温升0.75 ℃/100 m;管道虽有保温处理,但沿程传热损失大,末端换热器输水温度高、降温效果不佳。五采区降温系统各节点温度变化较小,平均温升3 ℃;温度较高的节点M11、M8、M4、M10、M6、M13、M12在树状管网末梢,输水温度大于6 ℃,位于5304、5305、5309工作面,输水距离超过2000 m,沿程热损失大,温升0.12 ℃/100 m。

    管网中冷量损失大的管道集中在七采区,多个管道冷量损失大于105 J/s,其中管道E1-2-3-4-5为主管道,水流速度快,管道温升大,冷量损失大;管道E7-8、E2-9输送距离大于1000 m,冷冻水传热损失较大,造成冷量在输送过程中散失。见表3,七采区管网冷量损失1.08×106 J/s,五采区管网冷量损失1.4×105 J/s,总冷量损失1.22×106 J/s。

    表  3  系统冷冻水管道冷量损失
    Table  3.  Cooling loss of system chilled water pipeline
    七采区管道 冷量损失
    Qr/(103 J·s−1
    五采区管道 冷量损失
    Qr/(103 J·s−1
    E1-2 122.47 M1-2 24.23
    E2-3 133.61 M2-3 9.22
    E3-4 147.93 M3-4 7.32
    E4-5 182.24 M3-5 3.65
    E5-6 34.26 M5-6 7.59
    E5-7 35.07 M2-7 7.83
    E7-8 100.80 M7-8 6.88
    E2-9 113.66 M7-9 3.74
    E8-10 43.90 M9-10 3.77
    E10-11 25.52 M9-11 2.13
    E8-12 21.31 M11-12 2.25
    E12-13 19.02 M11-13 2.14
    E12-14 14.31 M1-14 21.62
    E9-15 85.47 M1-15 37.58
    总计 1079.59 总计 139.96
    下载: 导出CSV 
    | 显示表格

    七采区管网冷量损失占总冷量损失的88.51%,这是由于管网输水范围大距离远,造成管路温升大。五采区管网各工作面比较集中,冷冻水能有效供给到需冷地点,降温效果良好。摩擦冷量损失和传热冷量损失分别为5.39×105、6.805×105 J/s。

    结合赵楼煤矿降温管网2022年7月末端空冷器入口冷冻水流量、温度实测数据,见表4。管网冷冻水实际流量低于计算值,主要原因是冷冻水在管道中流动时会有一定的损耗和流失,同时管道使用时间较长,管内存在沉淀物等导致水流量下降,实际测量数据偏低。管网冷冻水入口温度较计算值高2~3 ℃,这是由于冷冻水管网在管路连接处采用保温海绵,其冷量损失较大;同时管网冷量损失受多种因素影响,如流量、管长、管径等,实际冷冻水流量偏低也是造成管网冷冻水温度升高的原因。

    表  4  空冷器入口水流量、温度实测数据
    Table  4.  Measured data of inlet water flow and temperature of air cooler
    测点位置 流量Q/(m3·s−1 温度t/℃
    7302运输巷 0.005 14.2
    7302轨道巷 0.0024 13.4
    7302工作面 0.0043 16.7
    5304轨道巷 0.002 7.7
    5304运输巷 0.002 8.6
    5305运输巷 0.0008 9.5
    5309运输巷 0.0035 7.6
    5309轨道巷 0.0032 7.9
    南部2号辅助运输大巷 0.001 9.2
    下载: 导出CSV 
    | 显示表格

    在制冷降温管网中,由于支路较多、各个末端空冷器串联布置,当某些支路或空冷器流量调节时会引起系统冷冻水流量改变,其他设备的流量也随之发生改变,偏离设计要求,导致管网系统处于动态水力失衡状态。造成冷冻水流量不受控的现象,对制冷效果造成了巨大影响。

    在管网中,各末端空冷器的流量取决于管网阻力特性系数。系统任一管段阻力特性发生变化,位于该管段之后的区段流量成一致性变化[21]。采用安装水力平衡阀来解决管网水力失调问题,将动态平衡阀设在供水总管路上、静态平衡阀设在供水支路上(图8)。阀门的直接调节对象为冷冻水流量,如果流量比目标流量小,则加大阀门开度使出流量增大,反之则减小阀门开度。

    图  8  阀门调节流程
    Figure  8.  Valve regulation flow

    在降温管路中使用静态平衡阀对支路阻力进行调节,测量阀门前后压降变化,根据阀门开度计算调节后支路流量,使空冷器的流量达到设计值,调节后不随意改变阀门开度,实现系统的静态水力平衡。当管路总流量发生变化,由于动态平衡阀的恒定流量作用,末端设备的流量保持不变[22],即空冷器的实际流量不受其干扰,实现动态水力平衡。

