高级检索

露天煤矿排土场混交林土壤团聚体有机碳累积效应

张小平, 李明超, 毕银丽, 李信

张小平,李明超,毕银丽,等. 露天煤矿排土场混交林土壤团聚体有机碳累积效应[J]. 煤炭科学技术,2024,52(12):324−338. DOI: 10.12438/cst.2023-1532
引用本文: 张小平,李明超,毕银丽,等. 露天煤矿排土场混交林土壤团聚体有机碳累积效应[J]. 煤炭科学技术,2024,52(12):324−338. DOI: 10.12438/cst.2023-1532
ZHANG Xiaoping,LI Mingchao,BI Yinli,et al. Accumulation effect of soil aggregate organic carbon in mixed forest in open-pit coal mine[J]. Coal Science and Technology,2024,52(12):324−338. DOI: 10.12438/cst.2023-1532
Citation: ZHANG Xiaoping,LI Mingchao,BI Yinli,et al. Accumulation effect of soil aggregate organic carbon in mixed forest in open-pit coal mine[J]. Coal Science and Technology,2024,52(12):324−338. DOI: 10.12438/cst.2023-1532

露天煤矿排土场混交林土壤团聚体有机碳累积效应

基金项目: 国家自然科学基金资助项目(51974326);国家重点研发计划资助项目(2022YFF1303303);黄河流域生态保护和高质量发展联合研究一期资助项目(2022-YRUC-01-0304)
详细信息
    作者简介:

    张小平: (1982—),男,内蒙古托克托县人,高级政工师。E-mail:10570363@ceic.com

    通讯作者:

    毕银丽: (1971—),女,陕西米脂人,教授,博士生导师。E-mail:ylbi88@126.com

  • 中图分类号: TD88; S714

Accumulation effect of soil aggregate organic carbon in mixed forest in open-pit coal mine

  • 摘要:

    采矿活动导致土壤养分及碳库损失,针对露天矿长期植被重建后土壤养分状况尤其是有机质恢复情况的研究迫在眉睫。研究在黑岱沟露天煤矿北排土场上选择复垦近20 a的油松纯林和油松混交林,对复垦区团聚体稳定性及相关碳库恢复情况等进行了全面系统的研究。研究结果表明:油松混交林土壤团聚体稳定性优于油松纯林,0~10 cm表层土壤中,油松山杏杨树混交林团聚体稳定性最佳,油松杨树混交林次之;0~20、20~30 cm亚表层土壤中,杨树油松混交林平均质量直径和几何平均直径较大,分形维数最小,整体看相对于其他3种植被组合表现出更好的土壤结构稳定性;油松混交林土壤有机碳含量高于油松纯林,3种混交林中油松山杏杨树混交林提高效果最佳,比油松纯林高104.96%。混交林提高了惰性有机碳的占比,增强了土壤碳库的稳定性。同一土层土壤团聚体各粒径有机碳及其组分含量基本上表现为油松混交林样地高于油松样地,并且含量均随土层加深而逐渐降低。各粒级团聚体易氧化有机碳和惰性有机碳变化规律与团聚体有机碳变化规律相似,呈倒V型分布。0.25~2 mm粒级团聚体土壤有机碳和易氧化有机碳含量显著高于其他粒级。对总有机碳影响较大的因子是土壤全氮含量和平均质量直径;对易氧化有机碳含量影响较大的因子是全氮含量和pH,对颗粒有机碳含量影响较大的因子包括土壤全氮含量、速效钾含量和平均质量直径。土壤有机碳及活性炭含量与多样性指数、植被生物量、枯落物生物量均呈显著正相关关系。总体而言,研究结果表明黑岱沟露天矿排土场油松混交种植的修复效果优于油松纯林种植,且从土壤有机碳恢复效果看“油松+山杏+杨树“混交种植的修复效果最佳。

    Abstract:

