高级检索

煤矿酸性矿井水末端治理方法及应用研究进展

车巧慧, 杜松, 张德高, 范莹琳, 张啸, 王锋利

车巧慧,杜 松,张德高,等. 煤矿酸性矿井水末端治理方法及应用研究进展[J]. 煤炭科学技术,2024,52(12):339−351. DOI: 10.12438/cst.2024-0640
引用本文: 车巧慧,杜 松,张德高,等. 煤矿酸性矿井水末端治理方法及应用研究进展[J]. 煤炭科学技术,2024,52(12):339−351. DOI: 10.12438/cst.2024-0640
CHE Qiaohui,DU Song,ZHANG Degao,et al. Advancements in end treatment techniques and applications of acid mine drainage in coal mines: A research review[J]. Coal Science and Technology,2024,52(12):339−351. DOI: 10.12438/cst.2024-0640
Citation: CHE Qiaohui,DU Song,ZHANG Degao,et al. Advancements in end treatment techniques and applications of acid mine drainage in coal mines: A research review[J]. Coal Science and Technology,2024,52(12):339−351. DOI: 10.12438/cst.2024-0640

煤矿酸性矿井水末端治理方法及应用研究进展

基金项目: 国家重点研发计划资助项目(2022YFC3702200);中国煤炭地质总局科技创新资助项目(ZMKJ-2024-GJ03)
详细信息
    作者简介:

    车巧慧: (1989—),女,黑龙江哈尔滨人,工程师,博士。E-mail:cheqiaohui@126.com

    通讯作者:

    杜松: (1987—),男,黑龙江齐齐哈尔人,高级工程师,博士。E-mail:du@cct.org.cn

  • 中图分类号: TD74

Advancements in end treatment techniques and applications of acid mine drainage in coal mines: A research review

  • 摘要:

    煤矿酸性矿井水(Acid Mine Drainage,AMD)含有高浓度的重金属和硫酸盐,具有腐蚀性,对生态环境和人类健康构成持续威胁,已成为煤矿开采过程中广泛存在的环境问题。综述了煤矿AMD的形成机理、危害和水化学特征,总结了近年来传统的AMD末端治理方法,对比分析了国内AMD末端治理实际应用案例,介绍了新兴的AMD末端治理方法。深入讨论了传统的主动型(中和法、吸附法、膜技术)和被动型(人工湿地、石灰石沟排水法)AMD末端治理技术的反应机理、优缺点、应用实例,并对各种治理方法的适用性进行了评价。然而,这些方法仍存在一定局限性,主动型方法面临着化学品和能源的持续供应、维护成本高等局限性。被动型方法则受到治理周期长、系统需及时翻新等方面的限制。根据实际应用案例,总结了国内AMD末端治理方法的治理思路及优化方法。重点介绍了磁性纳米颗粒材料和与其他废水协同治理的新方法,为煤矿AMD治理提供新思路。结果表明:AMD末端治理仍需改进现有技术,全面开发新技术,提高AMD综合治理效果;仅依靠单一技术难以满足AMD治理达到排放标准,需根据优势互补原则,选择多技术协同治理的方法;在AMD治理过程中,可采用“源头减量+末端治理”思路提高AMD治理效果,提倡资源的回收和再利用,降低治理成本,对实现可持续治理至关重要。

    Abstract:

    Acid mine drainage(AMD) from coal mines contains elevated concentrations of heavy metals and sulfates, rendering it highly corrosive and posing a persistent threat to both the ecological environment and human health. Consequently, it has emerged as a pervasive environmental predicament in the coal mining process. This review presents an overview of the formation mechanism, detrimental effects, and chemical characteristics of AMD in coal mines. Furthermore, it summarizes traditional AMD end treatment methods in recent years, analyzes and compares practical application cases of AMD end treatment in China, and introduces emerging AMD end treatment methods. The reaction mechanisms, advantages, disadvantages of traditional active treatments (neutralization, adsorption, membrane technology), as well as passive treatments (constructed wetlands, limestone ditch drainage), are discussed extensively. Moreover, the applicability of each treatment method is evaluated. However, these methods still have certain limitations. The active method is constrained by the continuous supply of chemicals and energy as well as high maintenance costs. On the other hand, the passive approach is limited by long treatment cycles and the need for timely system renovation. According to the actual application cases, the treatment ideas and optimization methods of domestic AMD end treatment methods are summarized. In order to address these challenges in acid mine drainage treatment within coal mines, this review introduces magnetic nanoparticle materials and a novel collaborative treatment method, providing a fresh perspective. The findings of this study highlight the ongoing necessity to enhance existing technologies and develop new ones to improve the overall effectiveness of acid mine drainage treatment. Relying solely on a single technology proves difficult in meeting discharge standards for acid mine drainage treatment; therefore, adopting a multi-technology collaborative approach based on complementary advantages becomes imperative. Furthermore, during the process of AMD treatment, the approach of “source reduction + end treatment” can be adopted to improve the effectiveness of AMD treatment, resource recovery and reuse can help reduce treatment costs while promoting sustainable management.

  • 水平井完井与增产技术逐渐成为煤层气高效开发的关键技术,并面临更加复杂的煤层条件[1]。在各种地质作用下,煤体内部受破坏变形程度差异导致煤储层垂直方向煤体结构呈现显著差异性,例如沁水盆地南部山西组3号煤层上部煤体结构以原生结构为主,中、下部主要为碎裂与碎粒结构[2-3]。鄂东盆地东南缘的韩城区块山西组5号煤的煤体结构自上而下依次呈现原生、碎裂和碎粒结构,区块平面内三种煤体结构呈现分区、分带特征[4]。同时,煤层水平井钻进过程中地层起伏变化,导致实钻井眼轨迹在不同煤体结构的煤岩之间交互穿行。在碎软煤层顶板钻水平井的成功率明显高于碎软煤层[5-7],配合定向射孔与压裂技术进行煤层改造增产,但是受地质构造及导向仪器精度等因素影响,煤层顶板水平钻进中也经常钻遇碎软煤层。

    原生结构或以原生结构为主的碎裂煤体内部破坏变形程度相对较低[8],可通过水平井分段压裂技术进行增产改造,产气过程中煤粉产出量少,在沁水盆地南部、鄂东盆地东缘与阜康地区等煤层水平井分段密集压裂后,平均日产气量超过1×104 m3[2,9]。碎粒和糜棱结构的煤层由于煤体内部结构破碎变形程度较高,水力压裂过程中难以形成有效人工裂缝,压裂后煤粉产出严重,影响单井煤层气产量和采收率 [10-12]。常规油气井针对储层非均质性、含水及出砂问题,相关人员提出了水平井筛管分段完井工艺技术,水平井内完井筛管外安装有管外封隔器,后续下入作业管柱进行管外封隔器胀封作业 [13]。碎裂与碎粒结构的煤体内部裂缝发育、含气量与渗透率相对较高,水平井双管柱筛管完井技术能够提高煤体结构破碎的煤层水平井完井筛管下入成功率,有效支撑井壁、控制煤粉并消除井壁煤岩钻井液伤害 [14-17]。煤层气水平井注氮技术可解除筛管外环空与近井煤层的堵塞,沟通煤层内部裂缝与孔隙,提高煤层渗透性与甲烷采收率[18-19]。但是,研究与实践表明笼统注气方式对水平井段整体增产与提采效率很低[20-22];同时,多种煤体结构交互分布使煤层呈现力学与物性特征的强非均质性,笼统注氮方式无法满足复杂煤体结构煤层水平井增产及提采需求。连续油管带双封隔器拖动压裂技术是油气井增产的成熟工艺技术[23-24],对碎软煤层分段筛管完井后进行注氮,可解决笼统注氮方式无法有效改造强非均质煤层的问题。水平井下入套管(不固井)后水力喷射分段压裂技术被应用于软硬交互煤层增产,原生结构的煤层井段人工压裂形成的裂缝扩展延伸至软煤层,以提高软硬煤的压裂增产效果[3],但是该技术未封隔套管与井壁之间环空,未能消除煤层强非均质性对煤储层改造的影响。

