Research progress and application of online coal quality and coal quantity analyses
-
摘要:
当前,煤矿智能化正在向着中高级阶段迈进,煤炭工业数智化转型迫切需要实时掌握煤质煤量全面信息,因此,开展了煤质煤量全面在线检测技术发展现状及应用进展综述研究。在分析煤质煤量检测技术工业应用需求的基础上,重点阐述以激光诱导击穿光谱法(LIBS)及其与其他光谱联合的多光谱联用技术为代表的光谱学技术的基本原理、优缺点、研究进展与工业应用情况和以图像分析为代表的人工智能煤质煤量检测方法。然后,基于不同技术的工业应用情况进行问题梳理,分析实时煤质煤量在线检测技术在工业应用中的技术局限性,包括:基于技术原理的探测精度问题;由复杂环境因素引用的设备稳定性问题;基于大量数据处理的算法分析问题;煤炭全产业链应用的技术适用与灵活性问题。最后,对未来煤质煤量全面分析及在线检测技术提出4点发展建议:结合地质条件的煤质在线检测技术研究;工业化多光谱联用技术研究;光谱学与图像分析技术联用煤质煤量全面分析技术研究;智能化在煤质煤量实时检测的深入应用研究。智能化煤质煤量全面分析及在线检测装备研发需多学科共同努力,基于煤岩学、光谱学、仪器仪表工程、数据处理和模式识别、人工智能和机器学习等多学科科学技术,建立工业应用场景−煤质煤量参数−实际应用指导数据库,是实现智能化煤质煤量在线检测,掌握和预测全面煤质煤量信息的重要发展方向。
-
关键词:
- 煤矿智能化 /
- 煤质 /
- 煤流量 /
- 激光诱导击穿光谱分析法 /
- 图像分析与机器视觉
Abstract:The coal industry urgently needs real-time access to comprehensive information on coal quality and quantity for its digital transformation. Based on analyzing the industrial application requirements for comprehensive analysis of coal quality and quantity, this paper focuses on the technical principles, research status, and industrial application of spectroscopic techniques represented by laser-induced breakdown spectroscopy (LIBS) and multispectral fusion with other spectroscopic techniques. It also discusses the artificial intelligence-based coal quality and quantity detection methods represented by image analysis. Then, based on the industrial application scenarios of different technologies, we need to analyze the technical limitations of real-time coal quality and quantity online detection technology in industrial applications. These limitations include detection accuracy issue based on technical principles, equipment stability issue caused by complex environmental factors, algorithm analysis issue based on large-scale data processing, technical applicability, and flexibility issue in the entire coal industry chain, respectively. Finally, four development suggestions for future comprehensive analysis and online detection technology of coal quality and quantity were proposed, they are research on coal quality online detection technology considering geological conditions, research on industrial-scale multispectral fusion technology, research on comprehensive analysis of coal quality and quantity using spectroscopy and image analysis techniques and in-depth research on the application of intelligent technologies in real-time coal quality and quantity detection, respectively. Coal quality online detection is a complex field that involves multiple disciplines and specialized knowledge. It relies on interdisciplinary scientific and technological fields such as coal petrography, spectroscopy, instrument engineering, data processing, pattern recognition, artificial intelligence, and machine learning. Establishing industrial application scenario-coal quality and coal quantity parameters-actual application guidance databases is an important direction for achieving intelligent coal quality and coal quantity online detection and obtaining comprehensive coal quality and coal quantity information.
-
-
表 1 不同光谱类煤质在线检测技术对比分析
Table 1 Comparable analysis of various online determine technologies of coal quality
技术名称 测量指标 精度 应用场景 优缺点 发展前景 天然γ射线检测法 灰分 较差 洗选厂 优点:非接触式检测,标定过程简单,检测结果不受输送带中钢丝影响,安装简单、维护陈本低;
缺点:对煤中放射性元素要求较高,对探头精度要求高,放射性元素与煤中矿物质相关性较好时才能反映所测煤质水平一般 X射线检测法 灰分、硫分 一般 输送带原煤、快速装车、燃煤电厂、洗选厂 优点:非接触式检测,安装简单、维护量小,测量范围广,煤种适用性强、现场环境适应性强;
缺点:只适用于检测原子序数>11的元素,测量精度一般,对被测煤流粒度与厚度均有要求一般 近红外光谱法 水分、硫分、氢、挥发分、发热量 较高 燃煤电厂、
洗选厂优点:快速无损、检测信息量大、精度高,分辨率高;
缺点:被检测样品中某项成分含量大于0.1%;对探测设备要求较高;煤的近红外光谱信息繁杂,需提取相关信息,构建分析模型较好 拉曼光谱法 水分、硫分、氢、发热量 较高 燃煤电厂 优点:高效、快速、原位检测,拉曼光谱特征具有唯一性;
缺点:拉曼光谱仪成本较高、设备安装与维护相对困难,煤的拉曼散射信号弱,灵敏度不高,容易受环境因素影响一般 激光诱导击穿
光谱分析法C、H、O、N、Si、Al、Na、K、Mg、Ca、Fe、Li 较低 原煤煤流、洗选厂、发电厂、
煤化工厂优点:制样简单、快速、原位、远程、全元素同步分析
缺点:存在基体效应、光谱信号不确定度,定量分析精度低好 联用
技术LIBS-Raman 水分、灰分、挥发分、固定碳、发热量等 较高 原煤煤流、洗选厂、发电厂、
煤化工厂优点:快速、原位、远程、全元素同步分析,多技术联用实现多参数测量与准确性验证,可提高设备适用性
缺点:考虑器件功能融合还要考虑整体载荷小型化、一体化等
问题好 LIBS-XRF LIBS-NIRS -
[1] 马 平,赵俊达,石 鹏. 安全型煤质检测技术在上湾采样系统的应用[J]. 煤炭加工与综合利用,2022,8:85−88. MA Ping,ZHAO Junda,SHI Peng. Application of safe coal quality inspection technology in Shangwan sampling system[J]. Coal Processing & Comprehensive Utilization,2022,8:85−88.