    Mining activities result in the depletion of soil nutrients and carbon reservoirs. A pressing need exists to examine soil nutrient status, particularly the recovery of organic matter following prolonged revegetation in open pit mines. In a nearly two-decade-long reclamation effort at the northern dump of Heidaigou Open-pit Coal Mine, both pure pine forests and mixed pine forests were chosen. A thorough and systematic investigation into aggregate stability and the recovery of associated carbon pools in the reclaimed area was undertaken. The study findings revealed that: Soil aggregate stability was superior in pine mixed forests compared to pure pine forests. In the 0-10 cm surface soil, the highest aggregate stability occurred in pine, mountain, apricot, and poplar mixed forest, followed by pine and poplar mixed forest. In the 0−20 cm and 20−30 cm subsurface soils, poplar and Chinese pine mixed forests exhibited larger average mass diameter and geometric mean diameter, with the smallest fractal dimension. In comparison to the other three vegetation combinations, the overall stability of soil structure was superior. Chinese pine mixed forests displayed higher soil organic carbon content than Chinese pine pure forests. The mixed forest elevated the proportion of inert organic carbon, enhancing soil carbon pool stability. In the same soil layer, the content of organic carbon and its components in each particle size of soil aggregates was generally higher in Chinese pine mixed forests than in Chinese pine pure forests, gradually decreasing with soil depth. Changes in oxidizable organic carbon and inert organic carbon in aggregates of each particle size mirrored those of organic carbon, exhibiting an inverted V-shaped distribution. Soil organic carbon and easily oxidizable organic carbon content in aggregates of 0.25−2 mm size were significantly higher than in other size groups. Influential factors on total organic carbon include soil total nitrogen content and mean mass diameter (MWD); those affecting easily oxidizable organic carbon content are total nitrogen content and pH value, and the factors influencing particulate organic carbon content include soil total nitrogen content, available potassium content, and mean mass diameter. Soil organic carbon and active carbon contents were significantly positively correlated with diversity index, vegetation biomass, and litter biomass. Overall, the study results demonstrate that the restoration impact of the mixed pine forest in the Heidaigou open-pit mine dump surpasses that of the pure Chinese pine forest. Notably, the mixed plantation of “Chinese pine + apricot + poplar” exhibits the most effective recovery of soil organic carbon.

  • 图  1   研究区位置

    Figure  1.   Location of the study area

    图  2   不同植被林下草本生物量和凋落物生物量

    Figure  2.   Herbaceous biomass and litter biomass of different vegetation types

    图  3   土壤团聚体稳定性参数

    Figure  3.   Fractal dimension of soil agglomerates

    图  4   土壤团聚体总有机碳含量

    Figure  4.   Fractal dimension of soil agglomerates

    图  5   土壤团聚体颗粒有机碳含量

    Figure  5.   Fractal dimension of soil agglomerates

    图  6   土壤团聚体矿物有机碳含量

    Figure  6.   Fractal dimension of soil agglomerates

    表  1   样地设置

    Table  1   Sample plot setup

    样地 复垦位置 复垦年限 生长状况
    油松 北排土场1275平台 2004年 油松:树高4.3 m、胸径24.5 cm
    油松山杏 北排土场1275平台 2004年 油松树高4.2 m、胸径21.3 cm / 山杏树高2.2 m、胸径14.3 cm
    油松杨树 北排土场1275平台 2004年 杨树高7.4 m、胸径 25.4 cm / 油松树高3.2 m、胸径16.1 cm
    油松山杏杨树 北排土场1275平台 2004年 杨树高8.9 m、胸径39.2 cm / 油松树高2.4 m、胸径10.0 cm / 山杏株高1.9 m、胸径14.5 cm
    下载: 导出CSV

    表  2   植被群落多样性分析

    Table  2   Aboveground and underground biomass of maize under different treatments

    林分类型 Shannon
    多样性指数
    Pielou
    均匀度指数
    Simpson
    优势度指数
    Margalef
    丰富度指数
    油松 0.380±0.038c 0.473±0.061c 0.775±0.033a 0.510±0.106b
    油松山杏 0.740±0.034b 0.674±0.031b 0.536±0.027b 0.914±0.027b
    油松杨树 1.792±0.048a 0.864±0.008a 0.168±0.007c 2.074±0.221a
    油松山杏杨树 1.534±0.152a 0.773±0.043ab 0.282±0.066c 1.604±0.215a
      注:小写字母代表各指标在不同植被组合之间显著性差异,显著性水平为:P<0.05。
    下载: 导出CSV

    表  3   不同植被组合土壤理化性质

    Table  3   Soil physical and chemical properties of different vegetation combinations