    阀门调节优化管网运行后,七采区降温系统调整了管网流量(表5),增加了由东向西的输水量,流入7302工作面冷冻水流量为0.009 m3/s。五采区降温系统经过水力调节阀重新分配输水量后,工作面最小流量0.005 m3/s,解决了降温系统水力失调问题。

    表  5  系统管网管径改造后流量变化
    Table  5.  Fow change after the pipe diameter transformation of the system pipe network
    管段 流量Q/(m3·s−1) 管径D/m 管段 流量Q/(m3·s−1) 管径D/m
    E1-2 0.040 0.377 M1-2 0.028 0.325
    E2-3 0.032 0.377 M2-3 0.009 0.325
    E3-4 0.032 0.325 M3-4 0.005 0.159
    E4-5 0.032 0.325 M3-5 0.005 0.325
    E5-6 0.010 0.219 M5-6 0.005 0.159
    E5-7 0.022 0.325 M2-7 0.018 0.325
    E7-8 0.022 0.325 M7-8 0.005 0.159
    E2-9 0.011 0.159 M7-9 0.014 0.325
    E8-10 0.009 0.159 M9-10 0.005 0.159
    E10-11 0.009 0.159 M9-11 0.009 0.325
    E8-12 0.012 0.273 M11-12 0.005 0.159
    E12-13 0.009 0.159 M11-13 0.005 0.159
    E12-14 0.003 0.159 M1-14 0.006 0.159
    E9-15 0.008 0.159 M1-15 0.006 0.159
    下载: 导出CSV 
    | 显示表格

    结合水力损失情况,对管网中不利管段改造优化。南部1号辅助运输大巷、二集辅助巷和南部2号辅助运输大巷的管径增加至0.325 m,减小了各管段比摩阻[23],管网总水力损失从30.93 m减少到20.44 m,减少了35%。管内流体摩擦生热量与管段水力损失成正比,冷冻水温升减小,工作面降温明显。具体管径改造方案见表5

    在流量和管径调节后,管网阻力发生变化,管路压降变化。最不利管路选择离制冷机组最远、埋深最深、节点水压最低和需水量最大的管路。七采区系统最不利管路:南部1号辅助运输大巷—二集辅助巷—七采区辅运巷下段,东部泵站与最不利末端相对高差90.02 m;五采区系统最不利管路:南部2号辅助运输大巷—2号辅运6号联络巷—5309运输巷,中部泵站与最不利末端相对高差81.84 m;产生局部损失管件有三通、变径管等。

    七采区管路特性方程:

    $$ H = 90.02 + 8.9 \times {10^3}{Q_{\mathrm{v}}^2} $$ (8)

    五采区管路特性方程:

    $$ H = 81.84 + 1.26 \times {10^4}{Q_{\mathrm{v}}^2} $$ (9)

    式中:$ H $为管路的扬程,m;$ {Q_{\mathrm{v}}} $为管路系统输送流体的流量,m3/s。

    离心泵工况点由离心泵特性曲线和管路特性曲线共同决定。将MD280-43*5型离心泵的特性曲线与管路的特性曲线绘于同一坐标图上,两线的交点成为泵在该管路上的最佳工作点。如图9所示,当流量在0.102 m3/s和0.094 m3/s为最佳工作点,这一点泵在管路中效率最高。离心泵流量调整为0.085~0.112 m3/s,扬程为183~195 m,在离心泵的效率大于90%高效区间。

    图  9  离心泵工况点
    Figure  9.  Centrifugal pump operating point

    井下制冷硐室优化后冷冻水泵最佳流量是0.085~0.112 m3/s,在此范围内,降温管网最不利管路冷冻水供应满足设计流量,同时进入工作面冷冻水流量大于0.005 m3/s。当扬程在183~195 m范围内,能够克服管网因阻力损失造成的压降,使降温系统能够平稳运行。

    1) 赵楼煤矿井下制冷降温管网中冷冻水流量分配不均,末端最大流量为0.017 m3/s,最小流量为0.001 m3/s;管网中水头损失大的位置为一集轨道下山巷道、7302运输巷和中部辅运大巷。

    2) 矿井降温系统分别给五采区和七采区共4个工作面供冷。七采区降温系统冷量损失为1.08×106 J/s,温升0.75 ℃/100 m;五采区降温系统冷量损失为1.4×105 J/s,温升0.12 ℃/100 m;摩擦和传热冷量损失分别是5.39×105 J/s和6.805×105 J/s;冷冻水在输送中末端温度最高为13.9 ℃。

    3) 提出管道−泵阀联调的管网优化方法,采用动态平衡阀对南部1号辅助运输大巷和二集辅助巷冷冻水流量恒定在0.022~0.04 m3/s范围,增加了七采区自东向西输水量,实现了末端空冷器流量稳定;采用静态平衡阀调节管网支路阻力,将工作面冷冻水流量增大至0.005 m3/s;结合水力损失情况,将南部1号辅助运输大巷、南部2号辅助运输大巷和二集辅助巷的管径增加至0.325 m,管网总水力损失从30.94 m减少到20.44 m,减少了35%;离心泵流量调整为0.085~0.112 m3/s,扬程调整为183~195 m,在离心泵高效运行区间。