[2] 吕 胜,合希图. 准能黑岱沟选煤厂煤质管控措施及效益分析[J]. 煤质技术,2021,36(3):88−92. doi: 10.3969/j.issn.1007-7677.2021.03.14 LYU Sheng,HE Xitu. Coal quality control measurements and cost-benefit analysis for Zhunneng Heidaigou coal preparation plant[J]. Coal Quality Technology,2021,36(3):88−92. doi: 10.3969/j.issn.1007-7677.2021.03.14
[3] 郝石宇,胡晓梅. 燃煤电厂煤质在线检测及精度控制技术探析[J]. 山西化工,2023,43(4):66−68. HAO Shiyu,HU Xiaomei. Analysis of online detection and precision control technology for coal quality in coal-fired power plants[J]. Shanxi Chemical Industry,2023,43(4):66−68.
[4] 邵小强,李 鑫,杨 涛,等. 改进YOLOv5s和DeepSORT的井下人员检测及跟踪算法[J]. 煤炭科学技术,2023,51(10):291−301. SHAO Xiaoqiang,LI Xin,YANG Tao,et al. Underground personnel detection and tracking based on improved YOLOv5s and DeepSORT[J]. Coal Science and Technology,2023,51(10):291−301.
[5] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225−239. WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225−239.
[6] 刘 飞,张乐群,潘红光,等. 带式输送机煤量检测技术及其发展趋势[J]. 中国煤炭,2023,49(9),77–83. LIU Fei,ZHANG Lequn,PAN Hongguang,et al. Research on coal quantity detection technologies of belt conveyer and their development trend[J]. Chian Coal,2023,49(9),77–83.
[7] 宋兆龙,吕震中,陆厚平. 基于中子活化技术的煤炭全元素在线分析系统的研究[J]. 中国电机工程学报,2001,21(2):89−96. doi: 10.3321/j.issn:0258-8013.2001.02.020 SONG Zhaolong,LYU Zhenzhong,LU Houping. On-line element analysis system of coal based on prompt gamma-ray analysis method[J]. Proceedings of the CSEE,2001,21(2):89−96. doi: 10.3321/j.issn:0258-8013.2001.02.020
[8] 周海渊,郭世明,宋青锋,等. 中子活化煤质分析仪在沙曲选煤厂的应用[J]. 山西焦煤科技,2021(6):8−10. doi: 10.3969/j.issn.1672-0652.2021.06.003 [9] 张志康,杨鼓行,雷章云,等. 双能量γ射线透射法煤炭灰分在线测量的实现[J]. 核电子学与探测技术,1991,11(3):132−138. ZHANG Zhikang,YANG Guhang,LEI Zhangyun,et al. A large detector system for studies of photo-nuclear physics[J]. Nuclear Electronics & Detection Technology,1991,11(3):132−138.
[10] 赵 辉. 煤炭灰分在线检测技术的应用现状及发展前景[J]. 煤炭加工与综合利用,2022(4):79−82. [11] 赵忠辉. 基于无源的煤质在线检测技术发展与应用分析[J]. 煤炭技术,2018,37(1):312−315. ZHAO Zhonghui. Development and application of coal quality on-line detection technology based on no radioactive source[J]. Coal Technology,2018,37(1):312−315.
[12] 高佳玺. 煤质在线检测技术发展与应用研究[J]. 山西化工,2022,1:51−52,57. [13] 李红军,宋拥强,申瑞红. 天然γ射线测灰仪在邯郸洗选厂原煤检测中的应用[J]. 选煤技术,2019,5:77−85. LI Hongjun,SONG Yongqiang,SHEN Ruihong. Application of the natural γ-ray raw coal feed ash monitor at Handan Coal Washery[J]. Coal Preparation Technology,2019,5:77−85.
[14] 林春强,于 波,刘志刚. X 射线灰分仪在四棵树煤矿中的应用[J]. 数字技术与应用,2023,41(3):58−61. [15] 高 楠. 论近红外光谱技术在煤质检测分析中的应用[J]. 能源与节能,2016,2(2):186−187. doi: 10.3969/j.issn.2095-0802.2016.02.087 GAO Nan. On the application of near infrared spectral analysis technology in coal quality testing analysis[J]. Energy and Energy Conservation,2016,2(2):186−187. doi: 10.3969/j.issn.2095-0802.2016.02.087
[16] 于鹏峰,苏 攀,刘佳薇,等. 基于PL-Raman光谱分析的煤质快速检测方法[J]. 动力工程学报,2022,42(3):215−220. YU Pengfeng,SU Pan,LIU Jiawei,et al. Rapid evaluation method of coal property using PL-Raman spectroscopy[J]. Journal of Chinese Society of Power Engineering,2022,42(3):215−220.
[17] 侯宗余,宋惟然,宋玉洲,等. 激光诱导击穿光谱煤质在线分析技术现状与展望[J]. 煤质技术,2023,38(1):1–12. HOU Zongyu,SONG Weiran,SONG Yuzhou,et al. Current situation and prospect of online coal analysis by laser-induced breakdown spectroscopy[J]. Coal Quality Technology,2023,38(1):1–12.
[18] GAFT M,DVIR E,MODIANO H,et al. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal[J]. Spectrochimica Acta Part B,2008,63:1177–1182.
[19] ZHANG Lei,GONG Yao,LI Yufang,et al. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B,2015,113:167–173.
[20] 邓红艳,郑国宪,张 琢. Raman-LIBS光谱技术在空间原位探测领域的应用探讨[J]. 空间电子技术,2018,15(4):63−67. doi: 10.3969/j.issn.1674-7135.2018.04.013 DENG Hongyan,ZHENG Guoxian,ZHANG Zhuo. Application of the Raman-LIBS Spectroscopy in extraterrestrial in-situ detection[J]. Space Electronic Technology,2018,15(4):63−67. doi: 10.3969/j.issn.1674-7135.2018.04.013
[21] 田志辉,王树青,张 雷,等. LIBS-XRF 联用多光谱煤质分析仪的研制与应用(特邀)[J]. 光子学报,2023,52(3):0352109. TIAN Zhihui,WANG Shuqing,ZHANG Lei,et al. Development and application of LIBS-XRF coupled multi-spectrum coal quality analyser (Invited)[J]. Acta Photonica Sinica,2023,52(3):144–155.