    复杂煤体结构煤储层是指同煤层中煤体结构破坏变形差异性强,呈现原生、碎裂、碎粒和糜棱结构交互分布,导致煤储层力学与物性特征呈现强非均质性。现场工程实践表明,复杂媒体结构煤储层中水平井实钻井筒剖面多呈现不同的煤体结构相见分布,单一的完井与增产技术无法适应复杂煤体结构煤层水平井高效开发需求。因此,笔者开展复杂煤体结构煤储层水平井复合管柱完井方法研究,根据煤层的煤体结构、力学及物性特征选择筛管完井或套管射孔完井,并采用管外封隔器分段封隔完井管柱与井壁之间的环空,可为水力喷射、可控冲击波、注氮气和水力压裂等适应性增产作业提供有利条件,为煤层气稳定产出与煤粉控制提供保障。

    煤层水平井复合管柱完井技术主要包括采用筛管完井与套管完井,根据水平井段煤层煤体结构差异性,首先优化设计完井筛管与套管组合方式,进而确定管外封隔器的数量和安装位置,如图1所示。管外封隔器用于封隔井眼与完井管柱的环空,以实现复杂煤体结构煤层水平井眼分段完井。完井管柱内部为作业油管柱,两层管柱通过悬挂器与上部钻杆连接并延伸至井口。内层管柱在外层复合完井管柱(筛管柱+套管柱)下入过程中可建立井筒水力循环,清除井底堆积的煤屑,保障完井管柱下入安全。完井管柱下至设计位置后,通过内层管柱向煤层井筒注入破胶液,降解滞留的钻井液,清除井壁泥饼,恢复近井煤储层的渗透性。最后,通过内层管柱管底部组合逐个对完井管柱外封隔器进行液压胀封,完成水平井段煤层的分段完井作业。

    图  1  煤层水平井复合管柱完井结构示意
    Figure  1.  Schematic diagram of horizontal completion with composite liner in coal seam

    煤层水平井眼的分段与封隔是复合管柱完井与增产的前提,水平井复合管柱完井工艺采用双管柱结构与滑套式注液装置。如图1所示,双管柱外层为筛管、套管、裸眼封隔器、定位套管、密封筒与引鞋(带侧向水眼)组成的完井管柱,简称外层管柱;内层为油管、2个管内封隔器、滑套式注液装置、单向阀与旋转喷头组成的作业管柱,简称内层管柱,双管柱通过悬挂器与上部钻杆连接,并延伸至井口。在双管柱下入过程中,旋转喷头位于密封筒与引鞋之间的套管内,钻井液流经钻杆、膨胀式悬挂器与内管柱后,由引鞋喷射冲洗井底堆积的煤屑,钻井液携带煤屑流经外管柱与井壁之间环空、钻杆与技术套管之间环空后上返至地面。双管柱下至设计位置后,通过悬挂器将外管柱悬挂于技术套管内壁,进而完成双层管柱之间的分离。拖动内层管柱使两个管内封隔器移动至管外封隔器两端定位套管位置,投球后液压剪切滑套式注液装置销钉,一级压力下流体经1号进液孔进入管内封隔器并完成其胀封;继续加压至二级压力,打开注液装置的侧孔,流体经2号、3号进液孔进入管外封隔器。管外封隔器注液压力达到预设值后其内部保压装置关闭3号进液孔,完成管外封隔器胀封后卸载内管柱的压力,注液装置的弹簧推动滑套上行并关闭侧孔,管内封隔器收缩复位,拖动内管柱逐个完成管外封隔器胀封后起出钻杆与内层管柱。

    滑套式注液装置是液压式管内封隔器与管外封隔器胀封的关键装置,两个液压式管内封隔器连接于滑套式注液装置两端,其间距不超过液压式裸眼封隔器两端定位套管的长度。双管柱下入过程中,底部组合如图2a所示,进入引鞋与密封筒之间套管内的作业油管(带喷头)长度可补偿双层管柱长度差值。双管柱遇阻或下至设计井深时,由内层管柱建立井筒钻井液循环,清除水平井底堆积煤屑,解除遇阻或完成洗井作业,如图2b所示。完成洗井作业后上提内层管柱,使2个管内封隔器横跨于管外封隔器两侧,向内层管柱投入金属球,并开泵注入洗井液驱动金属球到达滑套式注液装置前端的弧面球座,封闭内层管柱过液通道,如图2c所示。继续向内管柱内泵入洗井液,滑套在一级液压作用下剪断销钉并下行,1号进液孔与内管柱连通,洗井液由1号进液孔进入两个液压式管内封隔器,使其封隔内管柱与外管柱之间环空,如图2d所示。继续向内管柱内泵入洗井液,滑套在二级液压作用下压缩弹簧下行,2号进液孔与侧孔连通,洗井液流经侧孔、2号和3号进液孔进入液压式管外封隔器,其胶筒在液压下膨胀,并封隔外管柱与井壁之间环空,如图2e所示。停泵后卸载内管压力,弹簧推动滑套上行,并关闭2号进液孔,液压式管内封隔器胶筒内液体进入内管柱并回缩,管外封隔器在其内部保压装置下保持胀封状态,如图2f所示。完成单个管外封隔器胀封后,拖动内层管柱,重复上述步骤,逐个完成所有管外封隔器胀封,完成水平段井筒的分段完井。

    图  2  水平井完井管柱外封隔器的胀封工艺流程
    Figure  2.  Expansion sealing process of ECP in horizontal well

    软杆模型[25]与刚性模型[26]是井下管柱力学经典计算模型,高德利[27-28]采用有限差分法进一步完善井下管柱力学计算模型,并提出大位移井延伸极限量化计算模型,包括机械延伸极限、裸眼延伸极限和水力延伸极限。基于上述管柱受力模型与水力计算模型,以管柱螺旋屈曲和井下管柱水力损耗为约束条件,优化水平井双管柱受力与水力计算模型,对试验井的双管柱进行管柱力学与水力计算,为煤层水平井复合管柱完井工艺设计与控制提供理论依据。

    ①完井管柱采用软杆模型;②采用三维井眼轨迹计算模型;③外管柱与井壁完全接触,管柱与井眼曲率相同;④忽略管柱上的剪力;⑤内管柱与外管柱完全接触,忽略管柱接头与刚性井下工具影响;⑥未考虑管柱动载荷的影响;⑦不计流体黏滞阻力对管柱力学与水力学计算影响。

