Research status and prospects of energy-absorbing anchor support equipment
-
摘要:
吸能支护是地下岩体工程领域中用于提高围岩稳定性和避免冲击地压等灾害发生的一种重要的防治技术。吸能支护技术的核心原理是通过特定的结构设计,使支护体系在岩体发生位移或变形时能够有效吸收或消耗能量,从而减少由冲击载荷引发的工程破坏和事故。吸能锚杆是吸能支护的一种常见形式,此技术通过锚杆将表面围岩与深部稳定岩体相结合,并在围岩内部产生预应力吸收或耗散能量从而避免矿山灾害的发生。吸能锚杆这种柔性支护方式适用于多种环境的巷道支护,现已被广泛应用于矿山灾害的防治。综述自1968年以来30余种具有代表性意义的吸能锚杆设计方式,以结构和材料2大类型为切入点进行划分,着重分析8种典型吸能锚杆的工作原理与设计优势,并以此指出现有吸能锚杆支护在应用中存在的安全性与智能性等方面的不足。结合前人研究成果与目前深部矿井支护高强度与智能化等需求,提出一种智能预警负泊松比结构吸能锚杆。该锚杆利用负泊松比吸能结构实现增阻效果,具有双向恒阻吸能与双向监测预警等特性,能够满足复杂的非线性软岩巷道强阻支护、可视化预警等需求,有助于加快支护体系一体化,促进安全、智慧矿山的发展。最后,对吸能锚杆支护设备的优化革新趋势进行了展望。
Abstract:Energy-absorbing support is an important prevention and control technology in underground rock engineering to enhance the stability of surrounding rock and prevent disasters such as rock burst. The core principle of energy-absorbing support technology is to effectively absorb or dissipate energy through specific structural designs when the rock mass undergoes displacement or deformation, thereby reducing engineering failure and accidents caused by impact loads. Energy-absorbing bolts are a common form of energy-absorbing support. This technology combines the surface surrounding rock with the deep stable rock mass through bolts and generates prestress within the surrounding rock to absorb or dissipate energy and prevent mine disasters. This flexible support method is suitable for the support of various environments in tunnel and has been widely used in the prevention and control of mine disasters. This investigation reviews over 30 representative energy-absorbing bolt designs since 1968, classifying them into two major types: structure and material. It focuses on analyzing the working principles and design advantages of eight typical energy-absorbing bolts and points out the deficiencies in the application of existing energy-absorbing bolt support in terms of safety and intelligence. Combining the valuable research results of predecessors with the current demands of high-strength and intelligent support in deep mines, an intelligent early warning negative Poisson’s ratio structure energy-absorbing bolt is proposed. This bolt utilizes a negative Poisson’s ratio energy-absorbing structure to achieve an increased resistance effect and has the characteristics of bidirectional constant resistance energy absorption and bidirectional monitoring and early warning. It can meet the demands of strong resistance support and visual early warning in complex nonlinear soft rock tunnel, which is conducive to accelerating the integration of support systems and promoting the development of safe and intelligent mines. Finally, this study provides an outlook on the optimization and innovation trends of energy-absorbing bolt support equipment.