  • 图  1   煤矿二氧化碳充填示意

    Figure  1.   CO2 backfill diagram of coal mine

    图  2   充填体内物质分布及矿化反应示意

    Figure  2.   Schematic of material distribution and mineralization reaction in the backfill

    图  3   钢渣溶解、反应及强度形成示意[29]

    Figure  3.   Schematic of steel slag dissolution, reaction, and strength formation[29]

    图  4   直接湿法矿化法制备CO2充填材料工艺示意

    Figure  4.   Process diagram of CO2 backfill material prepared by direct aqueous carbonation method

    图  5   间接矿化法制备CO2充填材料工艺示意

    Figure  5.   Process diagram of CO2 backfill material prepared by indirect carbonation method

    图  6   CO2充填技术

    Figure  6.   CO2 backfill technology

    图  7   CO2条带式巷道胶结充填

    Figure  7.   CO2 strip roadway cemented backfilling

    图  8   综采架后间断充填方法

    Figure  8.   Intermittent backfilling behind packed hydraulic support

    图  9   链式自行充填挡板的概念简图

    Figure  9.   Conceptual diagram of chain self-walking backfilling baffle

    图  10   CO2充填全生命周期的碳足迹及碳消纳

    Figure  10.   Carbon footprint and carbon absorption throughout the life cycle of CO2 backfill

    图  11   CO2充填全生命周期计算边界

    Figure  11.   LCA calculation boundary of CO2 backfill

    表  1   充填体内主要发生的水化/矿化反应[10,19-22]

    Table  1   The main hydration/mineralization reactions occurring in the backfill[10,19-22]

