Research progress in performance and enhancement of coal gangue concrete
-
摘要:
煤矸石是我国堆存量最大的工业固废,对矿区周边造成了一系列严重的生态和环境危害。考虑到煤矸石制备混凝土是利用率最高的处置方式之一,为了实现煤矸石在混凝土中的有效利用,系统总结了煤矸石组成特征、使用参数对混凝土性能的影响,重点归纳了煤矸石粗骨料、细骨料和矿物掺合料的使用条件(掺量、粒度和水灰比等)对新拌混凝土流动性、硬化混凝土力学性能和耐久性(吸水性、抗冻性、抗氯离子渗透性、碳化性能、抗硫酸盐侵蚀性能)影响。结果表明:不同地区的煤矸石组成和性能差异明显,当煤矸石充当骨料时,要求降低其碳含量、硫含量、压碎值和吸水率,并优化煤矸石掺量、粒度和水灰比。当煤矸石充当矿物掺合料时,需要考虑降低粒度(<0.074 mm及活化煤矸石粉)。煤矸石粗骨料、细骨料和矿物掺合料掺量不宜超过45%、20%和10%。此外,还针对性地介绍了煤矸石粗细骨料和矿物掺合料性能提升技术,其中,热活化、表面包覆水泥砂浆、水玻璃以及微生物矿化技术可提升煤矸石骨料性能,而热活化和机械活化主要用于提升矿物掺合料活性。在此基础上,阐明了煤矸石粗细骨料和矿物掺合料性能提升机制,并指出了研究中存在的不足和问题,为煤矸石资源化利用和建筑材料发展提供方向和思路。
Abstract:Coal gangue (CG), the most abundant industrial solid waste in China, poses significant ecological and environmental risks to surrounding mining regions. Given that incorporating coal gangue into concrete is among the most efficient disposal methods, this paper provides a comprehensive review of its composition, the effects of its usage on concrete properties, and the specific conditions for using coal gangue as coarse aggregate, fine aggregate, and mineral admixture. The review emphasizes how variables such as dosage, particle size, and water-cement ratio influence the workability of fresh concrete, as well as the mechanical properties and durability- including water absorption, frost resistance, chloride ion penetration resistance, carbonation, and sulfate attack resistance-of hardened concrete. Key findings highlight significant regional variations in the composition and performance of coal gangue. When used as an aggregate, it is crucial to minimize its carbon and sulfur content, crushing value, and water absorption while optimizing dosage, particle size, and water-cement ratio. For its use as a mineral admixture, considerations include reducing particle size (to below 0.074 mm and activating the coal gangue powder.) The recommended maximum dosages for coal gangue as coarse aggregate, fine aggregate, and mineral admixture are 45%, 20%, and 10%, respectively. The paper also details performance enhancement techniques for coal gangue aggregates and mineral admixtures, such as thermal activation, surface coating with cement mortar, water glass treatment, and microbial mineralization. Thermal and mechanical activation are highlighted as key methods for boosting the reactivity of mineral admixtures. This study elucidates the mechanisms behind improving coal gangue's performance as aggregate and admixture and identifies research gaps and challenges, offering insights for advancing coal gangue utilization and the development of sustainable building materials.
-
Keywords:
- coal gangue /
- performance enhancement /
- coarse aggregate /
- fine aggregate /
- mineral admixture
-
0. 引 言
煤矸石(CG)是煤炭开采和加工过程中产生的主要工业固废[1]。2023年,全球煤炭产量达89.2亿t,其中煤矸石产量为13.38~17.84亿t[2]。我国煤矸石堆积量为70亿t,且仍以每年3.0亿~3.5亿t速度增长。煤矸石堆存是造成矿区周边环境恶化的主要原因[3-5]。例如,煤矸石堆积自燃排放NOx、SO2及烟尘,形成酸雨造成大气、地表水及土壤污染。
近年来,随着我国经济高速发展和城镇化率提高,建筑混凝土的需求逐年增加,混凝土中水泥和骨料的需求量达171.72亿t/a。每年水泥生产排放的CO2达16.5亿t,占CO2排放总量的5%~8%[6]。同时,开山造石生产骨料的方式也面临着环境和生态约束。一方面是煤矸石堆积造成的环境污染和资源浪费,一方面是基础设施、房屋建筑、工业建筑对水泥和骨料巨大的需求缺口,如何实现煤矸石在建筑行业中高效利用,是决定煤炭行业绿色高质量发展的关键。事实上,随着矿山修复和矿井填充技术的发展,煤矸石用于矿山建设的需求与日俱增,实现煤矸石高掺量、高质量建材利用也关系到矿山绿色可持续发展。
煤矸石主要成分为石英和方解石,与天然骨料相似[7-8],可以充当建筑混凝土和矿井填料的粗细骨料[9]。同时,煤矸石具有一定的水化活性,可以直接取代水泥。然而,煤矸石骨料性能劣于天然骨料,且煤矸石直接取代水泥存在活性低的问题。因而,优化使用条件以及选择合适的性能增强和活化技术对煤矸石利用至关重要。
为此,本文系统总结了煤矸石粗骨料、细骨料和矿物掺合料使用参数(掺量、粒径和水灰比等)对混凝土流动性、力学和耐久性能影响,归纳了煤矸石性能增强技术,并揭示内在反应机制,以期为煤矸石减量及资源化利用提供有益参考。
1. 煤矸石骨料混凝土性能研究
煤矸石的利用方式受含碳量和硫含量影响。例如,当含碳量大于20%时,煤矸石多用于发电、供暖和生产农业废料。当含碳量为4%~20 %时,多用作水泥、混凝土骨料。当碳含量低于4%时,主要用于填埋、筑路以及煤矿采空区回填材料[10]。煤矸石与天然碎石的主要化学成分为SiO2,Al2O3,Fe2O3和CaO,其中SiO2和Al2O3质量分数接近[11-17](表1)。根据煤矸石矿物成分和含量可将其划分为黏土、砂岩、铝质和钙质煤矸石[18](表2)。其中黏土煤矸石主要由黏土矿物组成,可代替黏土生产烧结砖、硅酸盐水泥等;岩类煤矸石以石英为主,可作为磨料、玻璃原料和建筑材料;钙质煤矸石以白云石和方解石为主,可用于生产水泥、石灰的填料;铝质煤矸石以富铝矿物(如:一水软铝石、一水硬铝石和三水铝石)为主,多用于提取氧化铝资源。因此,选择碳含量低以及钙质和岩类煤矸石可用于替代天然骨料和水泥,用于混凝土制备[19-23]。
样品 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 文献 河砂 86.72 7.53 1.78 0.38 0.61 1.65 0.15 [11] 碎石 46.46 16.32 15.05 8.32 6.20 2.75 1.58 [12] 淮南 52.41 25.88 7.32 10.15 0.90 0.83 1.14 [13] 黑龙江 58.82 27.87 8.31 0.78 — 1.23 — [14] 山西 56.56 36.78 1.95 0.62 0.22 — 0.42 [15] 山东 59.54 16.31 6.55 1.52 1.82 — — [16] 阜新 48.78 21.86 5.38 3.87 0.82 — — [17] 化学组成 黏土CG 岩类CG 钙质CG 铝质CG SiO2 24~56 53~88 10~40 40~55 Al2O3 14~34 0.4~20.0 3~10 35~45 Fe2O3 1~7 0.4~4.0 1~10 0.2~4.0 CaO 5~9 0.3~1.0 40~80 0.1~0.7 MgO 0.5~6.0 0.2~1.2 1~4 0.1~1.0 Na2O 0.2~2.0 0.1~1.0 — 0.1~0.9 K2O 0.3~3.0 0.1~5.0 — 0.1~1.5 TiO2 0.4~1.0 0.1~0.6 — — 煤矸石中的硫元素会造成混凝土软化、黏结丧失、体积膨胀及相开裂和剥落[24],例如,硫酸根离子和钙离子反应形成石膏,导致体积膨胀1.24倍,引起混凝土开裂[25],并且随着钙离子的消耗,将导致强度损失和水泥浆黏聚力的降低。随着硫元素增加混凝土的力学性能下降[26],且硫对混凝土的影响主要集中在后期(显著膨胀阶段),通过石膏和钙矾石的体积膨胀,挤压混凝土的内部孔隙,导致产生微裂缝和抗压强度的下降[27]。为此,煤矸石用作混凝土骨料时含量通常不高于5 %。