    采用迭代法计算水平井三维井筒的管柱轴向力,将井下管柱自下而上进行均匀离散,管柱微元下端轴向力为Ti+1,侧向力Fn,上端轴向力Ti,管柱微元轴向力计算公式如下[29]

    $$ {T_i} = {T_{i + 1}} + \dfrac{{{L_{\rm{s}}}}}{{\cos \left( {\dfrac{\theta }{2}} \right)}}\left[ {q\cos \overline \alpha \pm \mu \left( {{F_{\rm{E}}} + {F_{\rm{n}}}} \right)} \right] $$ (1)

    式中:i为管柱微元编号。

    管柱弯曲变形引起的侧向力为${F_{\rm{E}}}$,计算公式如下:

    $$ {F_{\rm{E}}} = \left\{ {\begin{array}{*{20}{l}} {0 ,T\left( i \right)<{\rm{ }}{F_{{\rm{cr}}}}}\\ {\dfrac{{{r_{\rm{c}}}T{{\left( i \right)}^2}}}{{8EI}},\;\;{F_{{\rm{cr}}}}< T\left( i \right){\rm{ }}<{F_{{\rm{hel}}}}}\\ {\dfrac{{{r_{\rm{c}}}T{{(i)}^2}}}{{4EI}},\;\;T\left( i \right)> {F_{{\rm{hel}}}}} \end{array}} \right.$$ (2)

    单位长度管柱侧向力${F_{\rm{n}}}$为计算公式:

    $$ {F_{\rm{n}}} = \frac{{\sqrt {F_{{\rm{ndp}}}^2 + F_{{\rm{np}}}^2} }}{{{L_{\rm{s}}}}} $$ (3)
    $$ \left\{ {\begin{array}{*{20}{l}} {q = {q_2} + {q_3},\;\; L \gt {L_{{\rm{dp}}}}} \\ {q = {q_1},\;\; L \leqslant {L_{{\rm{dp}}}}} \end{array}} \right. $$ (4)

    式中:$\overline \alpha $为管柱微元长度内井眼轨迹平均井斜角,(°);$\mu $为外管柱与井壁之间摩擦因数,无量纲,下钻时取“+”,起钻时取“−”;$\theta $为管柱微元全角变化,(°);Ls为管柱微元长度,m;q为完井管柱微元在井筒液体中的重力,N/m;${q_1}$为单位长度钻杆在井筒液体中的重力,N/m;${q_2}$为单位长度的内管柱在井筒液体中的重力,N/m;${q_3}$为单位长度的外管柱在井筒液体中的重力,N/m;L为管柱长度(从上往下),m;${L_{{\rm{dp}}}}$为钻杆长度(从上往下);E为钢材的弹性模量,Pa;I为管柱横截面的惯性矩,m4${r_{\rm{c}}}$为内外管柱或管柱与井壁之间的间隙,m;${F_{{\rm{ndp}}}}$为全角平面的侧向力,N;${F_{{\rm{np}}}}$为垂直于全角平面的侧向力,N。

    忽略接头与短接造成的局部压力损失,井下管柱水力损耗为$P_{{\rm{sum}}}$,主要包括钻杆内外、内管柱内部、外管柱与井壁环空的循环压耗和喷嘴压降,计算公式如下:

    $$ {P_{{\rm{sum}}}} = {P_1}{\text{ + }}{P_{\text{2}}}{\text{ + }}{P_3} $$ (5)

    井下管柱管内压力损耗为${P_1}$,计算公式为

    $$ {P_1} = \sum {\frac{\rho }{g}v_{\rm{p}}^2\left( i \right){f_{\rm{p}}}{L_{\rm{s}}}\left( {\frac{2}{{{d_{\rm{I}}}\left( i \right)}}} \right)} ,\qquad i = 1,2 $$ (6)

    井下管柱与井壁之间环空的压力损耗为${P_2}$,计算公式为

    $$ {P_2} = \sum {v_{{\rm{a}}}^2\left( i \right)\rho {f_{\rm{a}}}{L_{\rm{s}}}\left[ {\frac{2}{{{d_{\rm{h}}} - {d_{\rm{O}}}\left( i \right)}}} \right]} ,\;\; i = 1,3 $$ (7)

    喷嘴处的压降为${P_3}$,计算公式为

    $$ {P_3} = \frac{{\rho v_{\rm{f}}^2}}{{2C_{\rm{d}}^2}} $$ (8)

    式中:$\rho $为井筒液体密度,kg/m3g为重力加速度,m/s2${v_{\rm{p}}}\left( i \right)$为管内液体流速(i=1为钻杆,i=2时为内管柱);${f_{\rm{p}}}$为管内流动摩擦因数,无量纲; ${d_{\rm{I}}}\left( i \right)$为管柱内径(i=1为钻杆,i=2时为内管柱),m;${v_{\rm{a}}}\left( i \right)$为环空液体流速(i=1为钻杆与套管环空,i=3时为外管柱与井壁环空);${f_{\rm{a}}}$为环空流动摩擦因数,m/s;${d_{\rm{O}}}\left( i \right)$为管柱外径(i=1为钻杆,i=3时为外管柱),m;${d_{\rm{h}}}$为井眼直径,m;${v_{\rm{f}}}$为喷嘴处流体流速,m/s;${C_{\rm{d}}}$为喷嘴系数,无量纲。

    忽略井下管柱正弦屈曲对管柱摩阻影响,仅考虑管柱螺旋屈曲对井内管柱运动摩阻的影响,计算公式[30-32]如下:

    $$ {F_{{\text{hel}}}}{\text{ = }}\left\{ {\begin{array}{*{20}{l}} {5.55{{\left( {EI{q^2}} \right)}^{\frac{1}{3}}},L \subset {L_{\rm{V}}}} \\ {\dfrac{{12EI}}{{{r_{\text{c}}}R}}\left( {1 + \sqrt {1 + \dfrac{{{r_{\text{c}}}{R^2}q\sin \, \theta }}{{8EI}}} } \right),L \subset {L_{\rm{B}}}} \\ {2\left( {2\sqrt 2 - 1} \right)\sqrt {\dfrac{{EIq\sin \, \theta }}{{{r_{\text{c}}}}}} ,L \subset {L_{\rm{H}}}} \end{array}} \right. $$ (9)

    式中:${F_{{\rm{hel}}}}$为管柱螺旋屈曲临界载荷,N;R为曲率半径,m;L为管柱长度,m;LV为直井段长度区间,m;LB为弯曲段长度区间,m;LH为水平井段长度区间,m。

    试验井为一口停产水平井,其二开采用177.8 mm套管下至947.25 m,三开采用152.4 mm钻头侧钻至1600 m完钻。完井外管柱组合为ø127 mm 引鞋+ø114.3 mm 套管/筛管+ø146 mm 裸眼封隔器;内管柱组合为ø94 mm引鞋+ø60.3 mm油管+ø94 mm单流阀短节+ø60.3 mm 油管短节+ø94 mm管内封隔器+ø60.3 mm 油管+ø94 mm滑套式注液器+ø94 mm管内封隔器+ø94 mm安全接头;作业管柱为ø88.9 mm 钻杆延伸至地面。