-
-
表 1 2000年后典型吸能锚杆
Table 1 Typical energy-absorbing anchors after 2000
发明人 功能类型 吸能原理 吸能类型 CHARETTE等[24] Roofex锚杆 利用能量吸收部件中的销钉与杆体间的摩擦提供工作阻力 结构摩擦型 李铀等[25] 一种适用于大变形支护的新型锚杆 通过一种锥形楔体在锚杆伸长时提升锚杆的拉拔力 何满潮等[6] HMG型恒阻大变形锚杆 不但可以提供较大的支护阻力和结构变形量,而且具有恒阻力学特性 潘一山等[26] 一种矿用让位摩擦式吸能防冲锚杆 用波纹管与杆体摩擦吸能,并设置杆端挡块,施工结束后挡块未损坏可继续使用 王斌等[27] 可用于岩爆灾害的动静组合锚杆 对可伸长杆体两端进行锚固,将可伸长构件置于弹性区和破裂区边界附近,锚杆既能提供一定的变形空间,破裂区全长锚固的锚杆又能够对层裂岩体提供补强作用 结构压缩型 韩军等[28] 一种大变形螺纹钢锚杆 通过优化设计螺纹钢锚杆肋间距参数,提高了锚杆-锚固剂交界面受平行剪切和剪涨滑移作用下的吸能峰值 唐治等[29] 一种让位缓冲吸能防冲锚杆 防冲构件通过塑性变形直接耗散一部分围岩冲击能量,其变形空间给煤岩提供了一定的能量释放空间,间接耗散其余围岩冲击能量 齐永正等[30] 一种负泊松比锚杆支护
装置三段锚杆伸长变形带动波形板−圆柱钢管结构从水波形渐渐伸平,波形板−圆柱钢管结构比未伸平时的高度高,达到结构的拉胀负泊松比效应 王阁[31] 一种可延伸锚杆 锚杆尾部增加一种让压管,通过让压管的变形使锚杆适应围岩变形 结构摩擦与压缩型 赵宝友等[32] 一种扩径挤压摩擦锚杆锚索结构 通过锚杆胀管器或锚索胀管器与套管扩径挤压、摩擦产生恒阻力,通过锚杆胀管器或锚索胀管器的相对滑移提供变形量 CHEN等[33] 一种用于地底深部围岩变形控制的恒阻大变形锚杆 利用材料负泊松比效应实现杆体结构大变形达到恒阻支护作用 钟紫蓝等[34] 一种基于负泊松比结构理论的锚杆装置 利用了负泊松比结构理论,在波纹管中加入撑杆,使得在钢绞线在支护工作受到轴向拉力时,其撑杆可以推动波纹管上下分离,以此增加波纹管与岩层内土体间的压力,增加锚杆切向摩擦力,达到更好的支护增阻效果 LI等[35] D型锚杆(D-bolt) 利用锚固结构间杆体的伸长来吸收围岩变形能 杆体材料型 KNOX等[36] 一种消能锚杆 由杆体、桨形锚固结构、托盘等组成,利用杆体的变形来吸收围岩能量 李鹏[37] 一种吸能−抗震锚杆 通过拉直吸能段弯曲杆体来吸收围岩变形的能量 唐治等[38] 一种大变形玻璃钢锚杆 在易折断部位增加金属大变形吸能构件以增加玻璃钢锚杆的延长率 表 2 典型锚杆优势总结
Table 2 Summary of typical anchors advantages
类型 名称 直径/mm 最大静载/kN 伸长量/mm 吸收能量/104 J 优势 结构摩擦型吸能锚杆 Conebolt 16 100 500 4.79 结构简单,对材料没有过高要求,便于制造 22 150 600 10.86 结构压缩型吸能锚杆 恒阻大变形锚杆 22 150 1050 13.61 锚固性强,具有高恒阻力、大变形能力 一种增阻高强预应力锚杆 — — — — 结构简单,易于实施,具有恒阻特性 一种新型消能抗震锚杆 — — — — 双向恒阻,具有阶段性变形消能和变形
恢复的特性结构摩擦与压缩型
吸能锚杆一种挤压、摩擦式吸能锚杆 — — — — 锚杆承载力较高,能够在围岩变形过程中
实现动态平衡一种双向恒阻监测锚杆 — — — — 双向恒阻,监测预警 材料型吸能锚杆 Durabar锚杆 16 70 450 3.77 耐腐蚀性强于普通锚杆,结构简单 BHRB锚杆 18 150 342 4.73 结构简单,锚固性能明显,具有较高的
支护阻力和变形性能20 170 375 6.12 22 205 370 7.10 -
[1] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报,2005,24(16):2854−2858. doi: 10.3321/j.issn:1000-6915.2005.16.007 HE Manchao. Conception system and evaluation indexes for deep engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2854−2858. doi: 10.3321/j.issn:1000-6915.2005.16.007
[2] 姜福兴,张翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213. JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213.