    林分类型 土层深度/cm pH 全氮含量/
    (g·kg−1
    全磷含量/
    (g·kg−1
    全钾含量/
    (g·kg−1
    速效磷含量/
    (mg·kg−1
    速效钾含量/
    (mg·kg−1
    油松 0~10 8.07±0.02Ba 0.19±0.01Ac 0.43±0.01Aa 6.32±0.17Ad 1.99±0.06Bb 132.51±2.54Ab
    10~20 8.15±0.03ABa 0.17±0.01Bb 0.41±0.01Ba 5.99±0.25Ac 2.38±0.04Ab 83.54±1.98Ba
    20~30 8.27±0.03Aa 0.13±0.01Cb 0.41±0.01Ba 5.98±0.30Ac 2.51±0.09Ad 73.15±1.68Cc
    油松山杏 0~10 8.14±0.03Ba 0.21±0.01Ac 0.39±0.01Ab 8.25±0.29Ac 2.21±0.07Ca 135.74±4.45Ab
    10~20 8.22±0.01ABa 0.15±0.01Bb 0.37±0.00Bb 7.58±0.41Ab 2.43±0.05Bb 89.66±2.15Ba
    20~30 8.26±0.03Aa 0.13±0.01Ba 0.36±0.01Bc 7.51±0.18Ab 3.25±0.09Ac 77.65±0.96Cc
    油松杨树 0~10 8.12±0.05Aa 0.24±0.01Ab 0.45±0.01Aa 11.23±0.26Aa 1.61±0.06Cc 149.69±2.98Aa
    10~20 8.15±0.02Aa 0.19±0.02Bb 0.40±0.02Ba 10.80±0.22ABa 2.09±0.11Bc 88.79±1.85Ba
    20~30 8.24±0.07Aa 0.18±0.01Ba 0.37±0.01Cb 9.85±0.36Ba 3.62±0.08Ab 80.95±1.23Cb
    油松山杏杨树 0~10 8.22±0.02Aa 0.29±0.02Aa 0.43±0.01Aa 9.54±0.16Ab 1.97±0.05Cb 105.76±1.78Ac
    10~20 8.23±0.01Aa 0.23±0.02Bb 0.41±0.01Ba 8.31±0.29Bb 3.74±0.11Ba 89.45±2.10Ba
    20~30 8.24±0.03Aa 0.19±0.02Ba 0.39±0.01Cb 8.24±0.15Bb 4.66±0.08Aa 87.33±0.68Ba
      注:不同小写字母表示同一土层不同植被组合之间的差异;不同大写字母表示同一植被不同土层之间的差异,显著性水平为:P<0.05。
    下载: 导出CSV

    表  4   不同植被组合土壤团聚体粒径分布

    Table  4   Particle size distribution of soil aggregates in different vegetation types

    林分类型 土层深度/cm 不同粒径下各团聚体质量分数/%
    >5 mm 2~5 mm 1~2 mm 0.5~1 mm 0.25~0.5 mm <0.25 mm
    油松 0~10 19.42±0.74Ba 9.71±0.22Cc 10.43±0.28Cd 9.99±0.71Cbc 11.04±0.58Ca 39.04±0.36Aa
    10~20 32.73±0.39Ac 11.69±0.38Cc 11.69±0.47Cb 7.47±0.34Db 5.1±0.27Eb 31.29±0.37Ba
    20~30 46.1±0.29Aa 12.02±0.39Cb 7.64±0.17Db 3.27±0.13Ec 2.24±0.15Fc 28.7±0.53Bb
    油松山杏 0~10 19.35±0.62Ba 10.58±0.24Ebc 14.16±0.5Db 16.14±0.32Ca 8.62±0.3Fb 31.11±0.7Ac
    10~20 45.33±0.95Aa 13.56±0.47Cb 9.77±0.28Dc 4.43±0.6Ec 4.18±0.3Ec 22.7±0.75Bb
    20~30 43.83±1.47Aab 13.9±0.31Cb 8.28±0.27Db 4±0.45Ec 2.48±0.2Ec 27.47±0.56Bb
    油松杨树 0~10 19.29±0.8Ba 11.25±0.28Cb 11.77±0.19Cc 11.46±0.3Cb 12.19±0.55Ca 34.01±0.73Ab
    10~20 38.99±0.84Ab 15.31±0.41Ca 12.87±0.32Db 9.32±0.6Ea 6.11±0.33Fa 17.37±0.7Bc
    20~30 42.74±0.66Ab 15.9±0.76Ca 10.48±0.5Da 6.99±0.35Ea 4.53±0.2Fa 19.33±0.28Bc
    油松山杏杨树 0~10 21.76±0.78Ba 20.69±0.49Ba 17.75±0.29Ca 8.65±0.34Dc 4.15±0.28Ec 27.31±0.74Ad
    10~20 24.5±0.35Bd 15.26±0.38Ca 14.75±0.4Ca 9.64±0.5Da 5.13±0.16Eb 30.69±0.44Aa
    20~30 33.77±0.44Ac 13.61±0.71Bb 10.28±0.53Ca 5.57±0.21Db 3.32±0.16Eb 33.43±0.51Aa
    下载: 导出CSV