在合适的碳含量及硫含量条件下,煤矸石掺量和粒径是影响煤矸石混凝土(CGC)性能的关键。随着煤矸石骨料掺量的增加,混凝土的新拌性能、力学性能和耐久性能下降。当煤矸石掺量大于45%时,混凝土各项性能显著下降。这主要是由于煤矸石骨料内部孔隙多,压碎指标和吸水率大,会对混凝土的强度和耐久性产生不利影响。
1.1 流动性
1.1.1 粗骨料
流动性是指煤矸石混凝土的可塑性和流动性能,是影响混凝土密实度,进而影响力学性能和耐久性能的关键。煤矸石骨料掺量和粒径是影响混凝土新拌流动性的主要因素。通常随着煤矸石粗骨料掺量增加,混凝土坍落度减小[28]。例如,何文波[29]发现煤矸石掺量为0、40%和100 %时,坍落度分别为175、131、72 mm。当煤矸石掺量为100%时,坍落度最低,为普通混凝土的41%。煤矸石掺量增加使骨料吸水量变大,实际拌合水减少。考虑到煤矸石较高的吸水率,对混凝土拌合水和水灰比(W/C)的影响,可以通过预湿处理优化煤矸石骨料性能[30-33]。相同掺量条件下,煤矸石粗骨料吸水率主要受粒径影响,骨料粒径与表面形貌可以影响其比表面积,进而改变胶凝材料和拌合水包裹量[34]。ZHANG等[35]研究了预湿处理后煤矸石粗骨料掺量和粒径对混凝土影响。结果表明,当煤矸石掺量小于50%时,坍落度变化不大。当煤矸石最大粒径为31.5、26.5、19.5和9.5 mm,坍落度分别为80、75、70和60 mm。
1.1.2 细骨料
针对煤矸石细骨料对混凝土流动性能影响,DONG等[3]研究发现,当细度模数为0.62时,混凝土最大坍落度为195 mm,细度模数为0.44时,坍落度值为140 mm。这与煤矸石细骨料具有一定的润滑性能,低掺量条件下可以提高混凝土流动性有关[36]。WANG等[37]研究发现混凝土坍落度随掺量的增加而先上升后下降,且当煤矸石掺量小于45 %时,煤矸石骨料影响显著。煤矸石细骨料可以优化级配,但过高掺量容易引起表面浆料不足,导致流动性变差。黄炎林[38]发现随着煤矸石掺量增加坍落度逐渐下降,且掺量大于40%时,坍落度下降显著。综上可知,细度模数和掺量是影响煤矸石细骨料混凝土流动性的主要因素,混凝土坍落度是煤矸石细骨料吸水性、润滑性协同作用的结果,优化细骨料级配和掺量是改善煤矸石混凝土坍落度关键[39-40]。
1.1.3 流动性能提升
如前所述,由于煤矸石具有高吸水性,因此,预湿处理可以改变煤矸石流动性。肖建华等[41]和周梅等[20]研究了不同预湿处理方式对自燃煤矸石混凝土性能影响,结果表明,预湿60 min可以显著降低煤矸石在拌合过程中吸水能力,且当煤矸石粗骨料和细骨料附加吸水量为80%和60%时,煤矸石混凝土与普通混凝土力学性能接近。此外,使用减水剂可以显著改善煤矸石混凝土的流动性[42-44]。李永靖等[45]对比了聚羧酸系和萘系减水剂对混凝土坍落度影响,结果表明,在相同减水率下,聚羧酸系比萘系减水剂的坍落度损失和损失波动小。聚羧酸减水剂能强化颗粒间的热运动,强化界面的连接结合键,而萘系减水剂通过静电排斥作用来促进水化反应。GUO等[46]进一步研究发现,聚羧酸系和萘系减水剂最佳掺量分别为0.4%和1.5%。添加矿物掺合料可以影响煤矸石骨料混凝土流动性,例如,HOU等[47]发现浆料的坍落度随粉煤灰掺量增加而呈线性增长。这与粉煤灰的滚珠效应有关[48-49]。进一步研究表明,改变掺合料的组成对提高流动性也有帮助,尤其是改善矿物掺合料中的辉绿岩和玄武岩成分[50]。
综上,煤矸石骨料高吸水率和不规则形状是造成流动性下降的主要原因,而其掺量和粒度会显著改变混凝土坍落度。为此,煤矸石骨料混凝土流动性提升主要围绕保水(预湿处理和减水剂)和润滑(矿物掺合料)展开,通过合理的配比及参数控制可以大幅度提高煤矸石混凝土流动性,提高混凝土硬化后的质量,减少空洞、泌水和离析发生。
1.2 力学性能
1.2.1 粗骨料
力学性能是煤矸石在承受荷载或抵抗其他各种作用力时的表现,是其质量的重要指标。研究表明,煤矸石混凝土的抗压强度随煤矸石掺量增加而减低,通常当煤矸石掺量大于45%时,抗压强度显著降低。例如,白朝能等[51]研究了煤矸石掺量对混凝土力学性能影响(图1a),结果表明,随着煤矸石掺量的增加,抗压强度逐渐降低。这主要是由于煤矸石的压碎指标比天然碎石大,当煤矸石与水泥砂浆拌合后,煤矸石与水泥砂浆形成一种“强包弱”结构,但骨料本身强度难以抵挡外荷载,从而被压碎破坏。当煤矸石掺量超过45%时,混凝土的裂缝发展从“双通道”变成“三通道”,而且主裂缝沿着煤矸石破碎界面发展,因而抗压强度下降出现拐点(图1b),苏煜翔[52]和马宏强等[53]也获得类似结论。
水灰比是影响混凝土力学性能的重要因素。牛晓燕等[33]研究了煤矸石掺量为40%,不同水灰比对混凝土的抗压强度的影响,结果表明:当水灰比分别为0.4、0.5、0.6时,抗压强度为50、48、24 MPa。王海[28]也发现随着水灰比的增加,煤矸石混凝土的力学性能下降。这主要是因为随着水灰比增大,混凝土密实度减低,导致力学性能下降。因此,减小煤矸石粗骨料掺量和水灰比可以提高煤矸石混凝土的力学性能。
1.2.2 细骨料
煤矸石充当细骨料时,掺量不宜超过20%(图2)[54-57]。这主要是由于当煤矸石掺量小于20%时,煤矸石吸水系数比天然河砂大,会吸收拌合水,导致水灰比降低。同时,经过破碎筛分的煤矸石细度降低,且具有一定活性。煤矸石中活性物质(SiO2和Al2O3)发生二次水化反应,产生水化硅酸钙(C−S−H)和钙矾石(AFt)等,堵塞微裂缝和孔隙,改善内部结构;当煤矸石掺量超过20%时,由于煤矸石破碎指数小于天然河砂,二次水化反应提高的强度无法抵消煤矸石本身缺陷,从而导致混凝土强度下降[58]。
1.2.3 力学性能提升
煤矸石取代骨料通常需要破碎处理,而破碎的煤矸石通常呈薄片或针状,导致其压碎指标大于天然碎石,且由于煤矸石多孔和松散的结构,吸水率变大,因而导致CGC的力学性能和耐久性下降。因此,为了实现煤矸石对天然骨料的高效替代,有必要提升煤矸石性能。
煅烧活化技术可以提高煤矸石骨料性能。例如,马宏强等[53]和WANG等[59]发现,煅烧可以去除煤矸石粗骨料中的弱组分,提高煤矸石混凝土力学性能。YANG等[60]和LI等[61]发现煅烧热活化实现了煤矸石内矿物质晶体分解成具有火山灰活性的SiO2和Al2O3,活性成分与水泥水化产物进一步发生反应,生成C−S−H凝胶等附着在混凝土微裂缝上,改善骨料与基体界面结构[60]。通常,当煅烧温度达450 ℃时,煤矸石开始分解,煤矸石混凝土力学性能开始提升[62-63]。当煅烧温度达750 ℃时,煤矸石表面Si和Al完全活化,活性达到最大,煤矸石砂浆的力学性能开始优于普通砂浆[64-68]。
此外,煤矸石表面包覆水泥砂浆、水玻璃以及微生物矿化等也可以提高CGC力学性能(图3)。例如,将煤矸石包裹在水灰比为0.5的水泥浆中,可以显著提高煤矸石混凝土抗压强度[69]。刘小婷等[70]等研究表明,在硅酸盐防水材料中添加0.7%的土壤固化剂,对包裹煤矸石强化效果最显著,压碎值最高可降低50%。LI等[71]使用模量为2.3的Na2SiO3代替NaOH作为液态化学激发剂,结果表明,当NaOH与Na2SiO3质量比为50%时,使煤矸石混凝土的抗压强度提高了207%。温久然等[72]将煤矸石浸泡在质量分数为6 %的水玻璃中,制成混凝土抗压强度比空白组提升52.43%,且继续掺入质量分数10%的CaCl2时,耐水性也得到提升,煤矸石的压碎指标由49.72%降为27.00%。此外,使用芽孢杆菌 LMG 22257菌和巴氏芽孢杆菌,也可以不同程度提高煤矸石骨料及混凝土的力学性能[73-74]。
综上可知,受煤矸石吸水、易碎及低密实性的影响,煤矸石粗骨料和细骨料掺量不宜超过45%和20%。为了提高煤矸石骨料力学性能,可以使用低细度模数和煅烧的方式提高煤矸石的活性,除此之外,包覆水泥砂浆、水玻璃以及微生物矿化方法也可提高煤矸石骨料性能。
1.3 耐久性
1.3.1 吸水性能
吸水性是指混凝土中的水分从外界吸收和渗透的能力。吸水性能是影响混凝土耐久性的主要因素之一。混凝土的吸水率受骨料、基体和界面结构的影响[75-77]。将煤矸石掺入混凝土中,会导致混凝土吸水系数变大,这与煤矸石本身的缺陷有关。
混凝土的吸水性能与煤矸石掺量和煅烧温度密切相关。混凝土吸水率随着非自燃煤矸石掺量增大逐渐增大[78]。例如,刘世等[79]研究发现随着煤矸石掺量的增加,混凝土的累计吸水量不断增大,且当掺量超过20%时,累计吸水量迅速上升。对于自燃煤矸石或煅烧煤矸石,混凝土吸水率还受煅烧温度影响。例如,ZHU等[63]研究了煅烧温度对煤矸石混凝土吸水率的影响(图4),结果表明随着煅烧温度升高,煤矸石混凝土的吸水率增加。这主要是由于煅烧后骨料表面孔隙增多,吸水性增强。煤矸石表面含泥量高及内部存在微裂缝的影响,也会提高混凝土吸水率(表3)。当煤矸石煅烧温度达750 ℃时,煤矸石混凝土的吸水率下降。这主要归因于煤矸石被活化,活性物容易吸收水分,形成致密界面结构,进而阻碍混凝土中水分流动。因此,煤矸石代替粗骨料时要控制掺量和煅烧温度。
考虑掺入矿物掺合料可以提高煤矸石混凝土的耐久性能[80-81]。例如:添加低于20%的粉煤灰可显著改善混凝土吸水性,这是由于粉煤灰的粒径小于水泥,能填充小孔隙,从而形成更加良好的连续微级配,另一方面粉煤灰的火山灰反应也可促使Ca(OH)2转化为C−S−H,填充微裂缝[80]。QIU等[82]研究表明,活化煤矸石粉充当外加剂时,混凝土具有一定的保水和固水能力,这与活化煤矸石粉的微观形貌效应和微团聚效应有关。此外,微生物矿化技术和表面包裹技术也能改善混凝土的吸水性能[73,78]。
1.3.2 抗冻性能
混凝土的抗冻性能是混凝土在低温环境中抵御冻胀和冻融循环的能力。通过对煤矸石混凝土抗冻性能研究,有助于提高西部和北方地区建筑物、浅层井下充填材料的耐久性,评估和预测损伤程度。考虑到煤矸石高孔隙率和吸水率,直接利用煤矸石可能降低混凝土抗冻性,且随着掺量和冻融循环次数的增加而降低。
1)粗骨料