[3] GUO Z B,WANG Q,YIN S Y,et al. The creep compaction behavior of crushed mudstones under the step loading in underground mining[J]. International Journal of Coal Science & Technology,2019,6(3):408−418.
[4] 韩军,李广汉,郭宝龙,等. 巷帮煤体整体滑脱型冲击地压锚杆防冲支护原理及工程实践[J]. 煤炭科学技术,2024,52(1):117−125. HAN Jun,LI Guanghan,GUO Baolong,et al. Design principle and engineering practice of rock bolting to prevent coal bump from rib coal massive slippage[J]. Coal Science and Technology,2024,52(1):117−125.
[5] 肖晓春,刘海燕,丁鑫,等. 单向卸载条件下组合煤岩力学特性及声发射演化规律[J]. 煤炭科学技术,2023,51(11):71−83. XIAO Xiaochun,LIU Haiyan,DING Xin,et al. Mechanical properties and acoustic emission evolution of coal-rock combination under unidirectional unloading condition[J]. Coal Science and Technology,2023,51(11):71−83.
[6] 何满潮,郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报,2014,33(7):1297−1308. HE Manchao,GUO Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1297−1308.
[7] 肖晓春,朱恒,徐军,等. 含泡沫铝填充多胞方管吸能立柱防冲特性数值研究[J]. 煤炭科学技术,2023,51(10):302−311. XIAO Xiaochun,ZHU Heng,XU Jun,et al. Numerical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam[J]. Coal Science and Technology,2023,51(10):302−311.
[8] 曾奇. 我国煤巷机械化掘进机现状及锚杆支护技术[J]. 当代化工研究,2021(14):71−72. doi: 10.3969/j.issn.1672-8114.2021.14.033 ZENG Qi. Present situation and bolt support technology of mechanized roadheader in coal roadway in China[J]. Modern Chemical Research,2021(14):71−72. doi: 10.3969/j.issn.1672-8114.2021.14.033
[9] 王贺,陈何,曹辉. 我国大变形锚杆研究现状及发展趋势[J]. 黄金科学技术,2020,28(1):112−123. WANG He,CHEN He,CAO Hui. Research status and trends of large deformation rock bolts in China[J]. Gold Science and Technology,2020,28(1):112−123.
[10] 康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术,2021,49(4):1−11. KANG Hongpu. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology,2021,49(4):1−11.
[11] 郭泽洋,王斌,宁勇. 可伸长让压锚杆的研究现状及展望[J]. 采矿技术,2019,19(3):38−42. doi: 10.3969/j.issn.1671-2900.2019.03.014 GUO Zeyang,WANG Bin,NING Yong. Research status and outlook of extendable letting pressure anchors[J]. Mining Technology,2019,19(3):38−42. doi: 10.3969/j.issn.1671-2900.2019.03.014
[12] 黄勇,孙淼,王爱文,等. 山西某矿2#煤层锚网支护参数设计优化研究[J]. 煤炭技术,2023,42(5):34−39. HUANG Yong,SUN Miao,WANG Aiwen,et al. Research on design optimization of No. 2 coal seam bolt and mesh support parameters in a mine in Shanxi[J]. Coal Technology,2023,42(5):34−39.
[13] COOK N G W,ORTLEPP W D. A yielding rockbolt[J]. Chamber of Mines of South Africa. Research Organization Bulletin,1968,8(14):19−24.
[14] CHARETTE F. Performance of Swellex rock bolts under dynamic loading conditions[C]//Second International Seminar on Deep and High Stress Mining,Johannesburg:The South African Institute of Mining and Metallurgy. 2004:95−106.
[15] WINDSOR C R. Cable bolting for underground and surface excavations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(6):371−371.
[16] HYETT A,BAWDEN W,HEDRICK N,et al. A laboratory evaluation of the 25 mm Garford bulb anchor for cable bolt reinforcement[J]. Cim Bulletin,1995,88:54−59.
