高级检索

基于惯性技术的掘进机组合定位方法

孙凌飞, 刘亚, 彭继国, 杨木易, 马志愿, 张坤

孙凌飞,刘 亚,彭继国,等. 基于惯性技术的掘进机组合定位方法[J]. 煤炭科学技术,2024,52(12):300−310. DOI: 10.12438/cst.2023-1648
引用本文: 孙凌飞,刘 亚,彭继国,等. 基于惯性技术的掘进机组合定位方法[J]. 煤炭科学技术,2024,52(12):300−310. DOI: 10.12438/cst.2023-1648
SUN Lingfei,LIU Ya,PENG Jiguo,et al. Integrated positioning method of roadheader based on inertial technology[J]. Coal Science and Technology,2024,52(12):300−310. DOI: 10.12438/cst.2023-1648
Citation: SUN Lingfei,LIU Ya,PENG Jiguo,et al. Integrated positioning method of roadheader based on inertial technology[J]. Coal Science and Technology,2024,52(12):300−310. DOI: 10.12438/cst.2023-1648

基于惯性技术的掘进机组合定位方法

基金项目: 山东能源集团2022年科技计划重大资助项目(SNKJ2022A05)
详细信息
    作者简介:

    孙凌飞: (1985—),男,山东济宁人,工程师。E-mail:sunlingfei@bdtd.com

    通讯作者:

    张坤: (1990—),男,山东威海人,教授。E-mail:zhangkunliaoning@163.com

  • 中图分类号: TD632

Integrated positioning method of roadheader based on inertial technology

  • 摘要:

    鉴于综掘工作面掘进机截割工作周期长、振动幅度大等工况环境约束,单一惯性导航系统由于导航误差随时间累积的影响,很难在综掘流程中实现自主、实时、精准感知掘进机的姿态和位置。以惯性导航系统为主系统,提出一种基于惯导系统与激光感知系统的掘进组合定位、定向方法。采用惯性导航系统获取掘进机实时姿态信息,并传至激光感知系统与其检测光点特征信息相结合,利用空间坐标变换求解位置信息,回传惯导系统进行位姿辅助校准,通过融合各检测子系统的优缺点以实现掘进机的位姿精准检测,有效克服了单一惯性导航系统检测数值漂移、系统可靠性差等问题。最后,通过地面模拟检测试验和井下工业性试验,在不同工况下对检测系统的有效性和检测精度进行试验验证。结果表明:该组合定位系统横向偏移检测误差平均值小于10 mm,纵向行进检测误差平均值小于20 mm,能够满足不同工况下位姿检测的精度要求。研究将先进的信息融合技术引入煤矿开采科技,为煤巷综掘向无人化、智能化方向进一步发展提供理论指导和实践支撑。

    Abstract:

    In view of the environmental constraints such as long working cycle and large vibration amplitude during the cutting of the roadheader in the fully mechanized excavation face, it is difficult for a single inertial navigation system to realize autonomous, real-time and accurate perception of the attitude and position of the roadheader in the fully mechanized excavation process due to the influence of navigation error accumulation with time. Taking the inertial navigation system as the main system, a combined positioning and orientation method based on inertial navigation system and laser sensing system is proposed. The inertial navigation system is used to obtain the real-time attitude information of the roadheader, which is transmitted to the laser sensing system and combined with its detection light point feature information. The spatial coordinate transformation is used to solve the position information, and the inertial navigation system is transmitted back to the inertial navigation system for pose auxiliary calibration. By integrating the advantages and disadvantages of each detection subsystem, the accurate detection of the pose of the roadheader is realized, which effectively overcomes the problems of single inertial navigation system detection value drift and poor system reliability. Finally, through the ground simulation test and the underground industrial test, the effectiveness and detection accuracy of the detection system are verified under different working conditions. The results show that the average error of the lateral offset detection of the integrated positioning system is less than 10 mm, and the average error of the longitudinal detection is less than 20 mm, which can meet the accuracy requirements of the lower position detection under different working conditions. The introduction of advanced information fusion technology into coal mining technology provides theoretical guidance and practical support for the further development of unmanned and intelligent coal roadway excavation.