    项目 化学式
    水化反应 $ {\text{CaO}} + {{\text{H}}_2}{\text{O}}\xrightarrow{{{r_{{\text{H,CaO}}}}}}{\text{Ca}}{\left( {{\text{OH}}} \right)_2} $
    $ {\text{2}}{{\text{C}}_{\text{3}}}{\text{S}} + {\text{6}}{{\text{H}}_{\text{2}}}{\text{O}}\xrightarrow{{{r_{{\text{H,}}{{\text{C}}_{\text{3}}}{\text{S}}}}}}{{{\rm{C-S-H}} + 3{\rm{Ca}}}}{\left( {{\text{OH}}} \right)_{\text{2}}} $
    $ {\text{2}}{{\text{C}}_{\text{2}}}{\text{S}} + {\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}\xrightarrow{{{r_{{\text{H,}}{{\text{C}}_{\text{2}}}{\text{S}}}}}}{{{\rm{C-S-H}} + {\mathrm{Ca}}}}{\left( {{\text{OH}}} \right)_{\text{2}}} $
    $ \begin{gathered} {{\text{C}}_{\text{3}}}{\text{A}} + {\text{3}}\left( {{\text{CaS}}{{\text{O}}_{\text{4}}} \cdot {\text{2}}{{\text{H}}_{\text{2}}}{\text{O}}} \right) + {\text{26}}{{\text{H}}_{\text{2}}}{\text{O}}\xrightarrow{{{r_{{\text{H,}}{{\text{C}}_{\text{3}}}{\text{A}}}}}} \\ {\text{3CaO}} \cdot {\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} \cdot {\text{CaS}}{{\text{O}}_{\text{4}}} \cdot {\text{32}}{{\text{H}}_{\text{2}}}{\text{O}} \\ \end{gathered} $
    $ \begin{array}{l}{\text{C}}_{\text{4}}\text{AF}+\text{2Ca}{\left(\text{OH}\right)}_{\text{2}}+\text{2}\left({\text{CaSO}}_{\text{4}}\cdot {\text{2H}}_{\text{2}}\text{O}\right)+{\text{18H}}_{\text{2}}\text{O} \xrightarrow{{r}_{\text{H},{\text{C}}_{\text{4}}\text{AF}}}\\ \text{6CaO}\cdot {\text{Al}}_{\text{2}}{\text{O}}_{\text{3}}\cdot {\text{Fe}}_{\text{2}}{\text{O}}_{\text{3}}\cdot {\text{2CaSO}}_{\text{4}}\cdot {\text{24H}}_{\text{2}}\text{O}\end{array} $
    $ {\text{MgO}} + {{\text{H}}_2}{\text{O}}\xrightarrow{{{r_{{\text{H,MgO}}}}}}{\text{Mg}}{\left( {{\text{OH}}} \right)_2} $
    矿化反应 $ {{\text{C}}_{\text{3}}}{\text{S}} + {\text{3C}}{{\text{O}}_{\text{2}}} + n{{\text{H}}_{\text{2}}}{\text{O}}\xrightarrow{{{r_{{\text{C,}}{{\text{C}}_{\text{3}}}{\text{S}}}}}}{\text{Si}}{{\text{O}}_{\text{2}}} \cdot n{{\text{H}}_{\text{2}}}{\text{O}} + {\text{3CaC}}{{\text{O}}_{\text{3}}} $
    $ {{\text{C}}_{\text{2}}}{\text{S + 2C}}{{\text{O}}_{\text{2}}} + n{{\text{H}}_{\text{2}}}{\text{O}}\xrightarrow{{{r_{{\text{C,}}{{\text{C}}_{\text{2}}}{\text{S}}}}}}{\text{Si}}{{\text{O}}_{\text{2}}} \cdot n{{\text{H}}_{\text{2}}}{\text{O + 2CaC}}{{\text{O}}_{\text{3}}} $
    $ {\rm{C-S-H}} + 3{{\text{CO}}_{\text{2}}}\xrightarrow{{{r_{{\text{C,CSH1}}}}}}3{\text{CaC}}{{\text{O}}_{\text{3}}} \cdot {\text{2Si}}{{\text{O}}_{\text{2}}} \cdot {\text{3}}{{\text{H}}_{\text{2}}}{\text{O}} $
    $ {{{\rm{C-S-H}}}}+{{\rm{CO}}_{\text{2}}}\xrightarrow{{{r_{{\text{C,CSH2}}}}}}{\text{CaC}}{{\text{O}}_{\text{3}}} + {\text{Si}}{{\text{O}}_{\text{2}}} \cdot {{\text{H}}_{\text{2}}}{\text{O}} $
    $ {\text{Ca}}{\left( {{\text{OH}}} \right)_{\text{2}}}{\text{ + C}}{{\text{O}}_{\text{2}}}\xrightarrow{{{r_{{\text{C,CH}}}}}}{\text{CaC}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O}} $
    $ {\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}}{\text{ + 2C}}{{\text{O}}_{\text{2}}}\xrightarrow{{{r_{{\text{C,MH1}}}}}}{\text{Mg}}{\left( {{\text{HC}}{{\text{O}}_{\text{3}}}} \right)_2} $
    $ {\text{Mg}}{\left( {{\text{HC}}{{\text{O}}_{\text{3}}}} \right)_2}{\text{ + 2}}{{\text{H}}_2}{\text{O}}\xrightarrow{{{r_{{\text{C,MH2}}}}}}{\text{MgC}}{{\text{O}}_3} \cdot {\text{3}}{{\text{H}}_{\text{2}}}{\text{O + C}}{{\text{O}}_{\text{2}}} \uparrow $
    $ {\text{5Mg}}{\left( {{\text{HC}}{{\text{O}}_{\text{3}}}} \right)_2}\xrightarrow{{{r_{{\text{C,MH3}}}}}} {\text{ 4MgC}}{{\text{O}}_3} \cdot {\text{Mg}}{\left( {{\text{OH}}} \right)_2} \cdot 4{{\text{H}}_{\text{2}}}{\text{O + 6C}}{{\text{O}}_{\text{2}}} \uparrow $
    下载: 导出CSV

    表  2   主要碱性工业固废的CO2封存能力

    Table  2   CO2 sequestration of major alkaline industrial solid wastes

    序号 碱性工业固废 原料质量分数/% CO2封存量/(kg·t−1) 文献
    CaO MgO
    1 粉煤灰 5.68~31.95 4.5~230 [4146]
    2 钢渣 34.29~64.73 5.75~6.33 26~361 [39, 42, 45, 4748]
    3 电石渣 82.1~90.9 382.21~613.4 [42, 45]
    4 镁渣 50.98 11.27 221.4 [49]
    5 石膏 30~32.49 224 [50]
    下载: 导出CSV

    表  3   二氧化碳充填技术碳足迹评估参数

    Table  3   Carbon footprint assessment parameters of CO2 backfill technology

    参数 参数说明 参数值 文献来源
    FE 电力碳排放因子 0.5703 tCO2/MWh [68]
    VLH1 柴油平均低位热值 4.265 2×107 MJ/t [69]
    CC1 柴油单位热值含碳量 2.02×10–2 tC/GJ [69]
    FO1 柴油氧化率 98% [69]
    Ect CO2管道运输能耗 1.3 kWh/(t·km) [70]
    CC1 CO2公路运输能耗(柴油) 0.184 8 kg/(t·km) [71]
    下载: 导出CSV

    表  4   不同植被与土壤碳密度[72]

    Table  4   Carbon density of different vegetation and soil[72]

    植被类型植被地上碳
    密度/(kg·m−2)
    植被地下碳
    密度/(kg·m−2)
    土壤有机碳
    密度/(kg·m−2)
    草地0.09300.78301.404 8
    湿地0.30802.484 21.626 1
    灌丛0.974 20.768 61.778 3
    农田1.434 9
    下载: 导出CSV
  • [1] 桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.