[17] LI L,KONG X S,YANG W,et al. A study of anchor cable and C-shaped tube support for the roadway of Shuangliu coal mine[J]. Symmetry,2023,15(9):1757. doi: 10.3390/sym15091757
[18] 何亚男. 可拉伸锚杆的基本原理与设计[J]. 矿山压力,1987,4(2):16−19,2−65. HE Yanan. Basic principles and design of tensile anchors[J]. Journal of Mining & Safety Engineering,1987,4(2):16−19,2−65.
[19] 宋德彰,孙钧. 锚喷支护力学机理的研究[J]. 岩石力学与工程学报,1991,10(2):197−204. SONG Dezhang,SUN Jun. Study on the mechanical mechanism of shotcrete-rockbolt support system[J]. Chinese Journal of Rock Mechanics and Engineering,1991,10(2):197−204.
[20] 何亚男,侯朝烱. 改进型杆体可拉伸锚杆:CN2081884U[P]. 1991−07−31. [21] 高延法,张文泉,肖洪天,等. 柔刚性可伸缩锚杆:CN2138193[P]. 1993−07−14. [22] 冯志刚,李夕兵. 可伸缩胀管式锚杆在大变形巷道支护中的应用[J]. 湖南有色金属,1994,10(2):65−67. FENG Zhigang,LI Xibing. Application of expandable expansion tube anchor in the support of large deformation roadway[J]. Hunan Nonferrous Metals,1994,10(2):65−67.
[23] 覃卫民,葛修润,黄智慧,等. 一种砂固结内锚头预应力锚杆及其锚固方法:CN1259499C[P]. 2006−06−14. [24] GALLER R,GSCHWANDTNER G,DOUCET C. Roofex bolt and its application in tunnelling by dealing with high stress ground conditions[C]// Helsinki:World Tunnel Congress 2011,2011
[25] 李铀,朱维申,白世伟,等. 一种适用于大变形支护的新型可伸长锚杆[J]. 中南公路工程,2007,32(2):103−105,127. LI You,ZHU Weishen,BAI Shiwei,et al. New extensible bolt suitable for large deformation support[J]. Journal of Central South Highway Engineering,2007,32(2):103−105,127.
[26] 潘一山,朱小景,唐治,等. 一种矿用让位摩擦式吸能防冲锚杆:CN105822332B[P]. 2018−01−30. [27] 王斌,李夕兵,马春德,等. 岩爆灾害控制的动静组合支护原理及初步应用[J]. 岩石力学与工程学报,2014,33(6):1169−1178. WANG Bin,LI Xibing,MA Chunde,et al. Principle and preliminary application of combined static-dynamic support to rockburst disaster controlling[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1169−1178.
[28] 韩军,王鑫,马双文,等. 适用于围岩大变形的螺纹钢锚杆设计及工程实践[J]. 煤炭学报,2021,46(12):3745−3755. HAN Jun,WANG Xin,MA Shuangwen,et al. Design and engineering practice of rebar bolt for large deformation roadway[J]. Journal of China Coal Society,2021,46(12):3745−3755.
[29] 唐治,潘一山,徐兴强,等. 一种让位缓冲吸能防冲锚杆:CN108119175B[P]. 2019−11−05. [30] 齐永正,杨子明,金光球,等. 一种负泊松比锚杆支护装置:CN115045699A[P]. 2022−09−13. [31] 王阁. 预应力让压锚杆的数值模拟研究及其应用[D]. 青岛:山东科技大学,2007. WANG Ge. Numerical simulation of pre-stressed yield bolt support and its application[D]. Qingdao:Shandong University of Science and Technology,2007.