    针对该井实钻井眼轨迹与井身结构,基于双管柱结构与井下管柱力学计算模型,采用软件进行编程,并计算该井双管柱受力,完井管柱与技术套管之间摩擦因数设为0.25,完井管柱与井壁之间摩擦因数设为0.35。双管柱与单层管柱的力学数值计算结果进行对比,如图3a所示,双管柱与单层管柱(套管或筛管)下至设计井深时,井口的轴向力分别为64443.98、70086.73 N;如图3b所示,双管柱与单层管柱(套管或筛管)上部作业管柱为相同钻杆,在井斜角较小时管柱受到的侧向力相差较小,随着井斜角与方位角增加,双管柱受到的侧向力大于单层管柱(套管或筛管),在水平段管柱受到的侧向力平均增幅超过34 N/m。因此,相比单层管柱(套管或筛管),双管柱在弯曲段与水平段承受更大侧向力,其下入过程中管柱受到更大的摩阻。同时,数值计算结果显示,该井双管柱下入过程中未发生螺旋屈曲,现场施工过程中双管柱发生遇阻,经过活动管柱与水力循环后,解除遇阻并下至井底。

    图  3  完井管柱轴向力与侧向力曲线
    Figure  3.  Axial force and lateral force curve of completion string

    该井钻井液为幂律流体,密度ρ=1.05 g/cm3,流性指数n=0.5,稠度系数k=0.47 Pa·sn。基于双管柱结构与水力计算模型,采用软件编程并计算井下管柱水力损耗,进行井下管柱压耗分布及影响因素分析,如图4所示。

    图  4  水平井双管柱系统水力循环压耗曲线
    Figure  4.  Hydraulic loss of dual pipe system in horizontal well

    图4a所示,在泵排量20 L/s条件下,双管柱及作业管柱下至1592 m时,井下管柱内、管柱外环空、喷头压降与总压耗分别为3956.30、1010.62、8302.13、12258.43 kPa,喷头较高的压降以提供喷嘴高压水射流,冲击管柱前端堆积煤屑,以保障完井管柱顺利通过遇阻段。井下管柱的外环空包括钻杆与技术套管之间环空、管外环空双管柱与井壁组成的两个环空(即外管柱与井壁之间环空、内外管柱之间环空),如图4b、4c所示,管内与管外环空的水力压耗随着井深与排量增加而增大。如图4d所示,在双管柱下至井底时,井下管柱循环总压耗随着排量增加显著上升,其中喷头压降为主要因素,内管柱水力压耗为次要因素,管外环空水力压耗最小。根据该井煤层条件,双管柱下入过程中遇阻时的水力循环排量控制在16~20 L/s,防止煤层漏失与维持井壁稳定;在洗井作业时排量提升至20~24 L/s,增加环空排量以消除井壁泥饼与近井煤储层钻井液伤害。

    该试验井位于沁水盆地东北缘的阳泉地区,该区太原组15号煤层平均厚度为3.27 m,前期钻井取心显示本区太原组15号煤层的煤体结构破碎变形严重,以碎粒煤为主,部分层段含有碎裂煤和糜棱煤,如图5所示。煤储层非均质性显著,煤心气测渗透率最小值0.0339×10−3 μm2,最大值15.3375×10−3 μm2,主要集中在0.1×10−3~0.5×10−3 μm2,其中渗透率值较大的岩心都是由于含有贯穿整个岩心的裂缝,完整煤岩岩心的渗透率峰值主要集中在0.05×10−3~0.2×10−3 μm2之间。针对该区15号煤体结构破碎与强非均质性的特征,开展水平井复合管柱完井增产技术现场试验,该井煤层进尺和钻遇率分别为544 m、83.5%,水平井段实钻井眼轨迹与地层情况如图6所示(蓝色方框内为非煤地层)。该井水平段下入套管与筛管共计659.54 m,采用悬挂器固定于上层技术套挂内壁,通过4个裸眼封隔器将水平段分为4段,其分段长度分别为160.47、152.07、155.24、154.42 m,为后期储层分段增产改造提供封隔条件,裸眼封隔器与管内封隔器如表1表2图7所示。该井在试验前处于停产状态,煤层水平井眼分段完井后采用可控冲击波增透,投产后产气量达到1200 m3/d。

    图  5  区块内15号煤取心照片
    Figure  5.  Photo of No.15 coal core
    图  6  实钻水平井眼轨迹与随钻实测地层伽马值曲线
    Figure  6.  Horizontal wellbore trajectory and formation gamma curves
    表  1  管外封隔器规格参数
    Table  1.  Specification parameters of ECP
    序号参数取值
    1最大外径/mm146
    2工具总长/mm1500
    3膨胀系数1.4~1.6
    4内通径/mm100
    5密封面长度/mm1100
    6启动压力/MPa1~2
    7工作压力/MPa20
    8适应井径/mm152.4
    9工作直径/mm155~241
    下载: 导出CSV 
    | 显示表格
    表  2  管内封隔器规格参数
    Table  2.  Specification parameters of tubing packer
    序号参数取值
    1最大外径/mm94
    2内通径/mm42
    3总长/mm850
    4适用套管内径/mm100-110
    5密封压差/MPa20
    6工作温度/℃120
    7扣型23/8TBG
    下载: 导出CSV 
    | 显示表格
    图  7  管外封隔器与管内封隔器
    Figure  7.  Photo of ECP and tubing packer

    1)采用煤层水平井复合管柱完井方法,可以实现水平井段碎软煤筛管完井及原生煤层套管射孔完井,为后期差异性、多样化和适应性的煤储层增产改造提供了可靠的分段与封隔条件。

    2)对双管柱受力和水力损耗的数值计算与分析结果,可为煤层气水平井复合管柱完井设计控制提供理论指导;通过优化设计双管柱结构与配套完井工具,可以实现双管柱入井、洗井及胀封裸眼封隔器等一趟完井作业,从而提高了作业效率减少了储层伤害。

    3)通过现场试验表明,提出的煤层水平井复合管柱完井方法,可为复杂煤体结构煤层水平井适应性增产工程提供新技术支撑,具有良好的推广应用前景。

  • 图  1   黄铁矿氧化主要化学过程[7]

    Figure  1.   Main chemical process of pyrite oxidation[7]

    图  2   中和法和吸附法协同治理AMD工艺

    Figure  2.   Process of synergistic treatment of AMD using neutralization and adsorption methods

    图  3   人工湿地类型

    Figure  3.   Types of constructed wetland

    图  4   山西省某煤矿AMD末端治理工艺

    Figure  4.   AMD end treatment process in a coal mine in Shanxi province

    图  5   山东淄博某煤矿AMD末端治理工艺

    Figure  5.   AMD end treatment process in a coal mine in Zibo, Shandong Province

    图  6   贵州贵阳某煤矿AMD末端治理工艺

    Figure  6.   AMD end treatment process in a coal mine in Guiyang, Guizhou Province

    图  7   返排水与AMD协同治理的中试规模处理系统示意

    Figure  7.   Schematic of pilot-scale treatment system for flowback water and AMD co-treatment