掺量是影响煤矸石粗骨料混凝土抗冻性能的主要因素。班馨语[83]通过慢冻法研究冻融条件下自燃煤矸石耐久性(图5),结果表明,相同冻融循环次数下,随着煤矸石掺量的增加混凝土冻融质量损失率增加。这主要是因为经历冻融循环的混凝土,内部结构会被破坏,并且随着循环次数增加,内部损伤持续积累,导致外表混凝土发生脱落[84];煤矸石粗骨料中存在大量孔隙水,在结冰过程中形成膨胀力,破坏混凝土的内部结构,最终导致混凝土发生冻融破坏[85]。微观分析发现,煤矸石混凝土在冻融循环100次后,界面过渡区的裂缝明显大于普通混凝土,且水化硅铝酸钙(N−A−S−H)结构被破坏,导致混凝土的抗冻性能下降(图5)。为保证煤矸石混凝土抗冻性能要求,煤矸石粗骨料掺量通常不超过40%[86-87]。
2)细骨料
如前所述,混凝土的抗冻性能与煤矸石掺量。通常当煤矸石细骨料掺量超过20%时,混凝土抗冻性显著下降。如图6a所示王亮等[54]发现煤矸石混凝土相对动弹性模量随冻融循环次数增加而减低,且在相同冻融循环次数下,随煤矸石细骨料掺量增加而减低[88]。这主要是因为煤矸石吸水率和孔隙率比天然河砂大,水分通过煤矸石孔隙进入混凝土内部,内部水通过结冰体积膨胀,对骨料孔壁产生膨胀压力,进而导致内部结构破坏。如图6b所示刘舒畅[89]研究表明煤矸石掺量≤20%时,混凝土的抗冻性能满足规范要求,且随着掺量增加,冻融损伤不断增大。张向东等[90]研究发现,在冻融−碳化耦合环境作用下,相对动弹性模量损失率与循环次数和水灰比成正相关。冻融−碳化加重了混凝土的损伤破坏。例如:200次循环结束后,0.75水灰比的相对动弹性模量比0.55水灰比低8.8%。此外,当循环次数<63次时,先冻融后碳化的质量损失率小于先碳化后冻融的样品,但循环超过63次时,现象出现反转。这表明CO2与混凝土中Ca(OH)2发生中和反应,生成的膨胀物质CaCO3填充微孔隙,导致混凝土强度有所增长。但随着试验继续进行,过度的膨胀物质和水结冰会使得混凝土内部结构发生破坏,产生微裂缝,导致混凝土表面砂浆脱落。
提高混凝土抗冻性的关键在于增强混凝土结构致密性,研究者为此提出了添加矿物掺合料、纤维、防冻剂等手段。例如,LUO等[91]研究发现利用矿渣粉和钢纤维,可以优化混凝土孔隙结构,提高煤矸石混凝土的抗冻性能。1%的钢纤维和40%的矿渣粉能实现煤矸石混凝土500次冻融循环。矿渣粉具有后期活性较高的特点,能补充混凝土微孔隙,周梅等[20]研究表明,在煤矸石混凝土中复掺矿物掺合料可以细化内部孔隙结构,300次的冻融循环混凝土的质量损失率小于5%,相对动弹性模量小于40%。纤维具有较高抗拉强度,能有效抑制混凝土的冻胀开裂。使用聚丙烯纤维抑制混凝土微裂缝,从而提高煤矸石混凝土的抗冻性能[92-93]。在混凝土中掺入1%的波浪型钢纤维,能使混凝土冻融500次时破坏[94-95]。此外,使用乙二醇防冻剂、水泥包裹骨料以及碳化养护,也可以提高煤矸石混凝土结构致密性,进而增强抗冻性能[96-98]。
1.3.3 抗氯离子渗透性能
雨水与海水中的氯离子会影响混凝土结构耐久性,当煤矸石用于盐湖、盐碱地以及海洋环境时,尤其需要关注氯离子的渗透性。氯离子渗透性一般通过快速氯离子渗透试验评价[99-100]。煤矸石粗骨料混凝土的抗氯离子渗透性能与其多孔结构对氯离子固结能力相关。
煤矸石掺量和水灰比是影响混凝土抗氯离子渗透性的主要因素。顾云等[101]研究发现当煤矸石掺量为45 %时,混凝土具有最佳抗氯离子渗透性。在此基础上,马宏强等[53]研究了不同养护龄期煅烧煤矸石抗氯离子渗透性(图7),结果表明,龄期越长,抗氯离子渗透性越强。微观分析表明,煤矸石具有固化氯离子的能力[100]。刘锁[102]对煤矸石混凝土过渡区分析发现,随着煤矸石掺量的增加,骨料与胶凝材料之间的孔隙变大,水化产物不能完全填充孔隙,从而降低混凝土的抗渗性能。因此,改善水泥浆和骨料的界面结构,可以提高煤矸石混凝土的抗氯离子渗透性能[103]。值得注意的是,高煤矸石掺量可以提高混凝土抗氯离子渗透性,但也容易造成力学性能下降,因此,针对实际需求兼顾各项性能是煤矸石混凝土推广和应用关键。
为了提高煤矸石混凝土抗氯离子渗透性,研究者提出了使用硅灰矿物掺合料及纳米改性等方法[104]。研究表明,使用硅灰可以显著提高煤矸石混凝土的抗氯离子渗透性。例如。李永靖等[105]研究发现煤矸石混凝土中掺入7%的硅灰,抗氯离子渗透性能提升,且煤矸石混凝土的氯离子迁移系数随水灰比增加而变大,随粉煤灰掺量增加而降低。王晴等[106]发现,水灰比和硅灰掺量是影响煤矸石混凝土抗氯离子渗透性能主要因素,且水灰比,硅灰、煤矸石和减水剂用量分别为0.3,7%、40%和0.75%时,混凝土抗氯离子渗透性能最强。DONG等[107]研究表明,电通量随碳纳米管(CNFs)掺量的增加,呈先下降后上升的趋势,且质量分数0.2%的CNFs具有最低的电通量,与对照组相比,下降35.47%。采用快速氯离子迁移系数研究多壁碳纳米管(MWCNTs)对混凝土渗透性的影响,结果表明,0.15%MWCNTs的扩散系数降低了19.1%。这是由于MWCNTs具有一定的桥接和填充作用,能抑制微裂缝的产生和改善孔隙结构[108]。姚贤华等[109]研究了聚丙烯纤维和纳米SiO2对煤矸石混凝土的影响,结果表明,当纳米SiO2掺量为1.5%、聚丙烯纤维掺量为0.6 kg/m3时,能显著提升混凝土的各项性能。值得注意的是,使用纳米材料面临的一定的经济压力,为此使用矿物掺合料提高基体密实度,降低水分和介质的传输仍是直接有效的方式[110-112]。
1.3.4 碳化性能
煤矸石具有一定碱性,与CO2等酸性物质发生反应,导致混凝土体积膨胀,内部产生微裂缝,进而抗碳化性能下降[113]。煤矸石混凝土的碳化性能与掺量和水灰比密切相关。王亮等[54]研究了煤矸石骨料掺量对混凝土碳化深度影响(图8)。结果表明,混凝土碳化深度随煤矸石细骨料掺量增加而增大。主要是因为煤矸石孔隙率比天然河砂大,从而降低混凝土的密实度,抗碳化性能下降。煤矸石混凝土的抗碳化性能与水灰比、骨料掺量及碳化时间有关,且混凝土抗碳化性能随着煤矸石掺量增加而下降[53,114]。王洋等[115]通过正交试验,分析了以上因素对煤矸石碳化性能影响显著顺序,结果表明水灰比对碳化性能影响最大,其次是煤矸石和硅灰掺量,减水剂掺量影响最小。
GAO等[116]研究了不同矿物掺合料对混凝土碳化深度的影响,结果表明,20%掺量的粉煤灰和粒化高炉矿渣的混凝土碳化深度为对照组的77.6%和86.2%。玄武岩纤维能有效抑制碳化深度,例如600 ℃时,玄武岩混凝土的碳化深度比对照组低22%[117]。李永靖等[118]将苯乙烯及191号、196号不饱和聚酯树脂分别掺入煤矸石混凝土中,结果表明碳化深度随聚合物掺量的增加而减低,且在相同的掺量下,苯乙烯的碳化深度远小于聚酯树脂,例如,在15%掺量下,苯乙烯的碳化深度比聚酯树脂低15.8%。这主要是因为聚合物在原料之间生成一种具有黏聚力的隔膜,阻碍CO2向混凝土内部孔隙的扩散,进而减少中和反应。张成中等[119]和高琦翔[120]研究了矿物掺合料和掺入方式对混凝土碳化深度的影响,结果表明,当粉煤灰和煤矸石掺量分别低于15%和20%时,能提升煤矸石混凝土的碳化性能。在煤矸石混凝土中掺入矿渣时,碳化深度随着掺量的增加而变深,且当矿渣掺量为55%时,混凝土碳化深度比对照组增加了228%。这是由于双掺比单掺的总矿物掺合料多,使得水泥中部分可碳化物质Ca(OH)2含量减少,导致加快碳化速度。王洋等[115]研究发现,适当降低水灰比,掺入适量硅灰能改善煤矸石混凝土的抗碳化性能,且硅灰掺量为7%和聚羧酸高效减水剂掺量为0.85%时,能降低煤矸石混凝土碳化深度。
综上所述,混凝土在使用过程中需要具有一定的抗渗性、抗冻性和抗侵蚀性等。通过控制水灰比、使用外加矿物掺合料(粉煤灰和硅灰)、纤维和纳米颗粒等方式,可以提高基体密实性,提升煤矸石混凝土的耐久性。
2. 煤矸石作为矿物掺合料研究
2023年水泥生产排放二氧化碳达12亿t,占全国二氧化碳排放量的10%,实现水泥和建材行业节能减排意义重大。考虑到煤矸石含有二氧化硅和氧化铝等活性成分,具备作为混凝土矿物掺合料的潜力,因此将煤矸石矿物掺合料取代水泥可以有效降低二氧化碳排放。煤矸石粉(CGP)的活性低于硅灰和粉煤灰等矿物掺合料,但CGC在降低碳排放方面效果显著[121]。煤矸石作为矿物掺合料通常需要进行磨矿处理或煅烧处理,以提高其反应活性,因此,本节主要讨论活化处理的煤矸石粉矿物掺合料性能。
2.1 流动性
煤矸石混凝土的流动性对混凝土的性能和施工质量至关重要。混凝土流动性的好坏直接影响混凝土的强度、密实度和耐久性能。研究表明,CGP矿物掺合料的掺量显著影响其流动性。通常随着CGP掺量的增加,混凝土坍落度先升高后降低,这与煤矸石粉的微集料效应和火山灰反应有关[122-123]。邓君[124]以CGP掺量为变量,进行混凝土坍落度试验(表4)。研究表明,混凝土坍落度随煤矸石粉掺量增加先升高后降低,当掺量为9%时坍落度最高。当煤矸石矿物掺合料<9%时,煤矸石粉起到“滚珠效应”,降低集料之间阻力,且优化骨料级配,释放骨料内部水,从而增加流动性[125];掺量高于9%时,煤矸石粉表面吸附的水质量大于水泥,且吸附作用占主导地位,从而减低混凝土的流动性。周梅等[126]研究了自燃煤矸石粉和减水剂对坍落度的影响,结果表明,当聚羧酸减水剂和自燃煤矸石粉掺量分别为0.43%和25%时,混凝土坍落度最大。冯娜等[127]研究发现,煅烧煤矸石粉最佳掺量为20%时,混凝土坍落度由105 mm增加到142 mm。白春等[128]研究最佳煅烧条件为:煅烧温度750 ℃,恒温2 h,研磨时间3 min,且当煅烧煤矸石粉与矿粉或粉煤灰比例为7∶3时,能改善混凝土的和易性。
2.2 力学性能
混凝土的力学性能与矿物掺合料性能密切相关,煤矸石矿物掺合料性质受煅烧温度和掺量影响显著。
YAO等[129]发现当CGP掺量为30 %时,混凝土抗压强度和微观结构均呈现最佳状态[130]。当CGP掺量为30%时,抗压强度最高,为2.39 MPa。过SEM分析发现,CG掺量为30%时,气孔的平均孔径为260 μm,平均孔面积为0.434 mm2,圆度值为1.57,平均Feret直径为288 mm,孔隙性能最佳[131]。