    SANHG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.

    [2] 谢和平,刘 涛,吴一凡,等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术,2022,54(1):145−156.

    XIE Heping,LIU Tao,WU Yifan,et al. Progress and prospect of CO2 energy utilization technology[J]. Advanced Engineering Sciences,2022,54(1):145−156.

    [3] 王双明,刘浪,赵玉娇,等. “双碳”目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.

    WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”: a new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.

    [4] 李 强,艾 锋,王 玺,等. 煤基固废协同矿山土壤生态修复的理论解析与实践探索:以陕西榆林市为例[J]. 西北地质,2023,56(3):70−77.

    LI Qiang,AI Feng,WANG Xi,et al. Theoretical analysis and practical exploration on ecological restoration of mines with multi-source solid wastes:example from Yulin City,Shaanxi Province[J]. Northwestern Geology,2023,56(3):70−77.

    [5] 张吉雄,张 强,周 楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.

    [6] 杨 科,赵新元,何 祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.

    YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source cola based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.

    [7] 柳晓娟,侯华丽,武 强,等. 绿色矿山经济效益核算理论与实证:以矿井充填开采技术为例[J]. 中国矿业,2022,31(9):61−67. doi: 10.12075/j.issn.1004-4051.2022.09.022

    LIU Xiaojuan,HOU Huali,WU Qiang,et al. Theory and empirical study on green mine economic benefit account taking the filling mining technology of coal mine as an example[J]. China Mining Magazine,2022,31(9):61−67. doi: 10.12075/j.issn.1004-4051.2022.09.022

    [8]

    YIN Shenghua,YAN Zepeng,CHEN Xun,et al. Active roof-contact:The future development of cemented paste backfill[J]. Construction and Building Materials,2023,370:130657.

    [9]

    FENG Yabin,QI Wenyue,ZHAO Qingxin,et al. Synthesis and characterization of cemented paste backfill:Reuse of multiple solid wastes[J]. Journal of Cleaner Production,2023,383:135376.

    [10] 刘 浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086.

    LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.

    [11] 段圆圆. 煤基固废协同利用制备采空区充填膏体试验研究[D]. 包头:内蒙古科技大学,2021.

    DUAN Yuanyuan. Experimental study on preparation of goaf filling paste by synergistic utilization of coal-based solid waste[D]. Baotou:Inner Mongolia University of Science & Technology,2021.

    [12]

    LIU Shiqi,LIU Tong,ZHENG Sijian,et al. Evaluation of carbon dioxide geological sequestration potential in coal mining area[J]. International Journal of Greenhouse Gas Control,2023,122:103814.

    [13]

    CHEN Jiangzhi,MEI Shenghua. Gas-saturated carbon dioxide hydrates above sub-seabed carbon sequestration site and the formation of self-sealing cap[J]. Gas Science and Engineering,2023,111:204913.

    [14]

    CHEN Jing,XING Yi,WANG Yan,et al. Application of iron and steel slags in mitigating greenhouse gas emissions:A review[J]. Science of The Total Environment,2022,844:157041.

    [15] 方治余. 高温深井下含冰粒充填料浆流动沉降规律研究[D]. 西安:西安科技大学,2020.

    FANG Zhiyu. Investigation on the flow and settlement law of ice-containing cemented paste backfill slurry in high temperature and deep well[D]. Xi’an:Xian University of Science and Technology,2020.

    [16] 王 乐. 污水处理构筑物内多相流数值模拟及机理研究[D]. 成都:西南交通大学,2018.

    WANG Le. Numerical simulation and mechanism study of multiphase fluid dynamics in sewage treatment structures[D]. Chengdu:Southwest Jiaotong University,2018.

    [17] 刘志双. 充填料浆流变特性及其输送管道磨损研究[D]. 北京:中国矿业大学(北京),2018.

    LIU Zhishuang. Study on rheological properties of filling slurry and wear of conveying pipeline[D]. Beijing:China University of mining and technology-Beijing,2018.

    [18]

    Fluent 14.5. Theory Giuide [M]. Canonsburg,PA:Ansys Inc.,2012.

    [19] 王 鹏,CHEN Shen’en,陈占清,等. 二氧化碳在多孔水泥充填材料中的扩散与反应动力学响应[J]. 采矿与安全工程学报,2019,36(2):381−387.

    WANG Peng,CHEN Shen’en,CHEN Zhanqing. Dynamic response of carbon dioxide diffusion and reaction in porous cementitious back-filling material[J]. Journal of Mining & Safety Engineering,2019,36(2):381−387.