    表  1   AMD的主动型末端治理方法及优缺点

    Table  1   Active end treatment methods forAMD and their advantages and disadvantages

    主动型AMD
    治理方法
    治理机制 优点 缺点
    中和法 利用碱性物质中和酸性,并形成金属离子的氢氧化物沉淀 操作简单灵活,应用最广;可快速提高
    AMD的pH
    消耗大量的碱性试剂,成本较高;金属离子的去除效率有限;产生大量沉淀,易导致二次污染
    吸附法[8] 利用多孔材料吸附污染物离子,包括物理吸附和化学吸附 吸附剂来源广泛,成本低,容易获取;
    吸附能力强
    吸附剂对离子具有选择性;不同吸附剂的吸附效率差异较大;对环境条件敏感
    电化学法 适用于富铁水质,将Fe2+ 氧化成Fe3+从水中分离出金属离子 可产生电能,回收重金属;反应产物污
    染少,能耗低
    处理速度较慢,效率较低;对离子的选择性强
    膜技术[9] 利用微孔径膜的选择分离性对废水中的不同组分金属离子进行分离、纯化、浓缩等 操作简单,安全稳定;能分离回收重金
    属离子
    膜材料容易堵塞、破损,难以回收;难以应用于高酸度废水;成本高
    离子交
    换法[10]
    利用离子交换树脂与游离态金属离子之间的交换作用,富集重金属离子,从而去除废水中的重金属离子 处理能力较大;重金属回收效果较好 初始饱和度低、老化失效、再生频繁、对离子不具备选择性;交换器一次性投资成本较高
    下载: 导出CSV

    表  2   不同的碱性化学物质治理AMD的范围和优缺点

    Table  2   Scope and advantages and disadvantages of different alkaline chemicals for treating AMD

    碱性化学
    药剂
    饱和溶液
    pH
    在冷水中的溶解度/(g·L−1 优点 缺点 文献
    烧碱
    (NaOH)
    14 450 高溶解度和扩散性;适用于较低pH、低流量AMD治理 成本较高;生成氢氧化铁污泥;具有腐蚀性 [31-32]
    纯碱
    (Na2CO3
    11.6 75 粒状材料更容易处理;适用于低酸度、低流量AMD治理 成本更高;在铁质量浓度大于10 mg/g时需要充分混合;料球会吸收料斗系统中的水;氢氧化铁沉淀易覆盖在料球表面,阻碍反应;形成不稳定污泥 [32]
    石灰石
    (CaCO3
    8.0~9.4 0.014 价格便宜,处理成本低,化学性质稳定,安全;易于获取和存储;污泥处理难易程度适中 金属质量浓度较高时,金属沉淀物会覆盖在石灰石表面,阻碍反应;溶解度低,治理周期较长;Ca2+产生高硬度废水 [33-34]
    熟石灰
    (Ca(OH)2
    12.4 1.30~1.85 成本较低,且化学性质稳定;可提供固体和液体的形式;在极端气候条件下有效 需要更长的治理时间;需要充分混合;在较高的硫酸盐质量浓度下产生污泥/石膏沉淀物;需要适当的存储 [34-35]
    生石灰
    (CaO)
    12.4 1.30~1.85 成本低;适用于低流量、高酸度的环境 污泥状沉淀造成系统堵塞;在熟化过程中产生热量,从而导致处理问题;存在威胁人类健康问题(如眼部烧伤);不建议延长存储时间 [36]
    无水氨
    (NH3
    9.2 900 成本较低;可以去除锰;适用于小流量 存在威胁人类健康问题(如眼部烧伤);需要控制用量,过度施加将对水生生物造成有毒污染 [32]
    下载: 导出CSV

    表  3   AMD的被动型末端治理方法及优缺点[11]

    Table  3   Active end treatment methods forAMD and their advantages and disadvantages[11]

    被动型AMD治理方法 治理机制 优点 缺点
    人工湿地法[52] 利用基质、微生物和植物相互作用去除水中的重金属离子 技术简单;成本较低;抗冲刷;工作时间长; 占用较大的土地面积;易受外界因素的干扰而效率较低;存在硫化氢污染风险
    石灰石排水沟法 AMD流经石灰石斜坡或埋有石灰岩的密闭沟槽或地层中,进而中和酸性并去除金属离子 开放式:操作简单、运行费用低;缺氧型:缺氧环境防止了金属离子氧化,避免产生大量沉淀造成排水沟堵塞 开放式:沉淀附着在石灰石表面会影响处理能力;对于高质量浓度重金属效率较低缺氧型:处理能力较弱;不能单独用于处理高铁质量浓度的矿井水
    生物反应器 利用微生物(如硫酸盐还原菌、氧化亚铁硫杆菌等)对重金属的吸附、化学转化、吸收代谢,去除AMD中重金属 处理能力强;适用性广 反应速度慢,规模化应用难;一般需要多个反应器并行
    植物修复[55] 利用特定植物改善土壤酶活性及微生物数量的能力及对污染物的独特耐受能力,从而改善AMD污染 绿色无污染;改善土壤养分;成本较低 植物对离子具有选择性;吸附了污染物的植物不适合人类/动物使用
    微生物法[56] 通过投放针对性培养的微生物,利用吸附、积累和矿化等方式降低环境中金属离子含量和有效态,或进行硫酸盐还原代谢 成本较低;适应性强;环境友好 微生物生长受环境条件、碳源种类和生成时间等多种因素影响,规模化培养较为困难;对pH较为敏感;耗时长
    下载: 导出CSV
  • [1] 艾雨露,陈宏坪,陈梦舫,等. 全球主要产煤国煤矿AMD污染特征与治理技术[J]. 煤炭学报,2023,48(12):4521−4535.

    AI Yulu,CHEN Hongping,CHEN Mengfang,et al. Characteristics and treatment technologies for acid mine drainage from abandoned coal mines in major coal-producing countries[J]. Journal of China Coal Society,2023,48(12):4521−4535.

    [2] 何绪文,李福勤. 煤矿矿井水处理新技术及发展趋势[J]. 煤炭科学技术,2010,38(11):17−22,52.

    HE Xuwen,LI Fuqin. New technology and development tendency of mine water treatment[J]. Coal Science and Technology,2010,38(11):17−22,52.

    [3] 武强,董东林,傅耀军,等. 煤矿开采诱发的水环境问题研究[J]. 中国矿业大学学报,2002,31(1):19−22. doi: 10.3321/j.issn:1000-1964.2002.01.005

    WU Qiang,DONG Donglin,FU Yaojun,et al. Research on water pollution induced by coal mining[J]. Journal of China University of Mining & Technology,2002,31(1):19−22. doi: 10.3321/j.issn:1000-1964.2002.01.005

    [4] 孙文洁,任顺利,武强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2022,47(6):2161−2169.

    SUN Wenjie,REN Shunli,WU Qiang,et al. Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J]. Journal of China Coal Society,2022,47(6):2161−2169.

    [5] 周来,叶涛,郑双双,等. 关闭煤矿矿井水中“双源” 铁污染的电化学机理实验模拟[J]. 煤炭科学技术,2024,52(3):323−331.