    表  5   不同粒径土壤团聚体颗粒及矿物有机碳占比

    Table  5   Proportion of active organic carbon in soil agglomerates of different grain sizes

    植被类型 土层深度/cm 矿物结合态有机碳与总有机碳含量之比 颗粒有机碳与总有机碳含量之比
    <0.25 mm 0.25~2 mm >2 mm <0.25 mm 0.25~2 mm >2 mm
    油松 0~10 35.93% 82.18% 49.26% 64.07% 17.82% 50.74%
    10~20 49.62% 76.48% 40.49% 50.38% 23.52% 59.51%
    20~30 51.24% 75.40% 27.04% 48.76% 24.60% 72.96%
    油松山杏 0~10 65.61% 81.26% 81.29% 34.39% 18.74% 18.71%
    10~20 44.10% 83.32% 79.83% 55.90% 16.68% 20.17%
    20~30 55.74% 87.67% 77.75% 44.26% 12.33% 22.25%
    杨树油松 0~10 71.91% 86.42% 71.82% 28.09% 13.58% 28.18%
    10~20 76.69% 88.17% 78.82% 23.31% 11.83% 21.18%
    20~30 72.68% 89.97% 77.73% 27.32% 10.03% 22.27%
    杨树油松山杏 0~10 51.69% 77.25% 62.85% 48.31% 22.75% 37.15%
    10~20 58.22% 85.91% 54.80% 41.78% 14.09% 45.20%
    20~30 61.54% 90.24% 68.63% 38.46% 9.76% 31.37%
    下载: 导出CSV

    表  6   多元回归分析标准化方程

    Table  6   Standardized equation of multiple regression analysis

    因变量 标准化多元回归方程
    有机碳含量 Y1=0.649X1+0.268X2+0.122X3+0.167X4−0.981X5+0.076X6−0.139X7+0.56X8−1.42X9−0.221X10
    颗粒有机碳含量 Y2=0.162X1+0.11X2+0.414X3−0.047X4−0.581X5+0.022X6−0.078X7−1.512X8+0.595X9−0.076X10
    矿物结合态有机碳含量 Y3=0.747X1+0.319X2−0.043X3+0.228X4−0.864X5−0.022X6−0.128X7+1.618X8−2.22X9−0.375X10
    下载: 导出CSV

    表  7   土壤有机碳与土壤理化因子间的直接和间接通径系数

    Table  7   Direct and indirect path coefficients between soil organic carbon and soil physical and chemical factors

    因变量 间接通径系数
    X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 合计
    Y1 0.177 0.065 −0.045 −0.533 −0.040 0.021 −0.334 0.648 0.099 0.058
    0.428 0.018 −0.088 −0.559 −0.031 0.019 −0.270 0.520 0.002 0.038
    0.348 0.039 −0.016 −0.293 −0.025 −0.001 −0.112 0.105 0.152 0.196
    −0.173 −0.141 −0.012 0.542 0.028 −0.046 0.197 −0.344 −0.050 0.000
    0.352 0.153 0.036 −0.092 −0.056 0.070 −0.490 1.139 0.021 1.133
    −0.341 −0.109 −0.041 0.062 0.726 −0.050 0.404 −0.851 −0.069 −0.269
    −0.099 −0.036 0.001 0.055 0.491 0.027 0.274 −0.642 −0.016 0.055
    −0.387 −0.129 −0.024 0.059 0.858 0.055 −0.068 −1.366 −0.013 −1.016
    −0.296 −0.098 −0.009 0.040 0.787 0.046 −0.063 0.539 0.032 0.977
    −0.291 −0.002 −0.084 0.038 0.095 0.024 −0.010 0.032 0.203 0.005
    Y2 0.073 0.222 0.013 −0.315 −0.012 0.012 0.903 −0.271 0.034 0.657
    0.107 0.060 0.025 −0.331 −0.009 0.010 0.729 −0.218 0.001 0.374
    0.087 0.016 0.005 −0.174 −0.007 −0.001 0.302 −0.044 0.052 0.236
    −0.043 −0.058 −0.041 0.321 0.008 −0.026 −0.531 0.144 −0.017 −0.243
    0.088 0.063 0.124 0.026 −0.016 0.039 1.323 −0.477 0.007 1.176
    −0.085 −0.045 −0.138 −0.017 0.430 −0.028 −1.090 0.356 −0.024 −0.641
    −0.025 −0.015 0.003 −0.016 0.291 0.008 −0.739 0.269 −0.006 −0.229
    −0.097 −0.053 −0.083 −0.016 0.508 0.016 −0.038 0.572 −0.004 0.805
    −0.074 −0.040 −0.031 −0.011 0.466 0.013 −0.035 −1.455 0.011 −1.156
    −0.073 −0.001 −0.285 −0.011 0.056 0.007 −0.006 −0.088 −0.085 −0.484
    Y3 0.211 −0.023 −0.061 −0.469 0.012 0.019 −0.966 1.012 0.168 −0.097
    0.493 −0.006 −0.120 −0.492 0.009 0.017 −0.780 0.813 0.003 −0.064
    0.400 0.046 −0.022 −0.258 0.007 −0.001 −0.324 0.164 0.258 0.271
    −0.199 −0.168 0.004 0.477 −0.008 −0.042 0.568 −0.537 −0.085 0.009
    0.406 0.182 −0.013 −0.126 0.016 0.064 −1.416 1.780 0.036 0.930
    −0.392 −0.130 0.014 0.084 0.639 −0.046 1.167 −1.330 −0.117 −0.111
    −0.114 −0.043 0.000 0.076 0.432 −0.008 0.791 −1.003 −0.027 0.104
    −0.446 −0.154 0.009 0.080 0.756 −0.016 −0.063 −2.136 −0.022 −1.991
    −0.341 −0.117 0.003 0.055 0.693 −0.013 −0.058 1.557 0.054 1.833
    −0.335 −0.003 0.030 0.052 0.084 −0.007 −0.009 0.094 0.317 0.223
    下载: 导出CSV