    [20]

    CHEN T,GAO X,QIN L. Mathematical modeling of accelerated carbonation curing of portland cement paste at early age[J]. Cement and Concrete Research,2019,120:187−197. doi: 10.1016/j.cemconres.2019.03.025

    [21]

    KASHEF–HAGHIGHI S,SHAO Y,GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research,2015,67:1−10. doi: 10.1016/j.cemconres.2014.07.020

    [22] 陈闵敏,孙玉柱,宋兴福,等. 氢氧化镁碳化过程研究[J]. 华东理工大学学报(自然科学版),2022,48(5):600−608.

    CHEN Minmin,SUN Yuzhu,SONG Xingfu,et al. Carbonization process of magnesium hydroxide[J]. Journal of East China University of Science and Technology,2022,48(5):600−608.

    [23]

    ASHRAF W. Carbonation of cement-based materials:challenges and opportunities[J]. Construction & Building Materials,2016,120:558−570.

    [24]

    ZHANG D,GHOULEH Z,SHAO Y. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization,2017,21:119−131. doi: 10.1016/j.jcou.2017.07.003

    [25]

    MO L,ZHANG F,DENG M,et al. Effectiveness of using CO2 pressure to enhance the carbonation of Porland cement-fly ash-MgO mortars[J]. Cement and Concrete Composites,2016,70:78−85. doi: 10.1016/j.cemconcomp.2016.03.013

    [26]

    SHI C,WU Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources Conservation & Recycling,2008,52(8/9):1087−1092.

    [27]

    EL–HASSAN H,SHAO Y,GHOULEH Z. Effect of initial curing on carbonation of lightweight concrete masonry units[J]. ACI Materials Journal,2013,110(4):441−450.

    [28]

    UNLUER C,AL–TABBAA A. Enhancing the carbonation of MgO cement porous blocks through improved curing conditions[J]. Cement and Concrete Research,2014,59:55−65. doi: 10.1016/j.cemconres.2014.02.005

    [29]

    NIELSEN P,BOONE MA,HORCKMANS L,et al. Accelerated carbonation of steel slag monoliths at low CO2 pressure–microstructure and strength development[J]. Journal of CO2 Utilization,2020,36:124−134. doi: 10.1016/j.jcou.2019.10.022

    [30]

    SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature,1990,345:486

    [31]

    LACKNER KS,WENDT CH,BUTT DP,et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153−1170. doi: 10.1016/0360-5442(95)00071-N

    [32] 王宗华,张军营,徐 俊,等. CO2矿物碳酸化隔离的理论研究[J]. 工程热物理学报,2008,29(6):1063−1068.

    WANG Zonghua,ZHANG Junying,XU Jun,et al. A theoretical study on mineral carbonation for CO2 sequestration[J]. Journal of Engineering Thermophy-sics,2008,29(6):1063−1068.

    [33]

    RENFORTH P,Washbourne CL,TAYLDER J,et al. Silicate production and availability for mineral carbonation[J]. Environ Sci Technol,2011,45(6):2035−2041. doi: 10.1021/es103241w

    [34] 张兵兵,王慧敏,曾尚红,等. 二氧化碳矿物封存技术现状及展望[J]. 化工进展,2012,31(9):2075−2083.

    ZHANG bingbing,WANG Huimin,ZENG Shanghong,et al. Current status and outlook of carbon dioxide mineral carbonation technologies[J]. Chemical Industryand Engineering Progress,2012,31(9):2075−2083.

    [35]

    DAVAL D,SISSMANN O,MENGUY N,et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2[J]. Chemical Geology,2011,284(1-2):193−209. doi: 10.1016/j.chemgeo.2011.02.021

    [36]

    HEMMATI A,SHAYEGAN J,BU J,et al. Process optimization for mineral carbonation in aqueous phase[J]. International Journal of Mineral Processing,2014,130:20−27. doi: 10.1016/j.minpro.2014.05.007

    [37]

    HEMMATI A,SHAYEGAN J,SHARRATT P,et al. Solid products characterization in a multi-step mineralization process[J]. Chemical Engineering Journal,2014,252:210−219. doi: 10.1016/j.cej.2014.04.112

    [38] 任京伟,王 涛,陈雨雷,等. CO2矿化研究现状及应用潜力[J]. 地球科学,2020,45(7):2413−2425.

    REN Jingwei,WANG Tao,CHEN Yulei,et al. Research status and application potential of CO2 mineralization[J]. Earth Science,2020,45(7):2413−2425.

    [39]

    RAHMANIHANZAKI M,HEMMATI A. A review of mineral carbonation by alkaline solidwaste[J]. International Journal of Greenhouse Gas Control,2022,121.

    [40] 冉武平,张永太,艾贤臣,等. 工业固体废弃物矿化封存CO2研究综述[J]. 科学技术与工程,2023,32(16):6718−6727.