    ZHOU Lai,YE Tao,ZHENG Shuangshuang,et al. Experimental simulation on the electrochemical mechanism of iron pollution from “dual-source” in closed coal mine water[J]. Coal Science and Technology,2024,52(3):323−331.

    [6]

    PIERRE LOUIS A M,YU H,SHUMLAS S L,et al. Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions[J]. Environmental Science & Technology,2015,49(13):7701−7708.

    [7]

    TU Z H,WU Q,HE H P,et al. Reduction of acid mine drainage by passivation of pyrite surfaces:A review[J]. Science of the Total Environment,2022,832:155116. doi: 10.1016/j.scitotenv.2022.155116

    [8] 万海洮,徐建平,王兆珺. 利用粉煤灰及改性粉煤灰处理酸性矿井水研究[J]. 水处理技术,2015,41(5):70−72.

    WAN Haitao,XU Jianping,WANG Zhaojun. The treatment of acid mine wastewater by coal fly ash and modified coal fly ash[J]. Technology of Water Treatment,2015,41(5):70−72.

    [9]

    ABDULLAH N,YUSOF N,LAU W J,et al. Recent trends of heavy metal removal from water/wastewater by membrane technologies[J]. Journal of Industrial and Engineering Chemistry,2019,76:17−38. doi: 10.1016/j.jiec.2019.03.029

    [10]

    HERMASSI M,GRANADOS M,VALDERRAMA C,et al. Recovery of rare earth elements from acidic mine waters by integration of a selective chelating ion-exchanger and a solvent impregnated resin[J]. Journal of Environmental Chemical Engineering,2021,9(5):105906. doi: 10.1016/j.jece.2021.105906

    [11] 刘晓蕊,李栋,王高峰. 生物炭吸附煤矿酸性矿井水中污染物技术展望[J]. 采矿与安全工程学报,2022,39(6):1187−1197.

    LIU Xiaorui,LI Dong,WANG Gaofeng. Prospects of biochar adsorption for pollutants removal from acid mine drainage[J]. Journal of Mining & Safety Engineering,2022,39(6):1187−1197.

    [12]

    NAIDU G,RYU S,THIRUVENKATACHARI R,et al. A critical review on remediation,reuse,and resource recovery from acid mine drainage[J]. Environmental Pollution,2019,247:1110−1124 doi: 10.1016/j.envpol.2019.01.085

    [13]

    COULTON R,BULLEN C,HALLETT C. The design and optimisation of active mine water treatment plants[J]. Land Contamination & Reclamation,2003,11(2):273−279.

    [14]

    CHEN T,YAN B,LEI C,et al. Pollution control and metal resource recovery for acid mine drainage[J]. Hydrometallurgy,2014,147:112−119.

    [15]

    YAN B,MAI G,CHEN T,et al. Pilot test of pollution control and metal resource recovery for acid mine drainage[J]. Water Science and Technology,2015,72(12):2308−2317. doi: 10.2166/wst.2015.429

    [16] 郑彭生,杨建超,郭中权,等. 酸性矿井水中和—絮凝沉淀除铁试验研究[J]. 能源环境保护,2019,33(5):36−38. doi: 10.3969/j.issn.1006-8759.2019.05.008

    ZHENG Pengsheng,YANG Jianchao,GUO Zhongquan,et al. Experimental study on iron removal of acidic mine water in neutralization-flocculation precipitation[J]. Energy Environmental Protection,2019,33(5):36−38. doi: 10.3969/j.issn.1006-8759.2019.05.008

    [17]

    MASUKUME M,ONYANGO M S,MAREE J P. Sea shell derived adsorbent and its potential for treating acid mine drainage[J]. International Journal of Mineral Processing,2014,133:52−59. doi: 10.1016/j.minpro.2014.09.005

    [18]

    MOHAN D,CHANDER S. Single,binary,and multicomponent sorption of iron and manganese on lignite[J]. Journal of Colloid and Interface Science,2006,299(1):76−87. doi: 10.1016/j.jcis.2006.02.010

    [19]

    FALAYI T,NTULI F. Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite[J]. Journal of Industrial and Engineering Chemistry,2014,20(4):1285−1292. doi: 10.1016/j.jiec.2013.07.007

    [20]

    MARKOVIC R,GARDIC V,OBRADOVIC L,et al. The application of a natural zeolite for acid mine drainage purification[J]. Materials Transactions,2015,56(12):2053−2057. doi: 10.2320/matertrans.M2015292

    [21]

    ORAKWUE E O,ASOKBUNYARAT V,RENE E R,et al. Adsorption of iron(II) from acid mine drainage contaminated groundwater using coal fly ash,coal bottom ash,and bentonite clay[J]. Water,Air,& Soil Pollution,2016,227(3):74.

    [22]

    JONES S N,CETIN B. Evaluation of waste materials for acid mine drainage remediation[J]. Fuel,2017,188:294−309. doi: 10.1016/j.fuel.2016.10.018

    [23]

    OTHMAN A,SULAIMAN A,SULAIMAN S K. Carbide lime in acid mine drainage treatment[J]. Journal of Water Process Engineering,2017,15:31−36. doi: 10.1016/j.jwpe.2016.06.006

    [24]

    MACKIE A L,WALSH M E. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent[J]. Water Research,2012,46(2):327−334. doi: 10.1016/j.watres.2011.10.030

    [25]

    ZHANG M L. Adsorption study of Pb(II),Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost[J]. Chemical Engineering Journal,2011,172(1):361−368. doi: 10.1016/j.cej.2011.06.017

    [26]

    BURMAN N W,SHERIDAN C M,HARDING K G. Feasibility assessment of the production of bioethanol from lignocellulosic biomass pretreated with acid mine drainage (AMD)[J]. Renewable Energy,2020,157:1148−1155. doi: 10.1016/j.renene.2020.05.086

    [27]

    GUPTA A,SAR P. Role of cost-effective organic carbon substrates in bioremediation of acid mine drainage-impacted soil of malanjkhand copper project,India:A biostimulant for autochthonous microbial populations[J]. Environmental Science and Pollution Research International,2020,27(22):27407−27421. doi: 10.1007/s11356-019-06293-6

    [28]

    KIM M S,MIN H G,KOO N,et al. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments[J]. Journal of Environmental Management,2014,146:124−130. doi: 10.1016/j.jenvman.2014.07.001

    [29]

    JAIN S,BARUAH B P,KHARE P. Kinetic leaching of high sulphur mine rejects amended with biochar:buffering implication[J]. Ecological Engineering,2014,71:703−709. doi: 10.1016/j.ecoleng.2014.08.003

    [30]

    LEHMANN J,GAUNT J,RONDON M. Bio-char sequestration in terrestrial ecosystems–A review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):403−427. doi: 10.1007/s11027-005-9006-5

    [31]

    ALAKANGAS L,ANDERSSON E,MUELLER S. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes[J]. Environmental Science and Pollution Research International,2013,20(11):7907−7916. doi: 10.1007/s11356-013-1838-z

    [32]

    SKOUSEN J G,ZIEMKIEWICZ P F,MCDONALD L M. Acid mine drainage formation,control and treatment:Approaches and strategies[J]. The Extractive Industries and Society,2019,6(1):241−249. doi: 10.1016/j.exis.2018.09.008

    [33]

    MENENDEZ R,CLAYTON J L,ZURBUCH P E,et al. Sand-sized limestone treatment of streams impacted by acid mine drainage[J]. Water,Air,and Soil Pollution,2000,124(3):411−428.