    表  8   土壤有机碳与植物因子的相关性

    Table  8   Relationship between soil organic and plant characteristic factors

    因子 Shannon
    多样性指数
    Pielou
    均匀性指数
    Simpson
    优势度指数
    Margalef
    丰富度指数
    植物
    生物量
    枯落物
    生物量
    总有机碳 0.582* −0.567 0.465 0.479 0.816** 0.790**
    颗粒有机碳 0.707* −0.617* 0.704* 0.423 0.800** 0.857**
    矿物结合有机碳 0.541 0.466 −0.537 0.412 0.789** 0.748**
      注:*为P<0.05;**为P<0.01;***为P<0.001。
    下载: 导出CSV
  • [1] 侯湖平,张绍良,丁忠义,等. 基于植被净初级生产力的煤矿区生态损失测度研究[J]. 煤炭学报,2012,37(3):445−451.

    HOU Huping,ZHANG Shaoliang,DING Zhongyi,et al. Study on the measurement of ecological loss based on the net primary productivity in coal mines[J]. Journal of China Coal Society,2012,37(3):445−451.

    [2] 吕国生. 煤矿矿区生态环境问题及治理[J]. 煤矿安全,2006,37(7):52−53.

    LYU Guosheng. Problems of environment in coal mine field and treatment[J]. Safety in Coal Mines,2006,37(7):52−53.

    [3] 王晓琳,姬长生,张振芳,等. 基于碳足迹的煤炭矿区碳排放源构成分析[J]. 煤矿安全,2012,43(4):169−172.

    WANG Xiaolin,JI Changsheng,ZHANG Zhenfang,et al. Analysis on the composition of carbon emission sources in coal mining areas based on carbon footprint[J]. Safety in Coal Mines,2012,43(4):169−172.

    [4] 才庆祥,刘福明,陈树召. 露天煤矿温室气体排放计算方法[J]. 煤炭学报,2012,37(1):103−106.

    CAI Qingxiang,LIU Fuming,CHEN Shuzhao. Calculation method of greenhouse gas emission in open pit coal mines[J]. Journal of China Coal Society,2012,37(1):103−106.

    [5] 胡振琪,龙精华,王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报,2014,39(8):1751−1757.

    HU Zhenqi,LONG Jinghua,WANG Xinjing. Self-healing,natural restoration and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society,2014,39(8):1751−1757.

    [6] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

    PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.

    [7] 王效科,白艳莹,欧阳志云,等. 全球碳循环中的失汇及其形成原因[J]. 生态学报,2002,22(1):94−103.

    WANG Xiaoke,BAI Yanying,OUYANG Zhiyun,et al. Missing sink in global carbon cycle and its causes[J]. Acta Ecologica Sinica,2002,22(1):94−103.

    [8] 刘世荣,王晖,栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报,2011,31(19):5437−5448.

    LIU Shirong,WANG Hui,LUAN Junwei. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica,2011,31(19):5437−5448.