[22] 李晓林. 基于XRF辅助 LIBS 的煤质分析技术研究[D]. 太原:山西大学,2021. LI Xiaolin. Research on coal quality analysis technology based on XRF-assisted LIBS[D]. Taiyuan:Shanxi University,2021.
[23] 许献磊,王一丹,朱鹏桥,等. 基于高频雷达波的煤岩层位识别与追踪方法研究[J]. 煤炭科学技术,2022,50(7):50−58. XU Xianlei,WANG Yidan,ZHU Pengqiao,et al. Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J]. Coal Science and Technology,2022,50(7):50−58.
[24] YAO S C,QIN H Q,WANG Q,et al. Optimizing analysis of coal property using laser -induced breakdown and near-infrared reflectance spectroscopies[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,239:118492. doi: 10.1016/j.saa.2020.118492
[25] QIU Z Y,DOU D Y,ZHOU D Y,et al. On-line prediction of clean coal ash content based on image analysis[J]. Measurement,2021,173,108663.
[26] ZHANG Zelin,LIU Yang,HU Qi,et al. Multi-information online detection of coal quality based on machine vision[J]. Powder Technology,2020,374:250−262. doi: 10.1016/j.powtec.2020.07.040
[27] 白亚腾. 基于机器视觉的煤质检测关键技术研究[D]. 徐州:中国矿业大学,2020. BAI Yateng. Research on key technology of coal quality detection based on machine vision[D]. Xuzhou:China University of Mining and Technology,2020.
[28] 尚 明. 煤质在线检测设备在选煤厂智能化建设中的应用[J]. 洁净煤技术,2023,29(S1):154−158. SHANG Ming. Application of on-line coal quality inspection equipment in intelligent construction of coal preparation plant[J]. Clean Coal Technology,2023,29(S1):154−158.
[29] 周智宾,李伟伟,王 凯,等. 数字化煤场及智慧管理平台一体化建设方案设计[J]. 东北电力技术,2023,44(7):58−62. doi: 10.3969/j.issn.1004-7913.2023.07.012 ZHOU Zhibin,LI Weiwei,WANG Kai,et al. Design of construction scheme of digital coal yard and intelligent management platform integration[J]. Northeast Electric Power Technology,2023,44(7):58−62. doi: 10.3969/j.issn.1004-7913.2023.07.012
[30] 解 强. 关于煤质检验技术的发展思考[J]. 煤质技术,2020,35(6):6−12. doi: 10.3969/j.issn.1007-7677.2020.06.002 XIE Qiang. Some points on the development of coal testing techniques[J]. Coal Quality Technology,2020,35(6):6−12. doi: 10.3969/j.issn.1007-7677.2020.06.002
[31] 王文毓,弓林娟,王 林,等. 基于煤质在线检测的燃烧优化及自适应协调控制研究[J]. 动力工程学报,2023,43(2):143−150. WANG Wenyu,GONG Linjuan,WANG Lin,et al. Combustion optimization and adaptive coordination control based on online detection of coal quality[J]. Journal of Chinese Society of Power Engineering,2023,43(2):143−150.
[32] 李利锋. 发电厂烟气SO2浓度在线检测系统研究[D]. 太原:中北大学,2011. LI Lifeng. Research on on-line detection system of SO2 concentration in flue gas of power plant[D]. Taiyuan:North University of China,2011.
[33] 汪 兵. 气流床气化炉排渣系统的数值模拟和检测方法[D]. 杭州:浙江大学,2011. WANG Bing. Numerical simulation and detection method of slag discharge system of airflow bed gasifier[D]. Hangzhou:Zhejiang University,2011.
[34] 张 韬. 无源射线检测煤质分析系统设计与实现[D]. 西安:西安工业大学,2021. ZHANG Tao. Design and implementation of coal quality analysis system for passive radiographic detection[D]. Xi’an:Xi’an University of Technology,2021.
[35] 张泽琳,杨建国. 煤灰分在线检测方法及设备[J]. 选煤技术,2012(2):59−63,72. doi: 10.3969/j.issn.1001-3571.2012.02.018 ZHANG Zelin,YANG Jianguo. Research on process and equipment of coal ash content on-line detection[J]. Coal Preparation Technology,2012(2):59−63,72. doi: 10.3969/j.issn.1001-3571.2012.02.018
[36] 葛学海,白云飞,陈 鹏,等. NGAM-2008天然射线灰分仪在西南地区选煤厂的应用[J]. 选煤技术,2016 (4):63−66. GE Xuehai,BAI Yunfei,CHEN Peng,et al. Application of the NGAM-2008 natural gamma-ray ash monitor at coal preparation plants in southwest China[J]. Coal Preparation Technology,2016(4):63–66.
[37] 田志辉. LIBS-XRF 双谱联用的高稳定煤质分析原理与应用[D]. 太原:山西大学,2023. TIAN Zhihui. Principle and application of LIBS-XRF dual-spectrum for high stability coal quality analysis[D]. Taiyuan:Shanxi University,2023.
[38] 杨金祥. 原煤胶带端部平移式采样与X射线荧光光谱分析技术结合的应用研究[J]. 煤质技术,2017(4):34−37. doi: 10.3969/j.issn.1007-7677.2017.04.009 YANG Jinxiang. Study on application of combining of horizontal moving sampling on belt conveyor head and XRF analysis technology for raw coal[J]. Coal Quality Technology,2017(4):34−37. doi: 10.3969/j.issn.1007-7677.2017.04.009
[39] JIA W B,ZHANG Y,GU C G,et al. A new distance correction method for sulfur analysis in coal using online XRF measurement system[J]. Science China Technological Sciences,2014. 57(1):39–43.
[40] ZHANG Y,ZHANG X L,JIA W B,et al. Online X-ray Fluorescence (XRF) analysis of heavy metals in pulverized coal on a conveyor belt[J]. Applied Spectroscopy:Society for Applied Spectroscopy,2016,70(2):272–278.
[41] ZHANG Y,JIA W B,GARDNER R,et al. A distance correction method for improving the accuracy of particle coal online X-ray fluorescence analysis - Part 1:Theoretical dependence of XRF intensity on the distance[J]. Radiation Physics and Chemistry,2018,147:118−121. doi: 10.1016/j.radphyschem.2017.07.005
[42] ZHANG Y,JIA W B,GARDNER R,et al. A distance correction method for improving the accuracy of particle coal online X-ray fluorescence analysis – Part 2:Method and experimental investigation[J]. Radiation Physics and Chemistry,2017,141:235−238. doi: 10.1016/j.radphyschem.2017.07.004
[43] WEST M,ELLIS A T,POTTS P J,et al. 2015 atomic spectrometry update-a review of advances in X-ray fluorescence spectrometry and their applications[J]. Journal of Analytical Atomic Spectrometry,2015,30 (9),1839–1889.
[44] TICKNER J,O'DWYER,ROACH G,et al. Analysis of precious metals at parts-per-billion levels in industrial applications[J]. Radiation Physics and Chemistry,2015,116,43–47
[45] 郭 凯. 快速分析技术在煤质检测中的应用[J]. 山西化工,2023,43(1):138−139,142. GUO Kai. Application of rapid analysis technology in coal quality detection[J]. Shanxi Chemical Industry,2023,43(1):138−139,142.
[46] 杨 策. 应用近红外光谱技术分析煤质成分[D]. 北京:华北电力大学,2017. YANG Ce. Analysis of coal composition using near-infrared spectroscopy[D]. Beijing:North China Electric Power University,2017.
[47] 梁 勇. 论近红外光谱技术在煤质检测分析中的应用[J]. 辽宁化工,2017,46(3):312−314. LIANG Yong. Application of Near-infrared spectroscopy in coal quality analysis[J]. Liaoning Chemical Industry,2017,46(3):312−314.
[48] 周 悦. 基于近红外光谱的动态煤矸成份监测方法研究[D]. 徐州:中国矿业大学,2022. ZHOU Yue. Research on dynamic coal gangue composition monitoring method based on near-infrared spectroscopy[D]. Xuzhou:China University of Mining and Technology,2022.
[49] 李凤瑞,唐玉国,肖宝兰. 应用近红外光谱分析技术测量煤质发热量[J]. 电站系统工程,2004,20(3):19−20. doi: 10.3969/j.issn.1005-006X.2004.03.009 LI Fengrui,TANG Yuguo,XIAO Baolan. Application of NIR spectrum method at analysis of coal heating value[J]. Power System Engineering,2004,20(3):19−20. doi: 10.3969/j.issn.1005-006X.2004.03.009
[50] KIM D W,LEE J M,KIM J S. Application of near infrared diffuse reflectance spectroscopy for on-line measurement of coal properties[J]. Korean Journal of Chemical Engineering,2009,26(2):489−495. doi: 10.1007/s11814-009-0083-0
[51] 王建义,雷 萌. 近红外光谱煤质分析模型中异常样品的剔除方法[J]. 工矿自动化,2011(11):75−77. WANG Jianyi,LEI Meng. Rejecting method of abnormal samples in analysis model of coal quality of Near-infrared Spectrum[J]. Industry and Mine Automation,2011(11):75−77.
[52] WANG Y,YANG M,WEI G,et al. Improved PLS regression based on SVM classification for rapid analysis of coal properties by near-infrared reflectance spectroscopy[J]. Sensors and Actuators B:Chemical,2014,193:723−729. doi: 10.1016/j.snb.2013.12.028
[53] 宋健超,张 雷,马维光,等. NIRS-XRF 联用的煤炭发热量高稳定检测[J]. 光学精密工程,2023,31(13):1880–1889. SONG Jianchao,ZHANG Lei,MA Weiguang,et al. High stability detection of coal calorific value achieved by NIRS-XRF[J]. Optics and Precision Engineering,2023,31(13):1880−1889.
[54] 程南南,石梦岩,候泉林,等. 拉曼光谱在煤大分子结构表征中的应用[J]. 煤炭学报,2023,48(3):1311−1324. CHENG Nannan,SHI Mengyan,HOU Quanlin,et al. ,Application of Raman spectroscopy in characterization of coal macromolecular structure[J]. Journal of China Coal Society,2023,48(3):1311−1324.
[55] FERRARI A,ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61(20):14095−14107. doi: 10.1103/PhysRevB.61.14095
[56] 莫 洋. 基于气体拉曼光谱的煤制气在线检测方法研究[D]. 天津:天津大学,2019. MO Yang. Research on on-line detection method of coal-to-gas based on gas Raman spectroscopy[D]. Tianjin:Tianjin University,2019.
[57] XU J,TANG H,SU S,et al. A study of the relationships between coal structures and combustion characteristics:the insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals[J]. Appl Energy,2018,212:46–56.
[58] 孙佳琳,邹志云,刘英莉. 在线拉曼光谱技术的应用综述[J]. 化工自动化及仪表,2023,50(3):280−284. SUN Jialin,ZOU Zhiyun,LIU Yingli. Summary of applications of on-line Raman spectroscopy[J]. Chemical Automation and Instrumentation,2023,50(3):280−284.
[59] ABBAS O,DARDENNE P,BAETEN V. Near-infrared,mid-infrared,and Raman spectroscopy[M]. Chemical Analysis of Food. (Second Edition), Academic Press,2020:77–134.
[60] VANKEIRSBILCK T,VERCAUTEREN A,BAEYENS W,et al. Applications of Raman spectroscopy in pharmaceutical analysis[J]. Trends in Analytical Chemistry,2002,21(12):869−877. doi: 10.1016/S0165-9936(02)01208-6
[61] 高 颖,戴连奎,朱华东,等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67−76. doi: 10.1016/S1872-2040(18)61135-1 GAO Ying,DAI Liankui,ZHU Huadong,et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry,2019,47(1):67−76. doi: 10.1016/S1872-2040(18)61135-1
[62] 马万武,任丽萍. 拉曼光谱分析技术在汽油调和系统中的应用[J]. 化工自动化及仪表,2017,44(10):933−936. doi: 10.3969/j.issn.1000-3932.2017.10.006 MA Wanwu,REN Liping. Application of raman spectroscopy in gasoline blending system[J]. Chemical Automation and Instrumentation,2017,44(10):933−936. doi: 10.3969/j.issn.1000-3932.2017.10.006
[63] CSONTOS I,PATAKI H,FARKAS A,et al. Feedback control of oximation reaction by inline raman spectroscop[J]. Organic Process Research & Development,2015,19(1):189−195.