[32] 赵宝友,李佳伟,张立新,等. 一种扩径挤压摩擦锚杆锚索结构:CN109026103B[P]. 2020−03−17. [33] CHEN Y. Experimental study and stress analysis of rock bolt anchorage performance[J]. Journal of Rock Mechanics and Geotechnical Engineering,2014,6(5):428−437. doi: 10.1016/j.jrmge.2014.06.002
[34] 钟紫蓝,赵鑫,李锦强,等. 一种基于负泊松比结构理论的锚杆装置及其应用:CN116145657A[P]. 2023−05−23. [35] CHUNLIN LI C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(3):396−404. doi: 10.1016/j.ijrmms.2010.01.005
[36] KNOX G,BERGHORST A,CROMPTON B. The relationship between the magnitude of impact velocity per impulse and cumulative absorbed energy capacity of a rock bolt[C]// Sydney:Proceedings of the Fourth Australasian Ground Control in Mining Conference Proceedings,2018
[37] 李鹏. 一种吸能-抗震锚杆:CN207609439U[P]. 2018−07−13. [38] 唐治,吴志伟,齐晓苗,等. 一种大变形玻璃钢锚杆:CN218293629U[P]. 2023−01−13. [39] JAGER A J. Two new support units for the control of rock-burst damage[C] // Proceedings of the International Symposium on Rock Support. Rotterdam:A A Balkema Publishers,1992.
[40] 王炯. 唐口煤矿深部岩巷恒阻大变形支护机理与应用研究[D]. 北京:中国矿业大学(北京),2011. WANG Jiong. Large deformation with constant-resistance supporting mechanism and its application of deep rocky tunnel in Tangkou coal mine[D]. Beijing:China University of Mining & Technology-Beijing,2011.
[41] О·Г·萨赫诺,周蒲英. 一种新型的让压锚杆[J]. 中州煤炭,1987,9(5):42−43. О-Г-Sakhno,ZHOU Puying. A new type of pressurized anchor[J]. Zhongzhou Coal,1987,9(5):42−43.
[42] 宋战平,许晓静,刘伟,等. 吸能锚杆及其静动力试验方法研究综述[J]. 现代隧道技术,2023,60(3):1−13. SONG Zhanping,XU Xiaojing,LIU Wei,et al. A review of study on energy-absorbing rockbolts and static/dynamic test methods[J]. Modern Tunnelling Technology,2023,60(3):1−13.
[43] 何满潮. 工程地质力学的挑战与未来[J]. 工程地质学报,2014,22(4):543−556. HE Manchao. The challenges and future of engineering geomechanics[J]. Journal of Engineering Geology,2014,22(4):543−556.
[44] 陶志刚,谢迪,隋麒儒,等. 复杂地质条件下隧道围岩大变形负泊松比锚索主动支护方法及控制效果研究[J]. 岩石力学与工程学报,2024,43(2):275−286. TAO Zhigang,XIE Di,SUI Qiru,et al. Study on active support method and control effect of NPR anchor cables for large deformation of tunnel surrounding rock under complex geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):275−286.
[45] 张明. 深部巷道新型螺纹钢锚杆吸能机理及锚固界面强化研究[D]. 阜新:辽宁工程技术大学,2022. ZHANG Ming. Study on energy-absorbing mechanism and anchorage interface strengthening of novel rebar bolt in deep roadway[D]. Fuxin:Liaoning Technical University,2022.
[46] 郑是立,刘泉声,薛俊华. 增阻高强预应力锚杆:CN2707966[P]. 2005−07−06. [47] 石振明,谢可禄,俞松波,等. 消能抗震锚杆的研究进展与思考[J]. 地球科学,2024,49(2):522−537. SHI Zhenming,XIE Kelu,YU Songbo,et al. Research advance and thinking on energy dissipation and seismic bolts[J]. Earth Science,2024,49(2):522−537.
[48] 潘一山,王爱文,孟村影,等. 一种挤压、摩擦式吸能锚杆:CN104265339B[P]. 2016−08−24. [49] 张杰,荣传新,曹祎,等. 一种应用于巷道围岩大变形的双向恒阻监测锚杆:CN218581627U[P]. 2023−03−07. [50] ORTLEEP W D,BORNMAN J J,ERASMUS P N. The durabar-ayieldable support tendon-design rational and laboratory re-sults[C] // Rockbursts and Seismicity in Mines(RaSiM5). Johannesburg:South African Institution of Mining and Metallurgy,2001:263−266.