    [34]

    TOLONEN E T,SARPOLA A,HU T,et al. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals[J]. Chemosphere,2014,117:419−424. doi: 10.1016/j.chemosphere.2014.07.090

    [35]

    Anuar Othman,Azli Sulaiman,Shamsul Kamal Sulaiman. The use of hydrated lime in acid mine drainage treatment[J]. AIP Conference Proceedings,2017,1847(1):040001.

    [36] 张仁瑞,顾正平,刘春燕,等. 酸性矿井水中和法沉泥的综合利用途径初探[J]. 煤矿环境保护,1994,8(3):47−50.

    ZHANG Renrui,GU Zhengping,LIU Chunyan,et al. Preliminary study on comprehensive utilization of acid mine water by neutralization method[J]. Coal Mine Environmental Protection,1994,8(3):47−50.

    [37]

    AL-WABEL M I,AL-OMRAN A,EL-NAGGAR A H,et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology,2013,131:374−379. doi: 10.1016/j.biortech.2012.12.165

    [38]

    YIN K Y,WANG J Y,ZHAI S,et al. Adsorption mechanisms for cadmium from aqueous solutions by oxidant-modified biochar derived from Platanus orientalis Linn leaves[J]. Journal of Hazardous Materials,2022,428:128261. doi: 10.1016/j.jhazmat.2022.128261

    [39]

    LI R,WANG B,WU P,et al. Revealing the role of calcium alginate-biochar composite for simultaneous removing SO42− and Fe3+ in AMD:Adsorption mechanisms and application effects[J]. Environmental Pollution,2023,329:121702. doi: 10.1016/j.envpol.2023.121702

    [40]

    WIBOWO Y G,RAMADAN B S,SUDIBYO S,et al. Efficient remediation of acid mine drainage through sustainable and economical biochar-CaO composite derived from solid waste[J]. Environment,Development and Sustainability,2024,26(7):16803−16826.

    [41] 岳云波,陈白阳,段炫彤,等. 反渗透技术在污废水深度处理中的应用及研究进展[J]. 水处理技术,2018,44(01):1−6,16.

    YUE Yunbo,CHEN Baiyang,DUAN Xuantong,et al. Research progress and application of reverse osmosison wastewater advanced treatment[J]. Technology of Water Treatment,2018,44(01):1−6,16.

    [42]

    BAKER R W. Membrane technology and applications[M]. Oxford:Wiley-Blackwell,2012.

    [43]

    CARVALHO A L,MAUGERI F,PRÁDANOS P,et al. Separation of potassium clavulanate and potassium chloride by nanofiltration Transport and evaluation of membranes[J]. Separation and Purification Technology,2011,83:23−30. doi: 10.1016/j.seppur.2011.07.019

    [44]

    AL-ZOUBI H,RIEGER A,STEINBERGER P,et al. Optimization study for treatment of acid mine drainage using membrane technology[J]. Separation Science and Technology,2010,45(14):2004−2016. doi: 10.1080/01496395.2010.480963

    [45]

    WEI X Y,WANG Z,FAN F H,et al. Advanced treatment of a complex pharmaceutical wastewater by nanofiltration:Membrane foulant identification and cleaning[J]. Desalination,2010,251(1-3):167−175. doi: 10.1016/j.desal.2009.08.005

    [46]

    FONSEKA C,RYU S,NAIDU G,et al. Recovery of water and valuable metals using low pressure nanofiltration and sequential adsorption from acid mine drainage[J]. Environmental Technology & Innovation,2022,28:102753.

    [47]

    MULLETT M,FORNARELLI R,RALPH D. Nanofiltration of mine water:Impact of feed pH and membrane charge on resource recovery and water discharge[J]. Membranes,2014,4(2):163−180. doi: 10.3390/membranes4020163

    [48]

    VISSER T J K,MODISE S J,KRIEG H M,et al. The removal of acid sulphate pollution by nanofiltration[J]. Desalination,2001,140(1):79−86. doi: 10.1016/S0011-9164(01)00356-3

    [49]

    AL-RASHDI B A M,JOHNSON D J,HILAL N. Removal of heavy metal ions by nanofiltration[J]. Desalination,2013,315:2−17. doi: 10.1016/j.desal.2012.05.022

    [50] 武文. 煤矿矿井水深度处理工艺设计要点[J]. 山西化工,2023,43(3):233−234.

    WU Wen. Key points for design of advanced treatment process of mine water[J]. Shanxi Chemical Industry,2023,43(3):233−234.

    [51]

    FAULKNER B B,SKOUSEN J G. Treatment of acid mine drainage by passive treatment systems[J]. Journal American Society of Mining and Reclamation,1994,1994(2):250−257. doi: 10.21000/JASMR94020250

    [52]

    CHEN J Q,LI X,JIA W,et al. Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth[J]. Journal of Hazardous Materials,2021,404:124125. doi: 10.1016/j.jhazmat.2020.124125

    [53] 袁春博. 基质强化人工湿地脱氮除磷及铝污泥轻质多孔基质的研发与应用研究[D]. 西安:长安大学,2021.

    YUAN Chunbo. Substrate enhanced constructed wetlands for nitrogen and phosphorus removal and development & application of alum sludge-containing lightweight porous substrate[D]. Xi’an:Changan University,2021.

    [54]

    PARDE D,PATWA A,SHUKLA A,et al. A review of constructed wetland on type,treatment and technology of wastewater[J]. Environmental Technology & Innovation,2021,21:101261.

    [55] 罗有发,吴永贵,付天岭,等. 类芦植被对AMD污染土壤的生态修复效应及潜力[J]. 水土保持学报,2016,30(1):285−292.

    LUO Youfa,WU Yonggui,FU Tianling,et al. Ecological restoration effect and potential of neyraudia reynaudiana vegetation on AMD polluted soil[J]. Journal of Soil and Water Conservation,2016,30(1):285−292.

    [56] 李樊,刘义,孙伟峰,等. 利用微生物治理重金属污染的几种途径[J]. 生物技术通报,2010,26(9):48−50,64.

    LI Fan,LIU Yi,SUN Weifeng,et al. Certain pathways of heavy metals pollution treatment with utilization of microbiology[J]. Biotechnology Bulletin,2010,26(9):48−50,64.

    [57]

    GOPI KIRAN M,PAKSHIRAJAN K,DAS G. An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater[J]. Chemical Engineering Science,2017,158:606−620. doi: 10.1016/j.ces.2016.11.002

    [58]

    FERRAZ R M,COSTA J M,VEROLA L M,et al. Effects of the inoculum source,electron donor,and immobilization on the microbial community of sulfidogenic bioreactors[J]. Chemical Engineering Journal,2021,404:126549. doi: 10.1016/j.cej.2020.126549

    [59]

    KUMARI D,DUTTA K. Study on the performance of vertical flow constructed wetland microcosm with Canna sps. for treatment of high chromium-containing wastewater[J]. Chemosphere,2023,341:139993. doi: 10.1016/j.chemosphere.2023.139993

    [60]

    NEFF A N,DENICOLA D M,MALTMAN C. Passive treatment for acid mine drainage partially restores microbial community structure in different stream habitats[J]. Water,2021,13(22):3300. doi: 10.3390/w13223300

    [61]

    HEDIN R S,WATZLAF G R,NAIRN R W. Passive treatment of acid mine drainage with limestone[J]. Journal of Environmental Quality,1994,23(6):1338−1345.