    RAN Wuping,ZHANG Yongtai,AI Xianchen,et al. Review of CO2 sequestration research in industrial solid waste mineralization[J]. Science Technology and Engineering,2023,32(16):6718−6727.

    [41] 王秋华,吴嘉帅,张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展,2023,42(3):1572−1582.

    WANG Qiuhua,WU Jiashuai,ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress,2023,42(3):1572−1582.

    [42] 张亚朋,崔龙鹏,刘艳芳,等. 3 种典型工业固废的CO2 矿化封存性能[J]. 环境工程学报,2021,15(7):2344−2355.

    ZHANG Yapeng,CUI Longpeng,LIU Yanfang,et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering,2021,15(7):2344−2355.

    [43] 王晓龙,刘 蓉,纪 龙,等. 利用粉煤灰与可循环碳酸盐直接捕集固定电厂烟气中二氧化碳的液相矿化法[J]. 中国电机工程学报,2018,38(19):5787−5794.

    WANG Xiaolong,LIU Rong,JI Long,et al. A new direct aqueous mineralization process using fly ash and recyclable carbonate salts to capture and storage CO2 from flue-gas[J]. Proceedings of the CSEE,2018,38(19):5787−5794.

    [44] 蔡洁莹,李向东,李海红,等. 电厂粉煤灰固定二氧化碳实验研究[J]. 煤炭转化,2019,42(1):87−94.

    CAI Jieying,LI Xiangdong,LI Haihong et al. Experimental study on solidification of carbon dioxide by coal fly ash in power plant[J]. Coal Conversion,2019,42(1):87−94.

    [45] 武 鸽,刘艳芳,崔龙鹏,等. 典型工业固体废物碳酸化反应性能的比较[J]. 石油学报(石油加工),2020,36(1):169−178. doi: 10.3969/j.issn.1001-8719.2020.01.021

    WU Ge,LIU Yanfang,CUI Longpeng,et al. Comparison of the carbonation reaction properties of typical industrial solid wastes[J]. Acta Petrolei Sinica(Petroleum Processing Section),2020,36(1):169−178. doi: 10.3969/j.issn.1001-8719.2020.01.021

    [46]

    MAZZELLA A,ERRICO M,SPIGA D. CO2 uptake capacity of coal fly ash:Influence of pressure and temperature on direct gas-solid carbonation[J]. Journal of Environmental Chemical Engineering,2016,4(4):4120−4128. doi: 10.1016/j.jece.2016.09.020

    [47]

    YADAV S,MEHRA A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag[J]. Waste Management,2017,64:348−357. doi: 10.1016/j.wasman.2017.03.032

    [48]

    CHENG C,HUANG W,XU H,et al. CO2 sequestration and CaCO3 recovery with steel slag by a novel two-step leaching and carbonation method[J]. Science of The Total Environment,2023,891.

    [49]

    YE J,LIU S,ZHAO Y,et al. Development of ultrafine mineral admixture from magnesium slag and sequestration of CO2[J]. Buildings,2023,13(1):204.

    [50]

    DING W,CHEN Q,SUN H,et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization,2019,34:507−515. doi: 10.1016/j.jcou.2019.08.002

    [51] 王中辉,苏 胜,尹子骏,等. CO2矿化及吸收–矿化一体化(IAM)方法研究进展[J]. 化工进展,2021,40(4):2318−2327.

    WANG Zhonghui,SU Sheng,YIN Zijun,et al. Research progress of CO2 mineralization and integrated absorption-mineralization(IAM) method[J]. Chemical Industry And Engineering Progress,2021,40(4):2318−2327.

    [52]

    TEIR S,REVITZER H,ELONEVA S,et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing,2007,83(1/2):36−46. doi: 10.1016/j.minpro.2007.04.001

    [53]

    ALEXANDER G,Mercedes Maroto-VALER M,Gafarova-AKSOY P. Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation[J]. Fuel,2007,86(1/2):273−281. doi: 10.1016/j.fuel.2006.04.034

    [54]

    KAKIZAWA M,YAMASAKI A,YANAGISAWA Y. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid[J]. Energy,2001,26(4):341−354. doi: 10.1016/S0360-5442(01)00005-6

    [55]

    KUSAKA E,SUEHIRO R,IWAMIZU Y. Kinetics of calcium leaching from particulate steelmaking slag in acetic acid solution[J]. ISIJ International,2022,62(1):263−274. doi: 10.2355/isijinternational.ISIJINT-2021-121

    [56]

    MIAO E,DU Y,ZHENG X,et al. CO2 sequestration by direct mineral carbonation of municipal solid waste incinerator fly ash in ammonium salt solution:Performance evaluation and reaction kinetics[J]. Separation and Purification Technology,2023,309:123103. doi: 10.1016/j.seppur.2023.123103

    [57]

    O’Connor WK,Dahlin DC,Nilsen DN,et al. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid[C]. Proceedings of the 25th International Technical Conference on Coal Utilization & FUEL Systems. Clearwater,Florida,UNITED States,2000.