刘超群等[132]通过煅烧煤矸石粉,开展活化煤矸石对水泥性能及水化机理影响研究(图9)。结果表明,掺30%活化煤矸石样品与纯水泥样品的抗压强度和抗拉强度相差不大。这主要是由于煤矸石的活性物质与基体发生二次水化反应,产生C−S−H凝胶和AFt等水化产物,堵塞水泥基体的孔隙,优化内部孔隙结构。LIU等[133]采用经800 ℃煅烧煤矸石粉代替矿渣制备碱激发胶凝材料,研究发现煅烧煤矸石粉掺量为10%时,碱激发胶凝材料的3 d、7 d和28 d抗压强度分别提高8%、25%和13%。WANG等[134]也通过高温煅烧使煤矸石热活化,研究煅烧温度对煤矸石微观结构和火山灰反应活性的影响,结果表明,煤矸石经550 ℃煅烧后活性提高,继续煅烧到750 ℃活性达到最大,但煅烧到900 ℃时活性急速下降。主要原因是煤矸石由高岭石和石英组成,高岭石经煅烧分解成偏高岭土,偏高岭土具有较高活性[135]。随着煅烧温度不断升高,当温度达550 ℃时高岭石开始分解成偏高岭土,直至750 ℃时完全分解,但温度达900 ℃时偏高岭土析出结晶。煅烧煤矸石的化学反应过程如下:
$$ \mathrm{Al}_2 \mathrm{O}_3 \cdot \mathrm{SiO}_2 \cdot 2 \mathrm{H}_2 \mathrm{O} \;\xrightarrow{550{~}^{\circ} \mathrm{C}} \mathrm{Al}_2 \mathrm{O}_3 \cdot \mathrm{SiO}_2 \cdot 2 \mathrm{H}_2 \mathrm{O}(\mathrm{~g})$$ (1) $$ 3\left(\mathrm{Al}_2 \mathrm{O}_3 \cdot 2 \mathrm{SiO}_2\right) \xrightarrow{900{~}^{\circ} \mathrm{C}} 3 \mathrm{Al}_2 \mathrm{O}_3 \cdot 2 \mathrm{SiO}_2+4 \mathrm{SiO}_2$$ (2) 使用煅烧煤矸石代替水泥时,应注意煅烧温度等因素。适量的煅烧煤矸石能降低水泥的水化热,减小收缩裂缝[136]。此外,煤矸石掺入水泥时,应该控制煤矸石的烧失量、SO3含量和火山灰性能试验[137]。
研究者考察了除煅烧外的其他活化方式对煤矸石及混凝土性能影响[138-143]。使用机械活化、蒸汽养护活化、微波辐射活化[144]等方式提高煤矸石矿物掺合料性能。例如,吴红等[145]采用机械活化的方式对煤矸石进行研磨,结果表明,将煤矸石细化至0.09 mm时,混凝土强度最高。蒸汽养护会激发自燃煤矸石的火山灰活性,使混凝土孔径细化,抗渗性和耐久性增强。使用微波辐射可激活煤矸石活性,当微波活化温度600~700 ℃,煤矸石具有最佳反应活性,掺有活化煤矸石的砂浆28 d抗压强度和抗折强度分别提高72.5%和42.32%[146]。在此基础上,研究人员发现复合活化可以进一步活化煤矸石。例如,将煤矸石600~700 ℃煅烧后,再磨细到300~400 m2/kg,能有效提高其活性[147]。事实上,无论是煅烧还是机械研磨、蒸汽养护和微波辐射,都不可避免的造成较高的能源消耗,因此,开发低能耗高活性煤矸石处理技术将是未来研究方向。
2.3 耐久性能
矿物掺合料不仅可以影响新拌混凝土的工作性,还能改善硬化混凝土的耐久性。针对煤矸石矿物掺合料对混凝土耐久性的影响,研究者主要考察了抗硫酸盐侵蚀性能和抗氯离子侵蚀性能。
2.3.1 抗硫酸盐侵蚀性能
地下水和土壤中的硫酸盐会侵蚀混凝土,影响混凝土结构的耐久性。普通混凝土在5 %Na2SO4溶液中浸泡90 d后强度损失率高达43%[148]。这主要是硫酸盐与C−S−H凝胶和铝酸盐发生反应,生成石膏或钙矾石,导致混凝土膨胀开裂[149-150],影响混凝土的服役性能。因此,提高混凝土抗硫酸盐侵蚀性能尤为重要。
柯国军等[151]研究了煅烧煤矸石粉抗硫酸盐侵蚀效果,结果表明随着煅烧煤矸石粉掺量的增加,混凝土抗硫酸盐性能增强。将活化煤矸石加入碱激发矿渣混凝土(AACGS)中进行抗硫酸盐侵蚀研究(图10)。结果表明,掺入50%煤矸石或70%煅烧煤矸石的混凝土,具有最大抗压强度增长率,且增长率均为先增大后减小[152]。煤矸石能提高抗硫酸盐侵蚀的原因是硫酸钠溶液呈弱碱性,能够促使煤矸石活化,且钙矾石能抑制低钙环境下AFt的形成,提高混凝土抗硫酸盐侵蚀性能[153]。YU等[154]研究发现由于早期的水化和火山灰反应,提高了混凝土的致密性,从而具有较高的相对动弹性模量。Ca(OH)2晶体逐渐反应成钙矾石(3CaO∙Al2O3∙3CaSO4∙31H2O)和石膏(CaSO4∙2H2O),早期的水化产物对大孔产生填充和细化作用,优化孔隙结构[155]。当时间超过120 d时,由于大量水化产物的生成,填充物对孔隙结构的膨胀应力大于混凝土的抗拉强度,导致混凝土产生新的微裂缝,相对动弹性模量开始下降。反应方程式如下:
$$ {\text{CH+SO}}_{4}^{2-}{+2{\mathrm{H}}_2{\mathrm{O}}}\stackrel{}{\to }\text{CaSO}_4·{{2{\mathrm{H}}_2{\mathrm{O}}+2{\mathrm{OH}}}}^- $$ (3) 2.3.2 抗氯离子渗透性能
氯离子进入混凝土会腐蚀基体及钢筋,对混凝土耐久性产生不利影响。良好的抗氯离子能力来源于混凝土的低扩散性[156-157]。混凝土的抗氯离子渗透性能与煤矸石粉掺量密切相关。
阎杰等[158]研究了活化煤矸石粉矿物掺合料对混凝土抗氯离子渗透性能影响,结果表明,当煤矸石掺量≤20%时,混凝土的氯离子扩散系数随煤矸石掺量增加而减小。主要原因是其中的活性物质与Ca(OH)2反应,生成C−S−H凝胶,填充了界面过渡区的孔隙和微裂缝,改善混凝土内部结构。金阳等[159]研究发现掺入10%~40%自燃煤矸石粉能提高混凝土的抗氯离子渗透性能,且28 d的电通量下降至纯水泥混凝土的32.5%~56.3%。然而,MA等[152]发现混凝土氯离子扩散系数随煤矸石掺量增加而变大,且掺量小于55%时煅烧煤矸石抗氯离子能力优于普通煤矸石(图11)。分析认为,煤矸石吸水率和孔隙率较高,为氯离子渗透提供途径。煅烧煤矸石活性高,生成更多水化产物堵塞微裂缝和孔隙,因此煅烧煤矸石的抗氯离子能力优于普通煤矸石。综上,煤矸石组成及性质差异显著,因此用于提高混凝土抗氯化物侵蚀的最佳掺量不宜超过30%。
3. 应用现状及经济效益
虽然煤矸石混凝土的大多研究处于实验室阶段,但仍有一些工程探索。例如,CGC可以用作采空区的填充材料或对混凝土强度要求较低的煤矿井下工程(巷道底板硬化、喷射涂层、巷旁充填等)[160-162]。研究表明,CGC作为沉陷填海和地下回填的充填材料,不仅降低了煤矸石堆积的土地占用率,而且改善了地下采煤产生的地表沉降[163]。申海生等[164]对陕西李村煤矿进行煤矸石混凝土井下硬化试验,验证了煤矸石混凝土在井下硬化工程中的良好效果。任连伟等[165]将煤矸石和水泥混合制备成注浆浆液,对矿井采空区进行充填,结果表明,当煤矸石质量比<60%时,可用于煤矿采空区的地基处理。刘浪等[166]采用一次采全高四阶段膏体填充开采技术,对麻黄梁煤矿进行充填,经济分析表明麻黄梁煤矿建筑物压煤可解放出建筑物压煤资源1 000万t,预计将为煤矿企业增加30亿元的毛利,具有显著的经济效益。
陕西榆林工业区建设了一条日产5万块标准砖的自动化矸石制砖产线,可年消纳煤矸石60万t,利用TDS智能干选机对煤矸石进行脱碳分选,不仅提高了制砖产线稳定性和不同煤矿矸石适应性,又具有一定的经济效益。山西焦煤东曲矿研制出大采高填充液压支架及相关配套设备,为煤矸石顺利返井充填项目的落地提供了可行条件,目前约81万t煤矸石已被消纳处置。山西焦煤经坊煤业,将煤矸石研制为标砖,经坊煤业每年消耗20万t煤矸石,制成6 500万块标砖,具有明显的经济价值。煤矸石混凝土用于砌块,将使建筑能耗节30%,每立方米约降低成本50元,综合造价降低8%[167]。
4. 结论与展望
1)不同地区的煤矸石组成和性能具有显著差异;煤矸石易碎、易吸水及多孔结构是其使用性能下降的主要原因。
2)随着混凝土中煤矸石掺量增加,混凝土的流动性、力学性能和耐久性通常会下降。综合考虑各项性能,煤矸石骨料和矿物掺合料的掺量不宜超过20%~40%。
3)通过预湿和提高水灰比可以增加浆体水量,降低煤矸石吸水性对性能影响;通过表面包覆水泥砂浆、水玻璃以及微生物矿化等可以提高煤矸石密实性,而进一步结合粉煤灰和硅灰等矿物掺合料以及纤维和纳米颗粒可以优化混凝土结构,提高强度和耐久性。
4)煤矸石在混凝土中的应用面临着掺量和性能的矛盾性,且实际服役过程面临多种耦合作用影响,兼顾煤矸石消纳的现实需求和实际服役环境,是实现煤矸石混凝土性能提升的关键。
5)针对煤矸石及煤矸石混凝土的性能提升技术,大多处于实验阶段,未来考虑技术的能耗、环境效益和经济效益,是实现大批量、高性能的煤矸石推广和应用的关键。
6)“双碳”战略目标的提出为煤矸石利用提出新的要求,未来有必要针对煤矸石建材化利用过程,建立碳排放碳足迹因子数据库、核算标准,为煤矸石低碳利用提供标准和支撑。
-
样品 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 文献 河砂 86.72 7.53 1.78 0.38 0.61 1.65 0.15 [11] 碎石 46.46 16.32 15.05 8.32 6.20 2.75 1.58 [12] 淮南 52.41 25.88 7.32 10.15 0.90 0.83 1.14 [13] 黑龙江 58.82 27.87 8.31 0.78 — 1.23 — [14] 山西 56.56 36.78 1.95 0.62 0.22 — 0.42 [15] 山东 59.54 16.31 6.55 1.52 1.82 — — [16] 阜新 48.78 21.86 5.38 3.87 0.82 — — [17] 化学组成 黏土CG 岩类CG 钙质CG 铝质CG SiO2 24~56 53~88 10~40 40~55 Al2O3 14~34 0.4~20.0 3~10 35~45 Fe2O3 1~7 0.4~4.0 1~10 0.2~4.0 CaO 5~9 0.3~1.0 40~80 0.1~0.7 MgO 0.5~6.0 0.2~1.2 1~4 0.1~1.0 Na2O 0.2~2.0 0.1~1.0 — 0.1~0.9 K2O 0.3~3.0 0.1~5.0 — 0.1~1.5 TiO2 0.4~1.0 0.1~0.6 — — -
[1] CONG X Y,LU S,YAO Y,et al. Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete[J]. Materials & Design,2016,97:155−162.
