高级检索

基于LSTM的液压支架尾梁倾角预测方法

Method of tail beam posture prediction of top coal caving hydraulic support based on LSTM

  • 摘要: 综放开采是我国特厚煤层主要的开采方式,放煤执行机构控制精度很大程度上依赖于尾梁姿态的数据反馈。为了提高放煤执行机构的控制精度,提出了一种基于长短期记忆神经网络(LSTM)的支架尾梁倾角预测方法。将与尾梁放煤动作相关的支架底板绝对坐标、尾梁倾角、尾梁相对高度、移架速率和立柱压力作为RNN卷积网络和LSTM神经网络的输入变量,使用某煤矿综放工作面放煤历史数据对支架尾梁姿态预测模型进行训练和验证,建立支架尾梁姿态预测模型,对尾梁倾角进行连续16 h预测,结果预测的尾梁倾角曲线与实际尾梁倾角曲线的拟合程度达98.7%。在综采放顶煤工作面开展了3~4个生产班的液压支架尾梁倾角预测试验,经过对比分析预测的尾梁倾角曲线与实际尾梁倾角曲线,当置信区间为(0.98,1.02)时,连续生产16 h预测准确率为98.40%。基于LSTM的支架尾梁倾角姿态预测方法解决了电液控系统自适应放煤作业尾梁倾角控制问题,为综放工作面无人放煤奠定了基础。

     

    Abstract: Fully mechanized caving is the main mining method for extra-thick coal seams in my country. The control accuracy of the caving actuator depends largely on the data feedback of the tail beam posture. In order to improve the control accuracy of the caving actuator, a method for predicting the inclination of the support tail beam based on the long short-term memory neural network (LSTM) was proposed. The absolute coordinates of the support bottom plate, the inclination of the tail beam, the relative height of the tail beam, the frame shifting rate and the column pressure related to the tail beam caving action were used as the input variables of the RNN convolutional network and the LSTM neural network. The historical data of coal caving in a fully mechanized caving working face of a coal mine were used to train and verify the support tail beam posture prediction model, and the support tail beam posture prediction model was established. The tail beam inclination was predicted for 16 consecutive hours. The fitting degree of the predicted tail beam inclination curve and the actual tail beam inclination curve reached 98.7%. In the fully mechanized top coal caving face, 3~4 production shifts of hydraulic support tail beam inclination prediction tests were carried out. After comparing and analyzing the predicted tail beam inclination curve with the actual tail beam inclination curve, when the confidence interval was (0.98, 1.02), the prediction accuracy for 16 hours of continuous production was 98.40%. The LSTM-based support tail beam inclination posture prediction method solved the problem of tail beam inclination control in the electro-hydraulic control system's adaptive coal caving operation, laying the foundation for unmanned coal caving in the fully mechanized top coal caving face.

     

/

返回文章
返回