  • 图  1   基于惯性技术的掘进机组合定位系统

    Figure  1.   Integrated positioning system of roadheader based on inertial technology

    图  2   基于惯性技术的掘进机组合定位的总体方案

    Figure  2.   Overall scheme block diagram of combined positioning of roadheader based on inertial technology

    图  3   掘进机组合导航通信方案

    Figure  3.   Roadheader integrated navigation communication scheme

    图  4   掘进机组合导航系统相关坐标系定义

    Figure  4.   Definition of related coordinate system of roadheader integrated navigation system

    图  5   掘进机位置描述示意

    Figure  5.   Roadheader position description schematic

    图  6   惯性导航位姿关系示意

    Figure  6.   Inertia navigation pose relationship diagram

    图  7   激光感知系统检测原理示意

    Figure  7.   Detection principle of laser sensing system

    图  8   基于激光雷达的掘进机纵向行进距离检测示意

    Figure  8.   Detection of longitudinal travel distance of roadheader based on laser radar

    图  9   基于激光感知的反馈校正结构框图

    Figure  9.   Feedback correction structure block diagram based on laser perception

    图  10   模拟尘雾干扰试验示意

    Figure  10.   Simulation of dust fog interference test schematic

    图  11   喷雾后扫描点云变化示意

    Figure  11.   Change of scanning point cloud after spraying

    图  12   基于惯性技术的掘进机组合定位试验示意

    Figure  12.   Roadheader combined positioning test schematic based on inertial technology

    图  13   横线偏移检测示意

    Figure  13.   Horizontal line offset detection schematic

    图  14   横向偏移检测误差跟踪曲线

    Figure  14.   Lateral offset detection error tracking curves

    图  15   纵向行进检测误差跟踪曲线

    Figure  15.   Longitudinal moving detection error tracking curves

    图  16   井下掘进工作面工业性试验场地示意

    Figure  16.   Industrial test site of underground tunneling working face

    表  1   不同行进距离横向偏移值检测误差

    Table  1   Detection error of lateral offset value at different travel distances

    行进距离/m 喷雾前横向偏距平均
    检测误差/mm
    喷雾后横向偏距平均
    检测误差/mm
    8.7 2.29 2.27
    14.6 0.04 2.60
    27.4 1.80 1.89
    40.5 3.21 5.80
    下载: 导出CSV

    表  2   掘进机组合导航系统位置检测数据

    Table  2   Roadheader integrated navigation system position detection data table

    测试序号 横向偏移检测值/mm 横向偏移实测值/mm 行进距离检测值/mm 行进距离实测值/mm 俯仰角/(°) 偏航角/(°) 横滚角/(°)
    1 −204 −199.00 −1 308 −1 285 −1.08 −0.82 −0.04
    2 −97 −95.00 1 020 1 037 −1.21 0.72 −0.03
    3 −5 −4.00 2 742 2 729 −1.03 2.46 0.04
    4 65 67.00 3 990 4 013 −1.00 2.62 0.06
    5 264 266.00 2 498 2 510 −1.01 0.16 0.02
    6 151 153.00 1 739 1 765 −1.19 1.75 −0.01
    7 38 38.33 1 324 1 340 −6.75 1.25 3.18
    8 77 76.58 1 426 1 435 −9.82 1.25 3.18
    9 138 137.30 1 679 1 695 −11.71 1.10 3.29
    10 176 175.54 1 894 1 907 −14.78 1.10 3.27
    11 35 34.48 2 108 2 100 −1.38 0.93 3.76
    12 56 55.47 2 325 2 316 −3.50 0.87 3.74
    13 −106 −106.79 2 517 2 530 8.62 1.13 3.73
    14 −130 −133.20 2 814 2 804 10.91 1.02 3.77
    15 −162 −163.63 2 907 2 915 13.56 1.09 3.78
    16 26 25.63 3 057 3 063 0.41 1.06 4.07
    17 −69 −70.71 3 229 3 241 9.12 1.02 4.03
    18 −100 −100.21 3 418 3 431 11.73 0.99 4.01
    19 −126 −127.27 3 677 3 669 14.05 0.95 4.01
    20 −177 −179.81 3 903 3 920 18.75 0.88 3.98
    下载: 导出CSV

    表  3   系统位置检测误差

    Table  3   System position detection error

    测试序号 横向偏移检测误差/mm 行进距离检测误差/mm
    1 5.00 23
    2 2.00 17
    3 1.00 13
    4 2.00 23
    5 2.00 12
    6 2.00 26
    7 0.33 16
    8 0.42 9
    9 0.70 16
    10 0.46 13
    11 0.52 8
    12 0.53 9
    13 0.79 13
    14 3.20 10
    15 1.63 8
    16 0.37 6
    17 1.71 12
    18 0.21 13
    19 1.27 8
    20 2.81 17
    下载: 导出CSV

    表  4   井下掘进工作面横向偏移数据

    Table  4   Horizontal offset data of underground tunneling working face

    序号 系统显示
    初始值/mm
    系统显示
    结束值/mm
    系统显示
    距离/mm
    实际测量
    距离/mm
    误差/
    mm
    1 0 494 494 498 −4
    2 0 370 370 365 5
    3 0 279 279 271 8
    4 0 193 193 186 7
    5 0 64 64 69 −5
    6 0 −107 −107 −101 −6
    7 0 −241 −241 −237 −4
    8 0 −346 −346 −354 8
    9 0 −439 −439 −436 −3
    10 0 −478 −478 −484 6
    下载: 导出CSV

    表  5   井下掘进工作面掘进机进尺

    Table  5   Data record table of tunneling machine footage in underground tunneling working face

    序号 系统显示掘进机进尺初始值/mm 系统显示掘进机进尺结束值/mm 系统显示距离/mm 实际测量距离/mm 误差/mm
    1 0 523 523 528 −5
    2 0 790 790 799 −9
    3 0 1 435 1 435 1 428 7
    4 0 1 910 1 910 1 906 4
    5 0 2 368 2 368 2 362 6
    6 0 2 849 2 849 2 842 7
    7 0 3 534 3 534 3 540 −6
    8 0 3 920 3 920 3 927 −7
    9 0 4 322 4 322 4 316 6
    10 0 4 825 4 825 4 820 5
    下载: 导出CSV
  • [1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [2] 王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1−9.

    WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1−9.

    [3] 王国法. 综采自动化智能化无人化成套技术与装备发展方向[J]. 煤炭科学技术,2014,42(9):30−34,39.

    WANG Guofa. Development orientation of complete fully- mechanized automation,intelligent and unmanned mining technology and equipment[J]. Coal Science and Technology,2014,42(9):30−34,39.

    [4] 杨文娟,张旭辉,张超,等. 基于三激光束标靶的煤矿井下长距离视觉定位方法[J]. 煤炭学报,2022,47(2):986−1001.

    YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Long distance vision localization method based on triple laser beams target in coal mine[J]. Journal of China Coal Society,2022,47(2):986−1001.

    [5] 张旭辉,沈奇峰,杨文娟,等. 基于三激光点标靶的掘进机机身视觉定位技术研究[J]. 电子测量与仪器学报,2022,36(6):178−186.

    Zhang Xuhui,Shen Qifeng,Yang Wenjuan,et al. Research on visual positioning technology of roadheaderbody based on three laser point target[J]. Journal of Electronic Measurement and Instrumentation,2022,36(6):178−186.

    [6] 杜雨馨,刘停,童敏明,等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报,2016,41(11):2897−2906.

    DU Yuxin,LIU Ting,TONG Minming,et al. Pose measurement system of boom-type roadheader based on machine vision[J]. Journal of China Coal Society,2016,41(11):2897−2906.

    [7] 周玲玲,董海波,杜雨馨. 基于双激光标靶图像识别的掘进机位姿检测方法[J]. 激光与光电子学进展,2017,54(4):041205.

    ZHOU Lingling,DONG Haibo,DU Yuxin. Method of roadheader position detection based on image recognition of double laser targets[J]. Laser & Optoelectronics Progress,2017,54(4):041205.

    [8] 崔玉明. 煤矿巷道掘进机视觉/惯性融合自主定位关键技术研究[D]. 徐州:中国矿业大学,2021.

    CUI Yuming. Research on key technologies of autonomous positioning of mine roadheader based on vision/inertia fusion[D]. Xuzhou:China University of Mining and Technology,2021.

    [9] 崔柳,徐会军,刘治翔,等. 基于超宽带定位的掘进机姿态监测仿真与试验研究[J]. 煤炭学报,2017,42(S1):267−274.

    CUI Liu,XU Huijun,LIU Zhixiang,et al. Simulation and experimental study on attitude monitoring of roadheader based on ultra-wideband positioning[J]. Journal of China Coal Society,2017,42(S1):267−274.

    [10] 田原. 基于四点式光靶的掘进机自动定位方法研究[J]. 煤炭科学技术,2018,46(12):35−40.

    TIAN Yuan. Research on automatic positioning method of roadheader based on four point light target[J]. Coal Science and Technology,2018,46(12):35−40.

    [11]

    FU S C,LI Y M,ZONG K,et al. Ultra-wideband pose detection method based on TDOA positioning model for boom-type roadheader[J]. AEU - International Journal of Electronics and Communications,2019,99:70−80. doi: 10.1016/j.aeue.2018.11.023

    [12]

    YAN C Q,ZHAO W X,LU X M. A multi-sensor based roadheader positioning model and arbitrary tunnel cross section automatic cutting[J]. Sensors,2019,19(22):4955. doi: 10.3390/s19224955

    [13] 马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189−195.

    MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189−195.

    [14] 王浩然,王宏伟,李正龙,等. 基于捷联惯导与差速里程计的掘进机组合定位方法[J]. 工矿自动化,2022,48(9):148−156.

    WANG Haoran,WANG Hongwei,LI Zhenglong,et al. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation,2022,48(9):148−156.

    [15] 杨金永. 煤矿掘进机动态位姿组合式测量方法的研究[D]. 天津:天津科技大学,2018.

    YANG Jinyong. Study on combined measurement method of dynamic position and posture of coal mine roadheader[D]. Tianjin:Tianjin University of Science & Technology,2018.

    [16] 薛光辉,张云飞,候称心,等. 基于激光靶向扫描的掘进机位姿测量方法[J]. 煤炭科学技术,2020,48(11):19−25.

    XUE Guanghui,ZHANG Yunfei,HOU Chenxin,et al. Measurement of roadheader position and posture based on orientation laser scanning[J]. Coal Science and Technology,2020,48(11):19−25.

    [17] 陶云飞,李瑞,李嘉赓,等. iGPS的单站多点分时测量系统对掘进机偏向位移精度研究[J]. 煤炭技术,2017,36(2):246−247.

    TAO Yunfei,LI Rui,LI Jiageng,et al. Research on positioning accuracy of roadheader based on singlestation,multipoint and time-shared of iGPS measurement system[J]. Coal Technology,2017,36(2):246−247.

    [18] 张荣辉,贾宏光,陈涛,等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学精密工程,2008,16(10):1963−1970.

    ZHANG Ronghui,JIA Hongguang,CHEN Tao,et al. Attitude solution for strapdown inertial navigation system based on quaternion algorithm[J]. Optics and Precision Engineering,2008,16(10):1963−1970.

  • 期刊类型引用(2)

    1. 辛在军,王玺洋,李亮,李娅,邓觅,姚忠. 固定化SRB包埋颗粒组分优选及处理含SO_4~(2-)废水效果研究. 工业水处理. 2024(03): 112-119 . 百度学术
    2. 高飞,王涛,肖一鑫,方立天. 山西莫底沟矿区含硫矿物产酸潜力评估. 安全与环境工程. 2024(02): 301-310 . 百度学术

    其他类型引用(0)

图(16)  /  表(5)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  10
  • PDF下载量:  14
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-11-08
  • 网络出版日期:  2024-12-15
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回