[2] LI S S,ZHANG H J,DONG L H,et al. Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills[J]. International Journal of Minerals,Metallurgy and Materials,2022,29(3):513−520.
[3] DONG Z C,XIA J W,FAN C,et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials,2015,100:63−69. doi: 10.1016/j.conbuildmat.2015.09.050
[4] QUEROL X,IZQUIERDO M,MONFORT E,et al. Environmental characterization of burnt coal gangue banks at Yangquan,Shanxi Province,China[J]. International Journal of Coal Geology,2008,75(2):93−104. doi: 10.1016/j.coal.2008.04.003
[5] XU H L,CHEN D L,WANG H L,et al. Fabrication and characterization of ceramic floor tiles from coal gangue[J]. Advanced Materials Research,2011,266:63−67. doi: 10.4028/www.scientific.net/AMR.266.63
[6] BURRIS L E,KURTIS K E. Influence of set retarding admixtures on calcium sulfoaluminate cement hydration and property development[J]. Cement and Concrete Research,2018,104:105−113. doi: 10.1016/j.cemconres.2017.11.005
[7] ZHANG N,SUN H H,LIU X M,et al. Early-age characteristics of red mud–coal gangue cementitious material[J]. Journal of Hazardous Materials,2009,167(1-3):927−932. doi: 10.1016/j.jhazmat.2009.01.086
[8] ZHOU M,DOU Y W,ZHANG Y Z,et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials,2019,220:386−395. doi: 10.1016/j.conbuildmat.2019.05.176
[9] JABŁOŃSKA B,KITYK A V,BUSCH M,et al. The structural and surface properties of natural and modified coal gangue[J]. Journal of Environmental Management,2017,190:80−90.
[10] LI J Y,WANG J M. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
[11] ZHANG T,WEN Q X,GAO S,et al. Comparative study on mechanical and environmental properties of coal gangue sand concrete[J]. Construction and Building Materials,2023,400:132646. doi: 10.1016/j.conbuildmat.2023.132646
[12] GAO S,ZHAO G H,GUO L H,et al. Utilization of coal gangue as coarse aggregates in structural concrete[J]. Construction and Building Materials,2021,268:121212. doi: 10.1016/j.conbuildmat.2020.121212
[13] WU D,WANG Y Y,WANG M C,et al. Basic characteristics of coal gangue in a small-scale mining site and risk assessment of radioactive elements for the surrounding soils[J]. Minerals,2021,11(6):647. doi: 10.3390/min11060647
[14] QIN L,GAO X J. Properties of coal gangue-Portland cement mixture with carbonation[J]. Fuel,2019,245:1−12. doi: 10.1016/j.fuel.2019.02.067
[15] MA H Q,CHEN H Y,ZHU H G,et al. Study on the drying shrinkage of alkali-activated coal gangue-slag mortar and its mechanisms[J]. Construction and Building Materials,2019,225:204−213. doi: 10.1016/j.conbuildmat.2019.07.258
[16] WU C L,JIANG W,ZHANG C,et al. Preparation of solid-waste-based pervious concrete for pavement:A two-stage utilization approach of coal gangue[J]. Construction and Building Materials,2022,319:125962. doi: 10.1016/j.conbuildmat.2021.125962
[17] SUN Q,LI B,TIAN S,et al. Creep properties of geopolymer cemented coal gangue-fly ash backfill under dynamic disturbance[J]. Construction and Building Materials,2018,191:644−654. doi: 10.1016/j.conbuildmat.2018.10.055
[18] 方屹,杨浪,饶峰,等. 煤矸石的地质聚合反应资源化利用研究进展[J]. 矿业研究与开发,2023,12:206−213. FANG Yi,YANG Lang,RAO Feng,et al. Research progress on resource utilization of coal gangue by geological polymerization reaction[J]. Mining Research and Development,2023,12:206−213.
[19] CHEN B P. Feasibility of applying coal gangue to the aggregate[J]. Journal of Huaqiao University (Natural Science),1994,15(2):181−184.
[20] 周梅,李高年,张倩,等. 自燃煤矸石骨料在预拌混凝土中的应用研究[J]. 建筑材料学报,2015,18(5):830−835. ZHOU Mei,LI Gaonian,ZHANG Qian,et al. Study on application of spontaneous combustion coal gangue aggregate in ready-mixed concrete[J]. Journal of Building Materials,2015,18(5):830−835.
[21] 张金喜,陈炜林,杨荣俊. 煤矸石集料基本性能的试验研究[J]. 建筑材料学报,2010,13(6):739−743. ZHANG Jinxi,CHEN Weilin,YANG Rongjun. Experimental study on basic properties of coal gangue aggregate[J]. Journal of Building Materials,2010,13(6):739−743.
[22] WANG C L,NI W,ZHANG S Q,et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials,2016,104:109−115. doi: 10.1016/j.conbuildmat.2015.12.041
[23] WANG Z S,ZHAO N. Influence of coal gangue aggregate grading on strength properties of concrete[J]. Wuhan University Journal of Natural Sciences,2015,20(1):66−72. doi: 10.1007/s11859-015-1060-6
[24] DE SOUZA D J,MEDEIROS M H F,HOPPE FILHO J. Evaluation of external sulfate attack (Na2SO4 and MgSO4):Portland cement mortars containing fillers[J]. Revista IBRACON de Estruturas e Materiais,2020,13(3):644−655. doi: 10.1590/s1983-41952020000300013
[25] IKUMI T,SEGURA I. Numerical assessment of external sulfate attack in concrete structures. A review[J]. Cement and Concrete Research,2019,121:91−105. doi: 10.1016/j.cemconres.2019.04.010
[26] YU L L,XIA J W,PU H,et al. Durability performance of BFRP-confined coal gangue concrete exposed to the sulfate-rich mine environment[J]. Structures,2024,65:106716. doi: 10.1016/j.istruc.2024.106716
[27] CAI C,LI F H,FAN S X,et al. Investigation on deterioration mechanism of geopolymer cemented coal Gangue-Fly ash backfill under combined action of high temperature and salt corrosion environment[J]. Construction and Building Materials,2023,398:132518. doi: 10.1016/j.conbuildmat.2023.132518
[28] 王海. 非自燃煤矸石粗骨料混凝土力学性能与耐久性研究[D]. 保定:河北大学,2022. WANG Hai. Study on Mechanical Properties and Durability of Non-Spontaneous Combustion Coal Gangue Coarse Aggregate Concrete [D]. Baoding:Hebei University,2022.
[29] 何文波. 煤矸石粗骨料混凝土性能研究[D]. 泰安:山东农业大学,2017. HE Wenbo. Study on properties of coal gangue coarse aggregate concrete [D]. Taian:Shandong Agricultural University,2017.
[30] 李少伟,周梅,张莉敏. 自燃煤矸石粗骨料特性及其对混凝土性能的影响[J]. 建筑材料学报,2020,23(2):334−340,380. LI Shaowei,ZHOU Mei,ZHANG Limin. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Materials,2020,23(2):334−340,380.
[31] LI Y F,LIU S H,GUAN X M. Multitechnique investigation of concrete with coal gangue[J]. Construction and Building Materials,2021,301:124114. doi: 10.1016/j.conbuildmat.2021.124114
[32] ZHAO Y B,YANG C Q,YAN C Y,et al. Design and properties of coal gangue-based geopolymer mortar[J]. Buildings,2022,12(11):1932. doi: 10.3390/buildings12111932
[33] 牛晓燕,王海,安明磊,等. 煤矸石粗骨料对混凝土力学性能的影响[J]. 混凝土,2023(1):68−72. NIU Xiaoyan,WANG Hai,AN Minglei,et al. Study on physical and chemical properties and mechanical properties of gangue coarse aggregate[J]. Concrete,2023(1):68−72.
[34] HOANG MINH D,LE PHUONG L. Effect of matrix particle size on EPS lightweight concrete properties[J]. MATEC Web of Conferences,2018,251:01027. doi: 10.1051/matecconf/201825101027
[35] ZHANG Y Z,WANG Q H,ZHOU M,et al. Mechanical properties of concrete with coarse spontaneous combustion gangue aggregate (SCGA):Experimental investigation and prediction methodology[J]. Construction and Building Materials,2020,255:119337. doi: 10.1016/j.conbuildmat.2020.119337
[36] WANG Z S,WANG L J,SU H L. Experimental research on grading of fine aggregate in frame concrete[J]. Advanced Materials Research,2010,163-167:1085−1089. doi: 10.4028/www.scientific.net/AMR.163-167.1085
[37] WANG Z C,WANG Z C,ZHAO W T. Microscopic pore and filling performance of coal gangue cementitious paste[J]. Journal of Wuhan University of Technology(Materials Science Edition),2018,33(2):427−430. doi: 10.1007/s11595-018-1840-9
[38] 黄炎林. PET纤维增强多成分细骨料混凝土力学性能研究[D]. 武汉:湖北工业大学,2021. HUANG Yanlin. Study on mechanical properties of pet fiber reinforced multi-component fine aggregate concrete [D]. Wuhan:Hubei University of Technology,2021.