    [62]

    HEDIN R,WEAVER T,WOLFE N,et al. Passive treatment of acidic coal mine drainage:The anna S mine passive treatment complex[J]. Mine Water and the Environment,2010,29(3):165−175. doi: 10.1007/s10230-010-0117-1

    [63]

    MERCHICHI A,HAMOU M O,EDAHBI M,et al. Passive treatment of acid mine drainage from the Sidi-Kamber mine wastes (Mediterranean coastline,Algeria) using neighbouring phosphate material from the Djebel Onk mine[J]. Science of the Total Environment,2022,807:151002. doi: 10.1016/j.scitotenv.2021.151002

    [64] 马双提,马宏. 关于酸性矿井水提标改造工艺方案的比选[J]. 环境与可持续发展,2018,43(2):156−158. doi: 10.3969/j.issn.1673-288X.2018.02.046

    MA Shuangti,MA Hong. Comparison and selection of the technical solutions on the standard improvement and reconstruction of acid mine water[J]. Environment and Sustainable Development,2018,43(2):156−158. doi: 10.3969/j.issn.1673-288X.2018.02.046

    [65] 郝如杰,郑纪永,朱成林,等. 地下酸性矿井水治理工程设计及应用[J]. 煤炭工程,2023,55(4):98−101.

    HAO Rujie,ZHENG Jiyong,ZHU Chenglin,et al. Design and operation of treatment project underground acid mine water[J]. Coal Engineering,2023,55(4):98−101.

    [66] 龙中,吴攀,黄家琰,等. 多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水[J]. 环境工程学报,2019,13(6):1391−1399.

    LONG Zhong,WU Pan,HUANG Jiayan,et al. Advanced treatment of acid mine drainage by multi-stage reoxygenation reaction-vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering,2019,13(6):1391−1399.

    [67] 李曦滨. 煤矿酸性废水污染综合治理技术与展望:以贵州省鱼洞河流域综合治理技术应用研究为例[J]. 中国煤炭地质,2018,30(7):48−53,93. doi: 10.3969/j.issn.1674-1803.2018.07.11

    LI Xibin. Coalmine acid wastewater pollution integrated governance technology and expectation—a case study of yudonghe valley integrated governance technology application in Guizhou Province[J]. Coal Geology of China,2018,30(7):48−53,93. doi: 10.3969/j.issn.1674-1803.2018.07.11

    [68]

    SHI J X,ZHANG J H,WANG C Z,et al. Research progress on the magnetite nanoparticles in the fields of water pollution control and detection[J]. Chemosphere,2023,336:139220. doi: 10.1016/j.chemosphere.2023.139220

    [69]

    NATARAJAN B,KANNAN P,AHMAD RATHER J,et al. Recent developments in metal nanoparticles functionalized nanocomposite adsorbents for heavy metals removal from wastewaters[J]. Journal of the Taiwan Institute of Chemical Engineers,2023,147:104942. doi: 10.1016/j.jtice.2023.104942

    [70]

    TEE G T,GOK X Y,YONG W F. Adsorption of pollutants in wastewater via biosorbents,nanoparticles and magnetic biosorbents:A review[J]. Environmental Research,2022,212:113248. doi: 10.1016/j.envres.2022.113248

    [71]

    KEFENI K K,MAMBA B B. Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate[J]. Journal of Cleaner Production,2020,251:119720. doi: 10.1016/j.jclepro.2019.119720

    [72]

    ABDEL MAKSOUD M I A,ELGARAHY A M,FARRELL C,et al. Insight on water remediation application using magnetic nanomaterials and biosorbents[J]. Coordination Chemistry Reviews,2020,403:213096. doi: 10.1016/j.ccr.2019.213096

    [73]

    MOTHETHA M,KEBEDE K,MASINDI V,et al. Employment of Ca2+-rich MgO nanoparticles for effective treatment of real acid mine drainage[J]. Environment Protection Engineering,2023,49(1):25−44.

    [74]

    KEFENI K K,MSAGATI T M,MAMBA B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal,2015,276:222−231. doi: 10.1016/j.cej.2015.04.066

    [75]

    KEFENI K K,MAMBA B B,MSAGATI T A M. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment[J]. Journal of Hazardous Materials,2017,333:308−318. doi: 10.1016/j.jhazmat.2017.03.054

    [76]

    MAKHATHINI T P,MULOPO J,BAKARE B F. Possibilities for acid mine drainage co-treatment with other waste streams:a review[J]. Mine Water and the Environment,2020,39(1):13−26. doi: 10.1007/s10230-020-00659-w

    [77]

    DENG D Y,WEIDHAAS J L,LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials,2016,305:200−208. doi: 10.1016/j.jhazmat.2015.11.041

    [78]

    STROSNIDER W H,NAIRN R W. Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí,Bolivia using simple mutual incubations and limestone[J]. Journal of Geochemical Exploration,2010,105(1-2):34−42. doi: 10.1016/j.gexplo.2010.02.007

    [79]

    MCCULLOUGH C D,LUND M A,MAY J M. Field-scale demonstration of the potential for sewage to remediate acidic mine waters[J]. Mine Water and the Environment,2008,27(1):31−39. doi: 10.1007/s10230-007-0028-y

    [80]

    HUGHES T A,GRAY N F. Co-treatment of acid mine drainage with municipal wastewater:performance evaluation[J]. Environmental Science and Pollution Research International,2013,20(11):7863−7877. doi: 10.1007/s11356-012-1303-4

    [81]

    JOHNSON K L,YOUNGER P L. The co-treatment of sewage and mine waters in aerobic wetlands[J]. Engineering Geology,2006,85:53−61. doi: 10.1016/j.enggeo.2005.09.026

    [82]

    YOUNGER P L,HENDERSON R. Synergistic wetland treatment of sewage and mine water:pollutant removal performance of the first full-scale system[J]. Water Research,2014,55:74−82. doi: 10.1016/j.watres.2014.02.024

    [83]

    HE C,ZHANG T Y,VIDIC R D. Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing[J]. Water Research,2016,104:425−431. doi: 10.1016/j.watres.2016.08.030

    [84]

    OKTEM Y A,INCE O,SALLIS P,et al. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor[J]. Bioresource Technology,2008,99(5):1089−1096. doi: 10.1016/j.biortech.2007.02.036

  • 期刊类型引用(1)

    1. 鲜保安,高德利,徐凤银,毕延森,李贵川,王京光,张洋,韩金良. 中国煤层气水平井钻完井技术研究进展. 石油学报. 2023(11): 1974-1992 . 百度学术

    其他类型引用(0)

图(7)  /  表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  13
  • PDF下载量:  13
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-05-02
  • 网络出版日期:  2024-12-11
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回