    [9] 陈广生,田汉勤. 土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报,2007,31(2):189−204.

    CHEN Guangsheng,TIAN Hanqin. Land use/cover change effects on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology,2007,31(2):189−204.

    [10]

    SINGH R S,TRIPATHI N,CHAULYA S K. Ecological study of revegetated coal mine spoil of an Indian dry tropical ecosystem along an age gradient[J]. Biodegradation,2012,23(6):837−849. doi: 10.1007/s10532-012-9573-6

    [11]

    SHRESTHA R K,LAL R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio,USA[J]. Geoderma,2010,157(3-4):196−205. doi: 10.1016/j.geoderma.2010.04.013

    [12]

    SPEROW M. Carbon sequestration potential in reclaimed mine sites in seven east-central states[J]. Journal of Environmental Quality,2006,35(4):1428−1438. doi: 10.2134/jeq2005.0158

    [13]

    AKALA V A,LAL R. Potential of mine land reclamation for soil organic carbon sequestration in Ohio[J]. Land Degradation & Development,2000,11(3):289−297.

    [14]

    CHEN Y J,DAY S D,WICK A F,et al. Changes in soil carbon pools and microbial biomass from urban land development and subsequent post-development soil rehabilitation[J]. Soil Biology and Biochemistry,2013,66:38−44. doi: 10.1016/j.soilbio.2013.06.022

    [15]

    ANDERSON J D,INGRAM L J,STAHL P D. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming[J]. Applied Soil Ecology,2008,40(2):387−397. doi: 10.1016/j.apsoil.2008.06.008

    [16]

    CHATTERJEE A,LAL R,SHRESTHA R K,et al. Soil carbon pools of reclaimed minesoils under grass and forest landuses[J]. Land Degradation & Development,2009,20(3):300−307.

    [17]

    KOPITTKE P M,HERNANDEZ-SORIANO M C,DALAL R C,et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter[J]. Global Change Biology,2018,24(4):1762−1770. doi: 10.1111/gcb.14009

    [18]

    ZHONG Z K,WU S J,LU X Q,et al. Organic carbon,nitrogen accumulation,and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China[J]. Catena,2021,196:104867. doi: 10.1016/j.catena.2020.104867

    [19] 朱丽琴,黄荣珍,段洪浪,等. 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J]. 生态学报,2017,37(1):249−257.

    ZHU Liqin,HUANG Rongzhen,DUAN Honglang,et al. Effects of artificially restored forests on soil organic carbon and active organic carbon in eroded red soil[J]. Acta Ecologica Sinica,2017,37(1):249−257.

    [20]

    LI Mingchao, BI Yinli, YIN Kejing. Arbuscular mycorrhizal fungi regulation of soil carbon fractions in coal mining restoration: Dominance of glomalin-related soil proteins revealed by stable carbon isotopes (δ13C)[J]. Applied Soil Ecology,2024,204:105753.

    [21] 盛浩,李洁,周萍,等. 土地利用变化对花岗岩红壤表土活性有机碳组分的影响[J]. 生态环境学报,2015,24(7):1098−1102.

    SHENG Hao,LI Jie,ZHOU Ping,et al. Effect of land use change on labile organic carbon fractions of soil derived from granite[J]. Ecology and Environmental Sciences,2015,24(7):1098−1102.

    [22]

    BLAIR G J,LEFROY R,LISLE L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46(7):1459. doi: 10.1071/AR9951459

    [23] 杨倩,朱大运,陈静,等. 植被恢复模式对土壤团聚体和有机碳储量的影响[J]. 森林与环境学报,2022,42(6):631−639.

    YANG Qian,ZHU Dayun,CHEN Jing,et al. Effects of vegetation restoration models on soil aggregate and organic carbon stock[J]. Journal of Forest and Environment,2022,42(6):631−639.

    [24] 肖廷琦,刘苑秋,刘晓君,等. 六种植被恢复模式对江西退化红壤理化性质及团聚体稳定性的影响[J]. 江西农业大学学报,2022,44(5):1292−1304.

    XIAO Tingqi,LIU Yuanqiu,LIU Xiaojun,et al. Effects of six vegetation restoration models on the physicochemical properties and aggregate stability of degraded red soil in Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(5):1292−1304.