    [58]

    PARK A HA,FAN L S. CO2 mineral sequestration:physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241−5247. doi: 10.1016/j.ces.2004.09.008

    [59]

    SOONG Y,Goodman AL,McCarthy-Jones JR,et al. Experimental and simulation studies on mineral trapping of CO2 with brine[J]. Energy Conversion and Management,2004,45(11/12):1845−1859. doi: 10.1016/j.enconman.2003.09.029

    [60]

    TEIR S,KUUSIK R,Fogelholm C–J,et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2[J]. International Journal of Mineral Processing,2007,85(1/3):1−15. doi: 10.1016/j.minpro.2007.08.007

    [61]

    SOONG Y,Fauth DL,Howard BH,et al. CO2 sequestration with brine solution and fly ashes[J]. Energy Conversion and Management,2006,47(13/14):1676−1685. doi: 10.1016/j.enconman.2005.10.021

    [62] 纪 龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京:中国矿业大学(北京),2018.

    JI Long. Carbon dioxide sequestration by mineralisation of coal fly ash[D]. Beijing:China University of Mining & Technology−Beijing,2018.

    [63] 朱梦博,刘 浪,王双明,等. 短–长壁工作面充填无煤柱开采方法研究[J]. 采矿与安全工程学报,2022,39(6):1116−1124.

    ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Short and long walls backfilling pillarless coal mining method[J]. Journal of Mining & Safety Engineering,2022,39(6):1116−1124.

    [64]

    ZHU Mengbo,XIE Geng,LIU Lang,et al. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material[J]. Process Safety and Environmental Protection,2023,174:722−733. doi: 10.1016/j.psep.2023.04.031

    [65]

    ZHANG Yongnian,PAN Jinghu,ZHANG Yongjiao,et al. Spatial-temporal characteristics and decoupling effects of China's carbon footprint based on multi-source data[J]. Journal of Geographical Sciences,2021,31(3):327−349. doi: 10.1007/s11442-021-1839-7

    [66] 董 雪,柯水发. 国内外碳足迹计算方法,评估标准及研究进展[C]// 绿色经济与林业发展论——第六届中国林业技术经济理论与实践论坛论文集,2012:1–9.

    DONG Xue,KE Shuifa. Methods,assessment standards and research progress of carbon footprint at China and abroad[C]// Green Economy And Forestry Development Forum – Proceedings of the Sixth China Forestry Technology and Economic Theory and Practice Forum,2012:1–9.

    [67] 杨博宇,白中科. 碳中和背景下煤矿区土地生态系统碳源/汇研究进展及其消纳对策[J]. 中国矿业,2021,30(5):1−9. doi: 10.12075/j.issn.1004-4051.2021.05.028

    YANG Boyu,BAI Zhongke. Research advances and emission reduction measures in carbon source and sink of land ecosystems in coal mining area under the carbon neutrality[J]. China Mining Magazine,2021,30(5):1−9. doi: 10.12075/j.issn.1004-4051.2021.05.028

    [68] 中华人民共和国生态环境部办公厅. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知[EB/OL]. [2023–02–07]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
    [69] 国家统计局能源统计司. 中国能源统计年鉴2022[M]. 北京:中国统计出版社,2023.
    [70] 彭松水,陆诗建. CCS–EOR项目碳净消纳量方法学模型[J]. 油气田地面工程,2015,34(4):9−11.

    PENG Songshui,LU Shijian. Methodology model for carbon net consumption of CCS–EOR project[J]. Oil-Gas Field Surface Engineering,2015,34(4):9−11.

    [71] 顾清华,张 媛,卢才武,等. 低碳限制下综合成本最小的露天矿卡车运输优化研究[J]. 金属矿山,2019(8):157−161.

    GU Qinghua,ZHANG Yuan,LU Caiwu,et al. Truck transportation optimization research under the constraints of low carbon with the lowest comprehensive cost in open-pit mine[J]. Metal Mine,2019(8):157−161.

    [72] 徐 丽,何念鹏,于贵瑞,2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据(中英文网络版),2019,4(1):90–96.

    XU Li,HE Nianpeng,YU Guirui. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. Chinese scientific data,2019,4(1):90–96.

    [73]

    FANG Zhiyu,LIU Lang,ZHANG Xiaoyan,et al. Carbonation curing of modified magnesium-coal based solid waste backfill material for CO2 sequestration[J]. Process Safety and Environmental Protection,2023. https://doi.org/10.1016/j.psep.2023.10.049.

  • 期刊类型引用(0)

    其他类型引用(2)

图(11)  /  表(4)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  46
  • PDF下载量:  165
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-12-19
  • 录用日期:  2024-10-26
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-02-22

目录

/

返回文章
返回