[51] KANG H P,YANG J H,MENG X Z. Tests and analysis of mechanical behaviours of rock bolt components for China’s coal mine roadways[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(1):14−26. doi: 10.1016/j.jrmge.2014.12.002
[52] 王爱文,高乾书,代连朋,等. 锚杆静−动力学特性及其冲击适用性[J]. 煤炭学报,2018,43(11):2999−3006. WANG Aiwen,GAO Qianshu,DAI Lianpeng,et al. Static and dynamic performance of rebar bolts and its adaptability under impact loading[J]. Journal of China Coal Society,2018,43(11):2999−3006.
-
期刊类型引用(19)
1. 王龙伟,杨亦浩. 寺河矿区煤层气穿采空区水平井技术应用. 能源与节能. 2025(01): 35-39 . 百度学术
2. 张学博,王攀,王豪. 小断层影响下的采空区瓦斯运移规律研究. 煤炭科学技术. 2024(04): 214-230 . 本站查看
3. 徐影,李亚辉,杨樱花,刘卫娟. 穿采空区煤层气水平井井眼与管柱相容性分析及应用研究. 煤. 2024(09): 28-31 . 百度学术
4. 李延河,倪小明,贾晋生. 平顶山矿区多煤层卸压立体抽采模式与工程示范. 煤炭科学技术. 2024(09): 162-172 . 本站查看
5. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 本站查看
6. 苏善博,张培河,李林,降文萍,王正喜. 寺河井田穿煤柱下组煤煤层气水平井钻井技术研究. 煤炭工程. 2023(03): 78-83 . 百度学术
7. 徐华龙. 煤与煤层气协调开发三维仿真设计研究. 中国煤炭. 2023(05): 87-93 . 百度学术
8. 甄少杰. 井下煤层气抽采工艺的优化研究. 山西化工. 2023(11): 177-178+181 . 百度学术
9. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 . 百度学术
10. 孟召平,李国富,田永东,王宇红,李超,陈浩越,吴迪. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展. 煤炭科学技术. 2022(01): 204-211 . 本站查看
11. 石雷雷,张辉,闫丰. 晋城煤层气产业示范基地建设存在的质量问题和发展路径研究. 中国石油和化工标准与质量. 2022(04): 21-23 . 百度学术
12. 周显俊,李国富,李超,王争,李江彪. 煤矿采空区煤层气地面开发技术及工程应用——以沁水盆地晋城矿区为例. 煤田地质与勘探. 2022(05): 66-72 . 百度学术
13. 张江华,秦勇,李国富,孟召平,李国庆,李军军,季长江,陈召英. 煤炭采空区下伏煤层气资源潜力及抽采效果——以山西省晋城西部矿区为例. 天然气工业. 2022(06): 146-153 . 百度学术
14. 崔晓松,周瑞,张凯. 沁水盆地寿阳西部地区煤层气资源潜力评价. 煤炭科学技术. 2022(07): 224-232 . 本站查看
15. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看
16. 姚红生,杨松,刘晓,申建,张占龙. 低效煤层气井多次压裂增效开发技术研究. 煤炭科学技术. 2022(09): 121-129 . 本站查看
17. 李国富,张遂安,季长江,李军军,王朝帅. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系. 煤炭科学技术. 2022(12): 14-25 . 本站查看
18. 降文萍,柴建禄,张群,张培河,姜在炳. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展. 煤炭科学技术. 2022(12): 50-61 . 本站查看
19. 降文萍,张培河,刘娜娜,王晶,杜新锋,杨刚,何庆宏. 我国煤层气标准体系构建. 煤炭工程. 2021(08): 1-6 . 百度学术
其他类型引用(3)