    [25] 魏霞,贺燕,魏宁,等. 祁连山区主要植被类型下土壤团聚体变化特征[J]. 农业工程学报,2020,36(2):148−155. doi: 10.11975/j.issn.1002-6819.2020.02.018

    WEI Xia,HE Yan,WEI Ning,et al. Variation characteristics of soil aggregates under main vegetation types in Qilian Mountainous areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(2):148−155. doi: 10.11975/j.issn.1002-6819.2020.02.018

    [26] 温晓兰,宋福如,石温慧,等. 有机硅功能肥对不同利用方式下土壤团聚性和抗蚀性的影响[J]. 江苏农业科学,2022,50(5):218−224.

    WEN Xiaolan,SONG Furu,SHI Wenhui,et al. Impacts of organic silicon functional fertilizer on soil aggregation and anti-erodibility under different utilization methods[J]. Jiangsu Agricultural Sciences,2022,50(5):218−224.

    [27]

    TANG F H,ZHOU Y C,BAI Y X. The effect of mixed forest identity on soil carbon stocks in Pinus massoniana mixed forests[J]. Science of the Total Environment,2024,907:167889. doi: 10.1016/j.scitotenv.2023.167889

    [28]

    BI Y L,LI M C,DU X P,et al. Soil aggregation and aggregate-associated organic carbon flows are affected by different restoration patterns on reclaimed mine soil in the Loess Plateau of China[J]. Land Degradation & Development,2023,34(16):4950−4963.

    [29]

    MARGIDA M G,LASHERMES G,MOORHEAD D L. Estimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litter[J]. Soil Biology and Biochemistry,2020,141:107689. doi: 10.1016/j.soilbio.2019.107689

    [30] 字洪标,向泽宇,王根绪,等. 青海不同林分土壤微生物群落结构(PLFA)[J]. 林业科学,2017,53(3):21−32.

    ZI Hongbiao,XIANG Zeyu,WANG Genxu,et al. Profile of soil microbial community under different stand types in Qinghai Province[J]. Scientia Silvae Sinicae,2017,53(3):21−32.

    [31] 袁颖红,李辉信,黄欠如,等. 长期施肥对水稻土颗粒有机碳和矿物结合态有机碳的影响[J]. 生态学报,2008,28(1):353−360. doi: 10.3321/j.issn:1000-0933.2008.01.041

    YUAN Yinghong,LI Huixin,HUANG Qianru,et al. Effects of long-term fertilization on particulate organic carbon and mineral organic carbon of the paddy soil[J]. Acta Ecologica Sinica,2008,28(1):353−360. doi: 10.3321/j.issn:1000-0933.2008.01.041

    [32]

    SIX J,BOSSUYT H,DEGRYZE S,et al. A history of research on the link between (micro)aggregates,soil biota,and soil organic matter dynamics[J]. Soil and Tillage Research,2004,79(1):7−31. doi: 10.1016/j.still.2004.03.008

    [33]

    ZHANG Y,LI P,LIU X J,et al. Effects of farmland conversion on the stoichiometry of carbon,nitrogen,and phosphorus in soil aggregates on the Loess Plateau of China[J]. Geoderma,2019,351:188−196. doi: 10.1016/j.geoderma.2019.05.037

    [34] 李娟,廖洪凯,龙健,等. 喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J]. 生态学报,2013,33(7):2147−2156. doi: 10.5846/stxb201201050026

    LI Juan,LIAO Hongkai,LONG Jian,et al. Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in Karst mountain areas[J]. Acta Ecologica Sinica,2013,33(7):2147−2156. doi: 10.5846/stxb201201050026

    [35] 谢锦升,杨玉盛,陈光水,等. 植被恢复对退化红壤团聚体稳定性及碳分布的影响[J]. 生态学报,2008,28(2):702−709. doi: 10.3321/j.issn:1000-0933.2008.02.031

    XIE Jinsheng,YANG Yusheng,CHEN Guangshui,et al. Effects of vegetation restoration on water stability and organic carbon distribution in aggregates of degraded red soil in subtropics of China[J]. Acta Ecologica Sinica,2008,28(2):702−709. doi: 10.3321/j.issn:1000-0933.2008.02.031

    [36] 聂富育,杨万勤,杨开军,等. 四川盆地西缘4种人工林土壤团聚体及有机碳特征[J]. 应用与环境生物学报,2017,23(3):542−547.

    NIE Fuyu,YANG Wanqin,YANG Kaijun,et al. Soil aggregates and organic carbon in four plantations on the western edge of the Sichuan Basin[J]. Chinese Journal of Applied and Environmental Biology,2017,23(3):542−547.

    [37] 江仁涛,李富程,沈凇涛. 川西北高寒草地退化对土壤团聚体组成及稳定性的影响[J]. 水土保持研究,2018,25(4):36−42.

    JIANG Rentao,LI Fucheng,SHEN Songtao. Effects of degradation of alpine grassland on soil aggregates composition and stability in northwestern Sichuan Province[J]. Research of Soil and Water Conservation,2018,25(4):36−42.

    [38]

    TISDALL J M,OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science,1982,33(2):141−163. doi: 10.1111/j.1365-2389.1982.tb01755.x

    [39]

    PIHLAP E,STEFFENS M,KÖGEL-KNABNER I. Initial soil aggregate formation and stabilisation in soils developed from calcareous loess[J]. Geoderma,2021,385:114854. doi: 10.1016/j.geoderma.2020.114854

    [40]

    KOPITTKE P M,DALAL R C,HOESCHEN C,et al. Soil organic matter is stabilized by organo-mineral associations through two key processes:the role of the carbon to nitrogen ratio[J]. Geoderma,2020,357:113974. doi: 10.1016/j.geoderma.2019.113974

    [41]

    BI Y L,LI M C,CHRISTIE P,et al. Evaluating carbon dynamics in soil aggregates using δ13C following long-term vegetation restoration near a surface mine in a semi-arid region[J]. Catena,2023,231:107281. doi: 10.1016/j.catena.2023.107281

    [42] 马瑞萍,安韶山,党廷辉,等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J]. 土壤学报,2014,51(1):104−113. doi: 10.11766/trxb201302050071

    MA Ruiping,AN Shaoshan,DANG Tinghui,et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of Loess Plateau[J]. Acta Pedologica Sinica,2014,51(1):104−113. doi: 10.11766/trxb201302050071

    [43] 马瑞萍,刘雷,安韶山,等. 黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J]. 中国生态农业学报,2013,21(3):324−332.

    MA Ruiping,LIU Lei,AN Shaoshan,et al. Soil organic carbon and its fractions in aggregates under different plant communities in the hill-gully region of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture,2013,21(3):324−332.

    [44] 安晓娟. 六种天然林土壤有机碳及组分特征研究[D]. 北京:北京林业大学,2013.

    AN Xiaojuan. Characteristics of soil organic carbon and its components in six natural forests[D]. Beijing:Beijing Forestry University,2013.

    [45] 牛喜妹,李佳南,王平,等. 羊草地上不同性状凋落物分解对土壤碳组分的影响[J]. 环境生态学,2022,4(9):54−60.

    NIU Ximei,LI Jianan,WANG Ping,et al. Effects of different aboveground traits of Leymus chinensis litter on soil carbon fraction[J]. Environmental Ecology,2022,4(9):54−60.

    [46] 马建国,张青青,于远介,等. 天山北坡中段4种植物群落不同土层深度土壤有机碳及其组分的变化特征[J]. 新疆农业大学学报,2022,45(6):493−500.

    MA Jianguo,ZHANG Qingqing,YU Yuanjie,et al. Changes of soil organic carbon and its components at different soil depths of four plant communities in the middle part of the northern slope of Tianshan Mountains[J]. Journal of Xinjiang Agricultural University,2022,45(6):493−500.

    [47] 庞圣江,杨保国,刘士玲,等. 桂西北喀斯特山区4种森林表土土壤有机碳含量及其养分分布特征[J]. 中南林业科技大学学报,2018,38(4):60−64,71.

    PANG Shengjiang,YANG Baoguo,LIU Shiling,et al. The distribution of organic carbon and soil nutrients under four forest types in Karst mountain areas of northwest Guangxi,China[J]. Journal of Central South University of Forestry & Technology,2018,38(4):60−64,71.

    [48] 王丽梅,张谦,白利华,等. 毛乌素沙地3种人工植被类型对土壤颗粒组成和固碳的影响[J]. 水土保持研究,2020,27(1):88−94.

    WANG Limei,ZHANG Qian,BAI Lihua,et al. Effects of three artificial vegetation types on soil particle composition and carbon fixation in the mu us sandy land[J]. Research of Soil and Water Conservation,2020,27(1):88−94.

    [49] 王阳,章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征[J]. 浙江大学学报(农业与生命科学版),2011,37(2):193−202. doi: 10.3785/j.issn.1008-9209.2011.02.012

    WANG Yang,ZHANG Mingkui. Distribution characters of particulate organic carbon and black carbon in soils under different forestry vegetations[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2011,37(2):193−202. doi: 10.3785/j.issn.1008-9209.2011.02.012

图(6)  /  表(8)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-22
  • 网络出版日期:  2024-12-01
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回