[39] XIAO M,JU F,HE Z Q. Research on shotcrete in mine using non-activated waste coal gangue aggregate[J]. Journal of Cleaner Production,2020,259:120810. doi: 10.1016/j.jclepro.2020.120810
[40] VENKATARAMA REDDY B V,GUPTA A. Influence of sand grading on the characteristics of mortars and soil–cement block masonry[J]. Construction and Building Materials,2008,22(8):1614−1623. doi: 10.1016/j.conbuildmat.2007.06.014
[41] 肖建华,周梅,赵华民. 自燃煤矸石骨料含水状态对混凝土性能的影响[J]. 非金属矿,2015,38(2):24−27. doi: 10.3969/j.issn.1000-8098.2015.02.008 XIAO Jianhua,ZHOU Mei,ZHAO Huamin. Effect of moisture state for spontaneous combustion gangue aggregate on concrete performance[J]. Non-Metallic Mines,2015,38(2):24−27. doi: 10.3969/j.issn.1000-8098.2015.02.008
[42] 王稷良,马文辉,徐伟东,等. 煤矸石混凝土性能研究现状[J]. 中外公路,2024,44(04):104−114. WANG Jiliang,MA Wenhui,XU Weidong,et al. Research status of coal gangue concrete performance[J]. Chinese and foreign highways,2024,44(04):104−114.
[43] KAMAL M R,RUMMAN R,MANZUR T,et al. A novel durability based concrete mix design using supplementary cementitious materials and modified aggregate band gradation[J]. International Journal of Civil Engineering,2021,19(1):39−50. doi: 10.1007/s40999-020-00555-y
[44] LIN W T. Effects of sand/aggregate ratio on strength,durability,and microstructure of self-compacting concrete[J]. Construction and Building Materials,2020,242:118046. doi: 10.1016/j.conbuildmat.2020.118046
[45] 李永靖,闫宣澎,郭瑞琪,等. 自燃煤矸石全轻混凝土拌合物坍落度经时损失试验研究[J]. 硅酸盐通报,2013,32(4):727−731. LI Yongjing,YAN Xuanpeng,GUO Ruiqi,et al. Study on the gradual loss in slump of the spontaneous combustion coal gangue full-lightweight concrete mixture[J]. Bulletin of the Chinese Ceramic Society,2013,32(4):727−731.
[46] GUO Y X,WANG P,FENG G R,et al. Performance of coal gangue-based cemented backfill material modified by water-reducing agents[J]. Advances in Materials Science and Engineering,2020,2020(1):2302895. doi: 10.1155/2020/2302895
[47] HOU Y Q,YANG K,YIN S H,et al. Enhancing workability,strength,and microstructure of cemented tailings backfill through mineral admixtures and fibers[J]. Journal of Building Engineering,2024,84:108590. doi: 10.1016/j.jobe.2024.108590
[48] 朱凯. 掺粉煤灰煤矸石轻骨料混凝土性能研究[J]. 铁道建筑,2014,3:118-121. ZHU Kai. Study on properties of lightweight aggregate concrete mixed with fly ash and coal gangue[J]. Railway Engineering,2014,3:118-121,121.
[49] FOONG K Y,ALENGARAM U J,JUMAAT M Z,et al. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University- Science A,2015,16(1):59−69. doi: 10.1631/jzus.A1400175
[50] WANG L,YONG H,LU J Y,et al. Influence of coarse aggregate type on the mechanical strengths and durability of cement concrete[J]. Coatings,2021,11(9):1036. doi: 10.3390/coatings11091036
[51] 白朝能,李霖皓,沈远,等. 煤矸石作为粗骨料对混凝土力学性能的影响[J]. 四川建材,2018,44(8):1−3. BAI Chaoneng,LI Linhao,SHEN Yuan,et al. The effects of coal gangue as coarse aggregate on mechanical property of concrete[J]. Sichuan Building Materials,2018,44(8):1−3.
[52] 苏煜翔. 煤矸石混凝土基本力学性能试验研究[D]. 西安:西安建筑科技大学,2021. SU Yuxiang. Experimental study on basic mechanical properties of coal gangue concrete[D]. Xi’an:Xi’an University of Architecture and Technology,2021.
[53] 马宏强,易成,朱红光,等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报,2018,32(14):2390−2395. MA Hongqiang,YI Cheng,ZHU Hongguang,et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Review,2018,32(14):2390−2395.
[54] 王亮,王志伟. 煤矸石细骨料混凝土强度及耐久性能研究[J]. 混凝土,2018(3):153−155. WANG Liang,WANG Zhiwei. Study on the strength and durability of coal gangue fine aggregate concrete[J]. Concrete,2018(3):153−155.
[55] 段晓牧,夏军武,杨建平. 煤矸石细集料对水泥浆体微观结构的影响及其作用机理[J]. 建筑材料学报,2014,17(4):700−705. doi: 10.3969/j.issn.1007-9629.2014.04.025 DUAN Xiaomu,XIA Junwu,YANG Jianping. Influence of coal gangue fine aggregate on microstructure of cement mortar and its action mechanism[J]. Journal of Building Materials,2014,17(4):700−705. doi: 10.3969/j.issn.1007-9629.2014.04.025
[56] 许荣盛. 煤矸石作为细骨料的混凝土性能试验研究[D]. 郑州:郑州大学,2014. XU Rongsheng. Experimental study of concrete's performance which the coal gangue as fine aggregate [D]. Zhengzhou:Zhengzhou University,2014.
[57] 孙钢柱,关罡,许荣盛. 煤矸石作细骨料的混凝土性能试验研究[J]. 混凝土,2016(8):87−89,98. SUN Gangzhu,GUAN Gang,XU Rongsheng. Experimental study on the performance of the concrete which coal eaneue as fine aggregate[J]. Concrete,2016(8):87−89,98.
[58] YU L L,XIA J W,XIA Z,et al. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials,2022,338:127626. doi: 10.1016/j.conbuildmat.2022.127626
[59] WANG Q H,LI Z,ZHANG Y Z,et al. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J]. Journal of Building Engineering,2020,32:101748. doi: 10.1016/j.jobe.2020.101748
[60] YANG Q B,LÜ M X,LUO Y B. Effects of surface-activated coal gangue aggregates on properties of cement-based materials[J]. Journal of Wuhan University of Technology(Materials Science Edition),2013,28(6):1118−1121. doi: 10.1007/s11595-013-0830-2
[61] LI Y,YAO Y,LIU X M,et al. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation[J]. Fuel,2013,109:527−533. doi: 10.1016/j.fuel.2013.03.010
[62] JI X M,JI D P,YANG Z X,et al. Study on the phase composition and structure of hardened cement paste during heat treatment[J]. Construction and Building Materials,2021,310:125267. doi: 10.1016/j.conbuildmat.2021.125267
[63] ZHU Y Y,ZHU Y C,WANG A G,et al. Valorization of calcined coal gangue as coarse aggregate in concrete[J]. Cement and Concrete Composites,2021,121:104057. doi: 10.1016/j.cemconcomp.2021.104057
[64] ZHANG C S. Pozzolanic activity of burned coal gangue and its effects on structure of cement mortar[J]. Journal of Wuhan University of Technology(Materials Science Edition),2006,21(4):150−153. doi: 10.1007/BF02841227
[65] CAO Z,CAO Y D,DONG H J,et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing,2016,146:23−28. doi: 10.1016/j.minpro.2015.11.008
[66] GUO W,LI D X,CHEN J H,et al. Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation[J]. Journal of Wuhan University of Technology(Materials Science Edition),2009,24(2):326−329. doi: 10.1007/s11595-009-2326-7
[67] 宋旭艳,张康,韩静云,等. 热活化煤矸石的火山灰效应及其对水泥性能的影响[J]. 材料导报,2011,25(22):118−121,129. SONG Xuyan,ZHANG Kang,HAN Jingyun,et al. Effect of thermal activated coal gangue on pozzolanic effect and cement properties[J]. Materials Reports,2011,25(22):118−121,129.
[68] 朱愿愿,王爱国,孙道胜,等. 煅烧煤矸石细骨料特性及其对砂浆性能的提升作用[J]. 煤炭学报,2021,46(11):3657−3669. ZHU Yuanyuan,WANG Aiguo,SUN Daosheng,et al. Characteristics of coal gangue fine aggregates after calcination and its effects on the improvement of mortar properties[J]. Journal of China Coal Society,2021,46(11):3657−3669.
[69] 高文志. 煤矸石表面处理后做混凝土骨料的研究[D]. 淮南:安徽理工大学,2015:40−45. GAO Wenzhi. Research on coal gangue after surface treatment as concrete aggregates [D]. Huainan:Anhui University of Science & Technology,2015:40−45.
[70] 刘小婷,温久然,王思雨,等. 原状煤矸石骨料强化工艺研究[J]. 无机盐工业,2020,52(4):65−71,78. LIU Xiaoting,WEN Jiuran,WANG Siyu,et al. Study on strengthening technology of raw coal gangue aggregate[J]. Inorganic Chemicals Industry,2020,52(4):65−71,78.
[71] LI Y D,LI J F,CUI J,et al. Experimental study on calcium carbide residue as a combined activator for coal gangue geopolymer and feasibility for soil stabilization[J]. Construction and Building Materials,2021,312:125465. doi: 10.1016/j.conbuildmat.2021.125465
[72] 温久然,刘小婷,刘开平,等. 黏土质煤矸石强化技术研究[J]. 硅酸盐通报,2020,39(1):233−241. WEN Jiuran,LIU Xiaoting,LIU Kaiping,et al. Study on clay coal gangue strengthening technology[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):233−241.
[73] ZHANG R,WU K,JIANG Z W,et al. Bacterially induced CaCO3 precipitation for the enhancement of quality of coal gangue[J]. Construction and Building Materials,2022,319:126102. doi: 10.1016/j.conbuildmat.2021.126102
[74] GUO S J,FANTILLI A P,YAN H,et al. Novel understandings of biomineralization in backfill materials:A fundamental investigation of coal gangue and fly ash impact on B. pasteurii to enhance material properties[J]. Applied Sciences,2024,14(2):799. doi: 10.3390/app14020799
[75] WANG A G,LIU P,LIU K W,et al. Application of air-cooled blast furnace slag aggregates as replacement of natural aggregates in cement-based materials:A study on water absorption property[J]. Journal of Wuhan University of Technology(Materials Science Edition),2018,33(2):445−451. doi: 10.1007/s11595-018-1843-6
[76] LI X X,CHEN S H,XU Q,et al. Modeling the three-dimensional unsaturated water transport in concrete at the mesoscale[J]. Computers & Structures,2017,190:61−74.
[77] SHANE J D,MASON T O,JENNINGS H M,et al. Effect of the interfacial transition zone on the conductivity of Portland cement mortars[J]. Journal of the American Ceramic Society,2000,83(5):1137−1144. doi: 10.1111/j.1151-2916.2000.tb01344.x
[78] ZHANG S H,CAO M Y,ZHANG K F,et al. Wrapped coal gangue aggregate enhancement ITZ and mechanical property of concrete suitable for large-scale industrial use[J]. Journal of Building Engineering,2023,72:106649. doi: 10.1016/j.jobe.2023.106649
[79] 刘世,刘海卿,邢粟. 煤矸石混凝土水分传输及分布预测[J]. 硅酸盐通报,2018,37(3):786−791. LIU Shi,LIU Haiqing,XING Su. Prediction of water transport and distribution of the gaugue concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(3):786−791.
[80] WANG Y Z,TAN Y,WANG Y C,et al. Mechanical properties and chloride permeability of green concrete mixed with fly ash and coal gangue[J]. Construction and Building Materials,2020,233:117166. doi: 10.1016/j.conbuildmat.2019.117166
[81] KUMAR S. A perspective study on fly ash–lime–gypsum bricks and hollow blocks for low cost housing development[J]. Construction and Building Materials,2002,16(8):519−525. doi: 10.1016/S0950-0618(02)00034-X
[82] QIU J S,CHENG K,ZHANG R Y,et al. Study on the influence mechanism of activated coal gangue powder on the properties of filling body[J]. Construction and Building Materials,2022,345:128071. doi: 10.1016/j.conbuildmat.2022.128071
[83] 班馨语. 冻融及硫酸盐侵蚀耦合作用下自燃煤矸石集料地聚物混凝土耐久性研究[D]. 阜新:辽宁工程技术大学,2022. BAN Xinyu. Study on durability of spontaneous combustion coal gangue aggregate geopolymer concrete under the coupling action of freeze-thaw and sulfate attack [D]. Fuxin:Liaoning Technical University,2022.
[84] 姜文镪,刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报,2020,48(2):258−272. JIANG Wenqiang,LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles-a short review[J]. Journal of the Chinese Ceramic Society,2020,48(2):258−272.
[85] QIU J S,ZHOU Y X,VATIN N I,et al. Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J]. Construction and Building Materials,2020,264:120720. doi: 10.1016/j.conbuildmat.2020.120720
[86] 李永靖,邢洋,张旭,等. 煤矸石骨料混凝土的耐久性试验研究[J]. 煤炭学报,2013,38(7):1215−1219. LI Yongjing,XING Yang,ZHANG Xu,et al. Experimental study on the durability of the concrete with coal gangue aggregate[J]. Journal of China Coal Society,2013,38(7):1215−1219.
[87] 李霖皓,马昆林,龙广成,等. 煤矸石作为骨料对不同水泥基材料耐久性影响[J]. 科学技术与工程,2019,19(1):227−235. LI Linhao,MA Kunlin,LONG Guangcheng,et al. Effect of coal gangue as aggregate on the durability of cement-based materials[J]. Science Technology and Engineering,2019,19(1):227−235.
[88] 朱瑞雪,杨帆,于万波,等. 钢管煤矸石混凝土受力性能研究综述[J]. 辽宁科技学院学报,2023,25(3):20−22,19. ZHU Ruixue,YANG Fan,YU Wanbo,et al. Review on mechanical properties of gangue concrete filled steel tubular[J]. Journal of Liaoning Institute of Science and Technology,2023,25(3):20−22,19.
[89] 刘舒畅. 盐侵蚀-冻融-干湿循环作用下煤矸石混凝土耐久性研究[D]. 保定: 河北农业大学,2023. LIU Shuchang. Durability of coal gangue concrete under the action of sulfate attack and freeze-thaw and dry-wet cycles [D]. Baoding: Hebei Agricultural University,2023.
[90] 张向东,李庆文,李桂秀,等. 冻融-碳化耦合环境下自燃煤矸石混凝土耐久性实验研究[J]. 环境工程学报,2016,10(5):2595−2600. doi: 10.12030/j.cjee.201412254 ZHANG Xiangdong,LI Qingwen,LI Guixiu,et al. Experimental study on durability of self-ignite coal gangue concrete under freeze-thaw and carbonization coupling environment[J]. Chinese Journal of Environmental Engineering,2016,10(5):2595−2600. doi: 10.12030/j.cjee.201412254
[91] LUO D M,WANG Y,ZHANG S H,et al. Frost resistance of coal gangue aggregate concrete modified by steel fiber and slag powder[J]. Applied Sciences,2020,10(9):3229. doi: 10.3390/app10093229
[92] HUANG Y L,ZHOU A. Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids,2021,2021:6627447.
[93] 朱凯,原胜利,马先伟. 纤维增强煤矸石轻骨料混凝土路用性能研究[J]. 混凝土与水泥制品,2015(6):58−61. doi: 10.3969/j.issn.1000-4637.2015.06.013 ZHU Kai,YUAN Shengli,MA Xianwei. Road properties research on fiber enhancement coal gangue lightweight aggregate concrete[J]. China Concrete and Cement Products,2015(6):58−61. doi: 10.3969/j.issn.1000-4637.2015.06.013
[94] WANG Z S,ZHAO N. Properties of steel fiber reinforced coal gangue coarse aggregate concrete[J]. Wuhan University Journal of Natural Sciences,2014,19(3):262−268. doi: 10.1007/s11859-014-1011-7
[95] 严冰. 改性煤矸石骨料混凝土力学性能及抗冻性能试验研究[D]. 西安:西安建筑科技大学,2017. YAN Bing. Experimental study on mechanical properties and frost resistance of modified coal gangue aggregate concrete [D]. Xi’an:Xi’an University of Architecture and Technology,2017.
[96] 张向东,李庆文,宋洋. 防冻剂对掺减水剂煤矸石混凝土抗冻性能研究[J]. 非金属矿,2016,39(1):48−51. ZHANG Xiangdong,LI Qingwen,SONG Yang. Study of anti-freezing agent on frost resistance of coal gangue concrete mixing with water reducers[J]. Non-Metallic Mines,2016,39(1):48−51.
[97] 姚志鑫,穆川川,单俊鸿,等. 基于裹浆工艺的煤矸石混凝土性能研究[J]. 硅酸盐通报,2023,42(2):587−597. YAO Zhixin,MU Chuanchuan,SHAN Junhong,et al. Performance of coal gangue concrete based on slurry wrapping technology[J]. Silicate Bulletin,2023,42(2):587−597.
[98] 曹梦媛. 改性煤矸石骨料混凝土抗冻性能研究[D]. 西安:西安建筑科技大学,2023. CAO Mengyuan. Research on frost resistance of modified coal gangue aggregate concrete [D]. Xi’an:Xi’an University of Architecture and Technology,2023.
[99] 施惠生,施韬,陈宝春,等. 掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J]. 同济大学学报(自然科学版),2006,34(1):93−96. SHI Huisheng,SHI Tao,CHEN Baochun,et al. Research of chloride ion diffusivity in reactive powder concrete with blast-furnace slag[J]. Journal of Tongji University (Natural Science),2006,34(1):93−96.
[100] ZHANG J X,DUAN P X. Chloride consolidation and penetration behavior in harden mortar of gangue added cement[J]. Advanced Materials Research,2011,374-377:1831−1836. doi: 10.4028/www.scientific.net/AMR.374-377.1831
[101] 顾云,张彬. 煤矸石集料混凝土工作与力学性能研究[J]. 混凝土,2019(7):71−73. doi: 10.3969/j.issn.1002-3550.2019.07.016 GU Yun,ZHANG Bin. Research of working and mechanical properties of coal gangue aggregate concrete[J]. Concrete,2019(7):71−73. doi: 10.3969/j.issn.1002-3550.2019.07.016
[102] 刘锁. 煤矸石混凝土抗冻性能和抗氯离子渗透性能研究[D]. 沈阳:沈阳建筑大学,2016. LIU Suo. Research on the frost resistance and chloride penetration resistance properties of gangue concrete [D]. Shenyang:Shenyang Jianzhu University,2016.
[103] XI Y P,BAŽANT Z P. Modeling chloride penetration in saturated concrete[J]. Journal of Materials in Civil Engineering,1999,11(1):58−65. doi: 10.1061/(ASCE)0899-1561(1999)11:1(58)
[104] 吴中伟,廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社,1999. [105] 李永靖,邢洋. 煤矸石混凝土抗硫酸盐侵蚀试验研究[J]. 非金属矿,2016,39(1):8−10. doi: 10.3969/j.issn.1000-8098.2016.01.003 LI Yongjing,XING Yang. Experimental study on the resistance to sulfate attack of coal gangue concrete[J]. Non-Metallic Mines,2016,39(1):8−10. doi: 10.3969/j.issn.1000-8098.2016.01.003
[106] 王晴,刘锁,王继博,等. 煤矸石粗集料混凝土抗氯离子渗透性能的研究[J]. 混凝土,2016(8):36−38. doi: 10.3969/j.issn.1002-3550.2016.08.009 WANG Qing,LIU Suo,WANG Jibo,et al. Research on resistance to chloride ion of the coal gangue coarse aggregate concrete[J]. Concrete,2016(8):36−38. doi: 10.3969/j.issn.1002-3550.2016.08.009
[107] DONG H,WANG J. Carbon nanofibers and polyvinyl-alcohol fiber hybrid-reinforced high-performance concrete:Mechanical property,chloride penetration resistance,and material characterization[J]. Construction and Building Materials,2023,399:131891. doi: 10.1016/j.conbuildmat.2023.131891
[108] HAN Y X,SHAO S J,FANG B D,et al. Chloride ion penetration resistance of matrix and interfacial transition zone of multi-walled carbon nanotube-reinforced concrete[J]. Journal of Building Engineering,2023,72:106587. doi: 10.1016/j.jobe.2023.106587
[109] 姚贤华,郭晓宁,韩瑞聪,等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报,2024,41(3):1402-1419. YAO Xianhua,GUO Xiaoning,HAN Ruicong,et al. [J]. Acta Materiae Compositae Sinica,2024,41(3):1402-1419.
[110] DIAMOND S,SAHU S,THAULOW N. Reaction products of densified silica fume agglomerates in concrete[J]. Cement and Concrete Research,2004,34(9):1625−1632. doi: 10.1016/j.cemconres.2004.01.031
[111] ZHANG Z Q,ZHANG B,YAN P Y. Comparative study of effect of raw and densified silica fume in the paste,mortar and concrete[J]. Construction and Building Materials,2016,105:82−93. doi: 10.1016/j.conbuildmat.2015.12.045
[112] 蔡渝新,刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报,2023,26(6):596,603−622. doi: 10.3969/j.issn.1007-9629.2023.06.004 CAI Yuxin,LIU Qingfeng. Numerical estimation on chloride erosion resistance of alkali-activated concrete[J]. Journal of Building Materials,2023,26(6):596,603−622. doi: 10.3969/j.issn.1007-9629.2023.06.004
[113] 郭金敏. 煤矸石混凝土耐久性的试验研究[J]. 混凝土,2011(7):56−58. GUO Jinmin. Experimental research on durabilities of coal gangue concrete[J]. Concrete,2011(7):56−58.
[114] 董作超. 煤矸石集料混凝土的力学性能与抗碳化试验研究[D]. 徐州:中国矿业大学,2016:142−148. DONG Zuochao. Experimental study on mechanical properties and carbonation resistance of coal gangue aggregate concrete [D]. Xuzhou:China University of Mining and Technology,2016:142−148.
[115] 王洋,胡凯伟. 煤矸石混凝土碳化性能初步研究[J]. 粉煤灰综合利用,2015,5:(3-6),18. WANG Yang,HU Kaiwei. Preliminary study on the carbonization performance of coal gangue concrete[J]. Fly Ash Comprehensive Utilization,2015,5:(3-6),18.
[116] GAO Y L,CHENG L,GAO Z M,et al. Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete[J]. Construction and Building Materials,2013,43:506−510. doi: 10.1016/j.conbuildmat.2013.02.038
[117] LU L M,HAN F,WU S H,et al. Experimental study on durability of basalt fiber concrete after elevated temperature[J]. Structural Concrete,2022,23(2):682−693. doi: 10.1002/suco.202000746
[118] 李永靖,黄琦,岳玮琦,等. 聚合物改性煤矸石粉煤灰混凝土性能研究[J]. 非金属矿,2017,40(2):35−37,54. LI Yongjing,HUANG Qi,YUE Weiqi,et al. Study on the concrete properties of coal gangue fly ash modified polymer[J]. Non-Metallic Mines,2017,40(2):35−37,54.
[119] 张成中,孙广帅,胡晓鹏,等. 掺合料对混凝土早期碳化深度影响的试验研究[J]. 硅酸盐通报,2017,36(1):282−287. ZHANG Chengzhong,SUN Guangshuai,HU Xiaopeng,et al. Experimental research on influence of concrete early carbonation depth by admixture[J]. Bulletin of the Chinese Ceramic Society,2017,36(1):282−287.
[120] 高琦翔. 非自燃煤矸石粗骨料高性能混凝土力学与耐久性能研究[D]. 保定:河北大学,2023. GAO Qixiang. Research on mechanical and durability of High performance concrete of non-spontaneous combustion coal gangue coarse aggregates [D]. Baoding:Hebei University,2023.
[121] ZHAO Y,WANG T W,YI W. Emergy-accounting-based comparison of carbon emissions of solid waste recycled concrete[J]. Construction and Building Materials,2023,387:131674. doi: 10.1016/j.conbuildmat.2023.131674
[122] 邱继生,程坤,张如意,等. 煤矸石粉对矸石基绿色胶结充填体性能的影响[J]. 矿业研究与开发,2022,42(3):60−65. QIU Jisheng,CHENG Kun,ZHANG Ruyi,et al. Influence of coal gangue powder on properties of gangue-based green cemented backfill[J]. Mining Research and Development,2022,42(3):60−65.
[123] 王然. 煤矸石矿物掺合料对高强混凝土性能影响试验研究[D]. 阜新:辽宁工程技术大学,2015. WANG Ran. Study on the effect of coal gangue mineral admixture on the performance of high-strength concrete[D]. Fuxin:Liaoning Technical University,2015.
[124] 邓君. 煤矸石粉对水泥混凝土路用性能的影响研究[J]. 西部交通科技,2023(9):13−16. DENG Jun. Study on the influence of coal gangue powder on the road performance of cement concrete[J]. Western China Communications Science & Technology,2023(9):13−16.
[125] 焦登武,安晓鹏,史才军,等. 骨料裹浆厚度对混凝土流变性能的影响[J]. 硅酸盐学报,2017,45(9):1360−1366. JIAO Dengwu,AN Xiaopeng,SHI Caijun,et al. Effects of paste thickness on coated aggregates on rheological properties of concrete[J]. Journal of the Chinese Ceramic Society,2017,45(9):1360−1366.
[126] 周梅,陈冲,路其林,等. 自燃煤矸石掺合料与高效减水剂相容性研究[J]. 硅酸盐通报,2015,34(3):631−638. ZHOU Mei,CHEN Chong,LU Qilin,et al. Experimental research on compatibility of spontaneous combustion gangue admixture with superplasticizer[J]. Bulletin of the Chinese Ceramic Society,2015,34(3):631−638.
[127] 冯娜,崔自治,李永琴,等. 活化煤废料替代水泥制备混凝土的基本特性[J]. 矿产综合利用,2024,45(2):81−88. FENG Na,CUI Zizhi,LI Yongqin,et al. Basic characteristics of concrete prepared with activated coal powder instead of cement[J]. Multipurpose Utilization of Mineral Resources,2024,45(2):81−88.
[128] 白春,麻凤海,刘书贤,等. 煅烧煤矸石粉掺合料制备及对混凝土性能影响[J]. 非金属矿,2017,40(2):38−41. BAI Chun,MA Fenghai,LIU Shuxian,et al. Effect of the preparation process of calcined coal gangue powder admixture on concrete performance[J]. Non-Metallic Mines,2017,40(2):38−41.
[129] YAO B,REN G S,HUANG J B,et al. Influence of self-ignition coal gangue on properties of foam concrete with steam curing[J]. Case Studies in Construction Materials,2022,17:e01316. doi: 10.1016/j.cscm.2022.e01316
[130] ZHANG J Y,CHEN T F,GAO X J. Incorporation of self-ignited coal gangue in steam cured precast concrete[J]. Journal of Cleaner Production,2021,292:126004. doi: 10.1016/j.jclepro.2021.126004
[131] ZHANG X,FENG X P,WANG Z P,et al. Experimental study on the physico-mechanical properties and microstructure of foam concrete mixed with coal gangue[J]. Construction and Building Materials,2022,359:129428. doi: 10.1016/j.conbuildmat.2022.129428
[132] 刘超群,朱泽文,张友华,等. 活化煤矸石水泥水化机理与性能研究[J]. 硅酸盐通报,2023,42(10):3660−3670. LIU Chaoqun,ZHU Zewen,ZHANG Youhua,et al. Hydration mechanism and properties of activated coal gangue cement[J]. Bulletin of the Chinese Ceramic Society,2023,42(10):3660−3670.
[133] LIU C X,WANG C B,WU J Y,et al. Calcined coal gangue fines as the substitute for slag in the production of alkali-activated cements and its mechanism[J]. Processes,2022,10(8):1557. doi: 10.3390/pr10081557
[134] WANG A G,LIU P,MO L W,et al. Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars[J]. Journal of Building Engineering,2022,45:103616. doi: 10.1016/j.jobe.2021.103616
[135] JIU S W,WANG M M,CHEN Y X,et al. Synthesis and characterization of low-carbon cementitious materials from suspended calcined coal gangue[J]. Frontiers in Materials,2022,9:982861. doi: 10.3389/fmats.2022.982861
[136] 张平萍,孙传敏. 我国煤矸石的综合利用现状及存在问题[J]. 国土资源科技管理,2004,21(6):95−98. ZHANG Pingping,SUN Chuanmin. Current situation of gangue’s comprehensive use of China and problems[J]. Management Geological Science and Technology,2004,21(6):95−98.
[137] 宋旭艳. 煤矸石作为辅助性胶凝组分的活化研究[D]. 南京:南京工业大学,2004. SONG Xuyan. Study on activation of coal gangue used for complementary cementitious component [D]. Nanjing:Nanjing University of Technology,2004.
[138] WANG L,MI S Y,ZHANG J F. Synergistic performance of microwave-activated coal gangue with limestone in low-carbon cement[J]. Journal of Building Engineering,2024,96:110622. doi: 10.1016/j.jobe.2024.110622
[139] LI D X,SONG X Y,GONG C C,et al. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue[J]. Cement and Concrete Research,2006,36(9):1752−1759. doi: 10.1016/j.cemconres.2004.11.004
[140] LIU C J,DENG X W,LIU J,et al. Mechanical properties and microstructures of hypergolic and calcined coal gangue based geopolymer recycled concrete[J]. Construction and Building Materials,2019,221:691−708. doi: 10.1016/j.conbuildmat.2019.06.048
[141] TANG Z,LI W G,KE G J,et al. Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes[J]. Journal of Cleaner Production,2019,218:810−822. doi: 10.1016/j.jclepro.2019.01.337
[142] ZHANG W,LANG L,DONG C X. Comprehensive study on coal gangue-based geopolymer activated by phosphoric acid:From macroscale properties to molecular simulation[J]. Construction and Building Materials,2024,438:137271. doi: 10.1016/j.conbuildmat.2024.137271
[143] JIN J X,LI M X,LIU T. Insights into factors influencing coal gangue-filled backfill cemented by self-consolidating alkali-activated slag grouts[J]. Construction and Building Materials,2024,411:134422. doi: 10.1016/j.conbuildmat.2023.134422
[144] 王爱国,刘朋,孙道胜,等. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 材料导报,2018,32(11):1903−1909. WANG Aiguo,LIU Peng,SUN Daosheng,et al. Research progress in activity evaluation method of calcined coal gangue powder material[J]. Materials Review,2018,32(11):1903−1909.
[145] 吴红,张绪勇,孔德顺,等. 活化煤矸石基免烧砖胶凝性能的研究[J]. 硅酸盐通报,2017,36(1):359−364. WU Hong,ZHANG Xuyong,KONG Deshun,et al. Cementing performance of activated coal gangue based unfired brick[J]. Bulletin of the Chinese Ceramic Society,2017,36(1):359−364.
[146] GUAN X,CHEN J X,ZHU M Y,et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material[J]. