高级检索

暗环境适应性的基于SLAM的煤矿井下机器人定位方法

SLAM-based localization method of coal mine underground robot with adaptability to dark illumination environment

  • 摘要: 在智慧矿山建设的背景下,智能化设备的应用日益成为矿山智慧化改造的主要内容,用于巡检、危险区域勘测等任务的煤矿井下智能机器人运行依赖于数字地图构建和机器人自身定位,但大多数传统的定位方法在煤矿井下出现了低效甚至失效的情况,同步定位与建图技术(Simultaneous Localization and Mapping, SLAM)成为了煤矿井下智能机器人定位方法的较优选择。然而,受制于激光雷达的高成本,以及相机在井下的低光照环境性能不佳,需要设计一种兼顾低成本和具有井下低光照环境适应性的SLAM定位方法,故提出了一种具有井下暗光照适应性煤矿井下机器人定位方法。首先,采集了陕西省宝鸡市凤县某煤矿井下的实景图像和SLAM所需的相机与IMU数据,根据图像制作了非匹配的暗光与正常光数据集,经过数据扩增达到3 560张图像。设计了结合自注意力模块的EnlightenGAN图像增强网络,在不依赖配对数据集的情况下兼顾图像不同区域的依赖关系应对图像光照不均区域。在ORB–SLAM3框架的基础上,引入全局部图像检测对输入图像进行筛分,引入基于解析解的IMU初始化改进策略提高初始化速度,并引入了改进的图像增强网络对低光照以及光照不均的图像进行增强处理。在EuRoC数据集上的试验表明,基于图像增强的煤矿井下智能机器人定位方法能够在低光照环境下降低13.7%的ERMS和15.24%的ESD。在2个实际煤矿巷道场景中,系统能够识别低光照环境、增加SLAM系统提取的特征点数量,减少定位轨迹的漂移现象,最终改善系统在巷道低光照区域的定位效果。

     

    Abstract: Under the background of intelligent mine construction, the application of intelligent equipment has increasingly become the main content of mine intelligent transformation. Intelligent robots in coal mine that are designed for inspecting and dangerous area surveying and doing other tasks depends on the construction of digital map of underground coal mine and the localizing of the robot itself. But most of the traditional localizing methods are inefficient or even ineffective in the underground. Simultaneous Localization and Mapping (SLAM) has become a better choice for underground intelligent robot localization methods. However, due to the high cost of lidar and the poor performance of camera in low illumination environment, it is necessary to design a SLAM localization method that takes into account both low cost and adaptability to low illumination environment. Therefore, a localization method of robot with underground dark light environment adaptability in coal mine is proposed. Firstly, the real images of the gallery of a coal mine in Fengxian County, Baoji City, Shaanxi Province and the dataset of the camera and IMU required for SLAM were collected. According to the images, non-matching dark light and normal light dataset was made, and 3560 images were obtained after data amplification. An EnlightenGAN image enhancement network combined with self-attention module is designed, which takes into account the dependence of different regions of the image without relying on the paired dataset. Based on the ORB–SLAM3 framework, the whole local image detection is introduced to screen the input image, and an improved IMU initialization strategy based on analytical solution is introduced to improve the initialization speed, and the improved image enhancement network is transplanted to enhance the low illumination and uneven illumination images. Experiments on the EuRoC dataset show that the image enhancement-based underground coal mine robot localization method can reduce ERMS by 12.17% and ESD by 14.35% in low-light environments. In two actual coal mine roadway scenarios, the low-light environment can be identified, and the increasing number of feature points are extracted and the drift phenomenon of positioning trajectory is reduced by the SLAM system and. Finally, the localizing effect of the system is improved in the dark area of the roadway.

     

/

返回文章
返回