[64] AMODEO T,DUTOUQUET C,TENEGAL F,et al. On-line monitoring of composite nanoparticles synthesized in a pre-industrial laser pyrolysis reactor using Laser-Induced Breakdown Spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(10):1183−1190. doi: 10.1016/j.sab.2008.09.005
[65] LIU Y,ZHOU B,WANG W,et al. Insertable,scabbarded,and nanoetched silver needle sensor for hazardous element depth profiling by laser-induced breakdown spectroscopy[J]. ACS Sens,2022,7(5):1381−1389. doi: 10.1021/acssensors.2c00017
[66] GUO L,ZHANG D,SUN L,et al. Development in the application of laser-induced breakdown spectroscopy in recent years:A review[J]. Frontiers of Physics,2021,16(2):45−69.
[67] HE Y,LIU X,LYU Y,et al. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy[J]. Sensors (Basel),2018,18(5):1526. doi: 10.3390/s18051526
[68] 郭连波,牛雪晨,张猛胜,等. 激光诱导击穿光谱技术应用研究进展(特邀)[J]. 光子学报,2023,52(3):0352104. doi: 10.3788/gzxb20235203.0352104 GUO Lianbo,NIU Xuechen,ZHANG Mengsheng,et al. Analysis of the application progress in Laser-induced breakdown spectroscopy:a review (Invited)[J]. Acta Photonica Sinica,2023,52(3):0352104. doi: 10.3788/gzxb20235203.0352104
[69] 凌宗成,刘长卿,柏红春,等. 基于激光诱导击穿光谱技术的火星表面物质成分探测研究进展[J]. 矿物岩石地球化学通报,2022,41(1):92−112. LING Zongcheng,LIU Changqing,BAI Hongchun,et al. Recent advances on the LIBS Studies of martian surface materials[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2022,41(1):92−112.
[70] 孙兰香,汪 为,张 鹏,等. 激光诱导击穿光谱在冶金在线分析中的应用研究进展[J]. 冶金分析,2021,41(12):58−67. SUN Lanxiang,WANG Wei,ZHANG Peng,et al. Research progress of laser-induced breakdown spectroscopy in metallurgical online analysis application[J]. Metallurgical Analysis,2021,41(12):58−67.
[71] OTTESEN D K,BAXTER L L,RADZIEMSKI L J,et al. Laser spark emission spectroscopy for in-situ,real-time monitoring of pulverized coal particle composition[J]. Energy & Fuels,1991,5(2):304−312.
[72] 徐水秀,喻子彧,覃淮青,等. 基于激光诱导击穿光谱的煤质快速分析研究及用用[J]. 量子电子学报,2021,38(6):727−750. XU Shuixiu,YU Ziyu,QIN Huaiqing,et al. Research and application of rapid analysis of coal quality by laser-induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics,2021,38(6):727−750.
[73] NODA M,DEGUCHI Y,IWASAKI S,et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B,2001,527:701−709.
[74] BODY D,CHADWICK B. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B,2001,56(6):725−736. doi: 10.1016/S0584-8547(01)00186-0
[75] 董美蓉,陆继东,陈 凯,等. 碳元素形态的激光诱导击穿光谱特性[J]. 强激光与粒子束,2010,22(2):270−274. doi: 10.3788/HPLPB20102202.0270 DONG M R,LU J D,CHEN K,et al. Properties of laser-induced breakdown spectroscopy of element speciation analysis of carbon[J]. High Power Laser and Particle Beams,2010,22(2):270−274. doi: 10.3788/HPLPB20102202.0270
[76] 陈世和,陆继东,李 军,等. 不同煤种煤粉颗粒流的等离子体特性研究[J]. 光电子激光,2013,24(3):596−601. CHEN S H,LU J D,LI J,et al. The plasma characteristics of different kinds of coal particles flow[J]. Journal of Optoelectronics Laser,2013,24(3):596−601.
[77] 李 娉,陆继东,谢承利,等. 水分对激光诱导煤粉等离子体特性的影响[J]. 中国激光,2009,36(4):828−832. doi: 10.3788/CJL20093604.0828 LI P,LU J D,XIE C L,et al. Influence of moisture on plasma characters of laser-induced pulverized coal[J]. Chinese Journal of Lasers,2009,36(4):828−832. doi: 10.3788/CJL20093604.0828
[78] 姚顺春,陆继东,卢志民,等. 样品形态对燃煤的激光烧蚀特性影响分析[J]. 光学学报,2009,29(4):1126−1130. doi: 10.3788/AOS20092904.1126 YAO S C,LU J D,LU Z M,et al. Influence of sample morphology on laser ablation properties of coal[J]. Acta Optica Sinica,2009,29(4):1126−1130. doi: 10.3788/AOS20092904.1126
[79] 陈世和,陆继东,董 璇,等. 不同激光参数下煤粉颗粒流等离子体特性分析[J]. 红外与激光工程,2014,43(1):113−118. doi: 10.3969/j.issn.1007-2276.2014.01.020 CHEN S H,LU J D,DONG X,et al. Study on properties of laser-induced coal particle flow plasma with different laser parameters[J]. Infrared and Laser Engineering,2014,43(1):113−118. doi: 10.3969/j.issn.1007-2276.2014.01.020
[80] 钱 燕,钟 厦,何 勇,等. 激光波长对煤激光诱导击穿光谱特性影响的试验研究[J]. 光谱学与光谱分析,2017,37(6):1890−1895. QIAN Y,ZHONG S,HE Y,et al. Effects of laser wavelength on properties of coal LIBS Spectrum[J]. Spectroscopy and Spectral Analtsis,2017,37(6):1890−1895.
[81] 张 曦,陆继东,潘 刚,等. 不同收光角度下煤粉颗粒流的 LIBS 光谱特性研究[J]. 光谱学与光谱分析,2013,33(6):1473−1476. doi: 10.3964/j.issn.1000-0593(2013)06-1473-04 ZHANG X,LU J D,PAN G,et al. Investigation on laser-induced coal particle flow plasma properties acquired with different collection angles[J]. Spectroscopy and Spectral Analysis,2013,33(6):1473−1476. doi: 10.3964/j.issn.1000-0593(2013)06-1473-04
[82] XU X,LI A,WANG X,et al. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry,2020,35(5):984−992. doi: 10.1039/C9JA00443B
[83] YAO S C,ZHAO J B,XU J L,et al. Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal[J]. Journal of Analytical Atomic Spectrometry,2017,32(4):766−772. doi: 10.1039/C6JA00458J
[84] 赵勇纲,杨传博,冀树春,等. 高能脉冲激光煤质在线检测技术的应用研究[J]. 煤炭工程,2019,51(7):80−83. ZHAO Y G,YANG C B,JI S C,et al. Application of high energy pulsed laser technology to online detection of coal quality[J]. Coal Engineering,2019,51(7):80−83.
[85] 何勇超,喻子彧,师利宝,等. LIBS直接测量输送带上原煤煤质可行性研究[J]. 洁净煤技术,2021,27(5):124−130. HE Yongchao,YU Ziyu,SHI Libao,et al. Feasibility study of direct measurement of raw coal property on conveyor belt by LIBS[J]. Clean Coal Technology,2021,27(5):124−130.
[86] 卢伟业. 煤粉颗粒流光谱特性及测量参数的优化研究[D]. 广州:华南理工大学,2013 LU W Y. Study on coal particle flow spectral characteristics and measurement parameters [D]. Guangzhou:South China University of Technology,2013.
[87] YAO S C,XU J L,DONG X,et al. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2015,110:146−150. doi: 10.1016/j.sab.2015.06.011
[88] 郑建平. 煤粉颗粒流的激光诱导击穿光谱特性及其测量方法研究[D]. 广州:华南理工大学,2014. ZHENG J P. Study on the laser plasma spectral characteristics and measurement methods of coal particle flow [D]. Guangzhou:South China University of Technology,2014.
[89] ZHENG J P,LU J D,ZHANG B,et al. Experimental study of laser-induced breakdown spectroscopy (LIBS) for direct analysis of coal particle flow[J]. Applied Spectroscopy,2014,68(6):672−679. doi: 10.1366/13-07278
[90] YU Z Y,YAO S C,ZHANG L F,et al. Surface-enhanced laser-induced breakdown spectroscopy utilizing metallic target for direct analysis of particle flow[J]. Journal of Analytical Atomic Spectrometry,2019,34(1):172−179. doi: 10.1039/C8JA00347E
[91] YAO S C,YU Z Y,XU S X,et al. Repeatability improvement in laser induced plasma emission of particle flow by aberration diminished focusing[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2021,175:106014. doi: 10.1016/j.sab.2020.106014
[92] FU Y T,GU W L,HOU Z Y,et al. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Frontiers of Physics,2020,16(2):22502.
[93] HOU Z Y,AFGAN M S,SHETA S,et al. Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry,2020,35(8):1671−1677. doi: 10.1039/D0JA00195C
[94] 张 雷,侯佳佳,赵 洋,等. 激光诱导击穿光谱精确测定燃煤工业分析指标的研究[J]. 光谱学与光谱分析,2017,37(10):3198−3203. ZHANG L,HOU J J,ZHAO Y,et al. Investigation on accurate proximate analysis of coal using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis,2017,37(10):3198−3203.
[95] 张 雷,马维光,闫晓娟,等. 激光诱导击穿光谱实验装置的参数优化研究[J]. 光谱学与光谱分析,2011,31(9):2335−2360. ZHANG L,MA W G,YAN X J,et al. Research on parameters optimization of laser-induced breakdown spectroscopy based experimental device[J]. Spectroscopy and Spectral Analysis,2011,31(9):2335−2360.
[96] 尹王保,张 雷,张建宏,等. 基于激光诱导击穿光谱的煤元素分析研究[J]. 测试技术学报,2011,4(25):356−359. YIN W B,ZHANG L,ZHANG J H,et al. Analysis of the elements in the coal based on laser-induced breakdown spectroscopy[J]. Journal of Test and Measurement Technology,2011,4(25):356−359.
[97] 尹王保,张 雷,王 乐,等. 空气环境下基于 LIBS 煤中氧含量分析研究[J]. 光谱学与光谱分析,2012,32(1):200−203. doi: 10.3964/j.issn.1000-0593(2012)01-0200-04 YIN W B,ZHANG L,WANG L,et al. Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment[J]. Spectroscopy and Spectral Analysis,2012,32(1):200−203. doi: 10.3964/j.issn.1000-0593(2012)01-0200-04
[98] 尹王保,张 雷,王 乐,等. 基于 LIBS 煤中碳元素定量分析研究[J]. 光谱学与光谱分析,2012,32(5):1355−1358. doi: 10.3964/j.issn.1000-0593(2012)05-1355-04 YIN W B,ZHANG L,WANG L,et al. Research on the carbon content of coal by LIBS[J]. Spectroscopy and Spectral Analysis,2012,32(5):1355−1358. doi: 10.3964/j.issn.1000-0593(2012)05-1355-04
[99] ZHANG L,HOU J J,ZHAO Y,et al. Investigation on accurate proximate analysis of coal using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis,2017,37(10):3198−3203.
[100] LI X,ZHANG L,TIAN Z,et al. Ultra-repeatability measurement of the coal calorific value by XRF assisted LIBS[J]. Journal of Analytical Atomic Spectrometry,2020,35(12):2928−2934. doi: 10.1039/D0JA00362J
[101] 谢承利. 激光诱导击穿光谱数据处理方法及在煤分析中的应用研究[D]. 武汉:华中科技大学,2009. XIE CL. Study of the spectral data processing in laser induced breakdown spectroscopy analysis and its application in elemental analys is of coal [D]. Wuhan:Huazhong University of Science and Technology,2009.
[102] BEEGLE L,BHARTIA R,WHITE M,et al. SHERLOC:scanning habitable environments with Raman & luminescence for organics & chemicals [C]//IEEE,Santiago: 2015,1–11.
[103] 袁汝俊. 面向火星应用的远程 LIBS 及 Raman 探测技术研究[D]. 上海:中国科学院上海技术物理研究所,2020. YUAN Runjun. Research on Remote LIBS and Raman Detection Technology for Mars Application[D]. Shanghai:Shanghai Institute of Technical Physics,CAS,2020.
[104] HOEHSE M, DAVID Mory , STEFAN Florek , et al.A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64:1219-1227. HOEHSE M,DAVID Mory ,STEFAN Florek ,et al.A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64:1219-1227.
[105] QIN H Q,LU Z M,YAO S C,et al. Combining laser-induced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties[J]. Journal of Analytical Atomic Spectrometry,2019,34(2):347−355. doi: 10.1039/C8JA00381E
[106] JAHEDSARAVANI A,MASSINAEI M,MARHABAN M H. Development of a machine vision system for real-time monitoring and control of batch flotation process[J].International Journal of Mineral Processing,2017,167,16–26.
[107] BHUIYAN I U,MOUZON J,FORSMO SPE et al. Quantitative image analysis of bubble cavities in iron ore green pellets[J].Powder Technology,2011,214,306–312.
[108] IGLESIAS JCÁ,SANTOs RBM,PACIORNIK S. Deep learning discrimination of quartz and resin in optical microscopy images of minerals[J].Minerals Engineering,2019,138,79–85.
[109] IGLESIAS Jcá,AUGUSTO K S,GOMES Ofm. Automatic characterization of iron ore by digital microscopy and image analysis[J].Journal of Materals Research and Technology,2018(7):376–380.
[110] LEROY S,PIRARD E. Mineral recognition of single particles in ore slurry samples by means of multispectral image processing,Miner[J]. Engineering,2019,132,228–237.
[111] LANE GR,MARTIN C,PIRARD E. Techniques and applications for predictive metallurgy and ore characterization using optical image analysis[J]. Minerals Engineering,2008,21,568–577.
[112] ZHANG Z,YANG J,WANG Y. Ash content prediction of coarse coal by image analysis and GA-SVM[J]. Powder Technology,2014,68,429–435.
[113] 程德强,张皓翔,江 曼,等. 融合主曲率与颜色信息的彩色图像检索算法[J]. 计算机辅助设计与图形学学报,2021,33(2):223−231. CHENG Deqiang,ZHANG Haoxiang,JIANG Man,et al. Color image retrieval method fusing principal curvature and color information[J]. Journal of Computer-Aided Design & Computer Graphics,2021,33(2):223−231.
[114] ZHANG Haoxiang,JIANG Man,KOU Qiqi. Color image retrieval algorithm fusing color and principal curvatures information[J]. IEEE Access,2020(8):184945−184954.
[115] TAYLOR G,TEICHMÜLLER M,DAVIS A. Organic petrology[M]. Borntraeger,1998.
[116] SONG Y,JIANG B,LI M,et al. Macromolecular transformations for tectonically-deformed high volatile bituminous via HRTEM and XRD analyses[J]. Fuel,2020,263,116756.
[117] ZHANG Y,HU S R,ZHONG Q F,et al. A large-scale molecular model of Fenghuangshan anthracite coal[J]. Fuel,2021,295,120616.
[118] LI J Q,QIN Y,CHEN Y L,et al. HRTEM observation of morphological and structural evolution of aromatic fringes during the transition from coal to graphite[J]. Carbon,2022,187,133−144.
[119] NARKIEWICZ M R,MATHEWS J P. Improved low-volatile bituminous coal representation:incorporating the molecular-weight distribution[J]. Energy Fuels,2008,22:3104–3111.
[120] MATHEWS J P,FERNANDEZ-ALSO V,JONES A D,SCHOBERT HH. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel,2010,89:1461–1469.
[121] MATHEWS J P,SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel,2012,95:19–24.
[122] GUO Xin,TANG Yuegang,SCHOBERT HH,et al. Inspired by the optical properties of char and coke:a study on differences between them from perspectives of organic elemental contents and the carbon nanostructure[J]. Energy and Fuels,https://doi.org/10.1021/acs.energyfuels.3c04621.
[123] 王 越,白向飞,张宇宏,等. 煤岩自动测试系统在煤焦异常判断中的应用[J]. 煤质技术,2020,35(3):25−31. doi: 10.3969/j.issn.1007-7677.2020.03.005 WANG Yue,BAI Xiangfei,ZHANG Yuhong,et al. Application of automatic coal petrography in abnormity diagnosis of coal and coke industry[J]. Coal Quality Technology,2020,35(3):25−31. doi: 10.3969/j.issn.1007-7677.2020.03.005
[124] 王 越,白向飞,曲思建. 煤岩显微组分自动识别技术研究进展[J]. 煤质技术,2021,36(1):49−57. WANG Yue,BAI Xiangfei,QU Sijian. Research progress on automatic coal maceral identification[J]. Coal Quality Technology,2021,36(1):49−57.
[125] 王 越,白向飞,曲思建. 基于反射率及形态学参数的煤岩显微组分自动识别模式[J]. 煤质技术,2021,36(3):14−20. doi: 10.3969/j.issn.1007-7677.2021.03.002 WANG Yue,BAI Xiangfei,QU Sijian. Recognition pattern of automatic identification of coal macerals based on reflectance and morphological parameters[J]. Coal Quality Technology,2021,36(3):14−20. doi: 10.3969/j.issn.1007-7677.2021.03.002
[126] 王 越,曲思建,白向飞. 显微镜非均匀光照对煤岩显微图像的影响及校正方法[J]. 煤炭学报,2021,46(S2):877−886. WANG Yue,QU Sijian,BAI Xiangfei,et al. Influence of uneven lighting of microscope on petrographic images and the calibration methods[J]. Journal of China Coal Society,2021,46(S2):877−886.
[127] 宋孝忠,张 群. 煤岩显微组分组图像自动识别系统与关键技术[J]. 煤炭学报,2019,44(10),3085–3097. SONG Xiaoqun,ZHANG Qun. Automatic image recognition system and key technologies of maceral group[J]. Journal of China Coal Society,2019,44(10),3085–3097.
[128] 张 强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−26. ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. ,Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1−26.
[129] 王 超,张 强. 基于LBP和GLCM的煤岩图像特征提取与识别方法[J]. 煤矿安全,2020,51(4):129−132. WANG Chao,ZHANG Qiang. Coal rock image feature extraction and recognition method based on LBP and GLCM[J]. Safety in Coal Mines,2020,51(4):129−132.
[130] 柴阿军,唐耿彪,何云峰,等. 基于电煤图像分析的煤质指标检测方法[J]. 计算机工程与设计,2016,37(1):163−168. CHAI Ajun,TANG Gengbiao,HE Yunfeng,et al. Coal quality index testing method based on data analyses of coal images[J]. Computer Engineering and Design,2016,37(1):163−168.
[131] 刘建兵. 煤质快速分析方案的应用研究[J]. 山西化工,2022,8:56−57. LIU Jianbing. Study on application of fast analysis scheme of coal quality[J]. Shanxi Chemical Industry,2022,8:56−57.
[132] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频 AI 识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349−365. CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J].Coal Science and Technology,2023,51(2):349−365.
[133] 方原柏. 皮带秤系统试验装置发展四十年回顾[J]. 衡器,2021,50(8):42−51. doi: 10.3969/j.issn.1003-5729.2021.08.011 FANG Yuanbai. Review of 40 years development of belt weigher system test device[J]. Weighing Instrument,2021,50(8):42−51. doi: 10.3969/j.issn.1003-5729.2021.08.011
[134] 马 辉. 电子皮带秤计量、校准及误差分析[J]. 衡器,2019,48(1):11−13. MA Hui. The measurement accuracy and error analysis of electronic belt scale[J]. Weighing Instrument,2019,48(1):11−13.
[135] 关西锋. 新型电子皮带秤和微机核子秤在钼原矿计量的应用[J]. 衡器,2013,42(10):12−16. doi: 10.3969/j.issn.1003-5729.2013.10.003 GUAN Xifeng. The utilization of new electronic belt scale and micro computerized nuclear scale when measuring the molybdenum ore[J]. Weighing Instrument,2013,42(10):12−16. doi: 10.3969/j.issn.1003-5729.2013.10.003
[136] 葛世荣. 采煤机技术发展历程(六):煤岩界面探测[J]. 中国煤炭,2020,46(11):10−24. doi: 10.3969/j.issn.1006-530X.2020.11.002 GE Shirong. The development history of coal shearer technology (Part six):coal-rock interface detection[J]. China Coal,2020,46(11):10−24. doi: 10.3969/j.issn.1006-530X.2020.11.002
[137] 曾 飞. 带式输送机物料瞬时流量激光测量方法[J]. 湖南大学学报 (自然科学版),2015(2):40−47. ZENG Fei. Measurement of material instantaneous flow on belt conveyors based on laser scanning[J]. Journal of Hunan University(Natural Sciences),2015(2):40−47.
[138] 陈湘源. 基于超声波的带式输送机多点煤流量监测系统设计[J]. 工矿自动化,2017,43(2):75−87. CHEN Xiangyuan. Design of multipoint coal flow monitoring system of belt conveyor based on ultrasonic[J]. Industry and Mine Automation,2017,43(2):75−87.
[139] 杨春雨,顾 振,张 鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164−174. YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164−174.
[140] 李玥华,周京博,刘利剑. 线结构光测量技术研究进展[J]. 河北科技大学学报,2018,39(2):115−124. doi: 10.7535/hbkd.2018yx02004 LI Yuehua,ZHOU Jingbo,LIU Lijian. Research progress of the line structured light measurement technique[J]. Journal of Hebei University of Science and Technology,2018,39(2):115−124. doi: 10.7535/hbkd.2018yx02004
[141] 郭伟东,李 明,亢俊明,等. 基于机器视觉的矿井输煤系统优化节能控制[J]. 工矿自动化,2020,46(10):69−75. GUO Weidong,LI Ming,KANG Junming,et al. Optimal energy saving control of mine coal transportation system based on machine vision[J]. Industry and Mine Automation,2020,46(10):69−75.
[142] 寇旗旗,程德强,于文洁,等. 一种基于颜色和纹理信息的运动目标识别装置及方法 [P]. 中国:ZL110232703A,2019-09-13. [143] 方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263−270. FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263−270.
[144] 王建兵. NGAM−2008天然射线灰分仪在高阳选煤厂煤泥灰分测定中的应用[J]. 煤炭加工与综合利用,2018(3):55–56. [145] 葛学海,白云飞,陈 鹏,等. NGAM-2008天然射线灰分仪在选煤厂原煤灰分检测中的应用选煤技术[J]. 2016 (2):64–66. GE Xuehai,BAI Yunfei,CHEN Peng,et al. Application of the NGAM-2008 natural gamma-ray ash monitor for raw coal ash measurement in coal preparation plant[J]. Coal Preparation Technology,2016(2):64–66.
[146] 梁 威. NGAM-2008无源灰分仪在高阳选煤厂精煤灰分检测中的应用[J]. 煤炭加工与综合利用,2019(8):48−49,52. [147] 葛学海,白云飞,陈 鹏,等. NGAM-2008天然射线灰分仪在东滩选煤厂的应用[J]. 选煤技术,2014(4):69−72. GE Xuehai,BAI Yunfei,CHEN Peng,et al. Application of NGAM- 2008 natural gamma ray ash monitor in coal preparation plant of Dongtan coal mine[J]. Coal Preparation Technology,2014(4):69−72.
[148] 王振龙. 激光全元素煤质在线分析仪在神东选煤厂的应用[J]. 洁净煤技术,2019,25(S1):49−52. WANG Zhenlong. Application of coal on-line coal quality laser analyzer in Shendong coal preparation plant[J]. Clean Coal Technology,2019,25(S1):49−52.
[149] 彭 丽,陈 重,郝博南. 基于激光与视觉融合的煤量检测技术研究[J]. 煤炭技术,2023,42(3):259−263. PENG Li,CHEN Zhong,HAO Bonan. Research on coal quantity detection technology based on laser and vision fusion[J]. Coal Technology,2023,42(3):259−263.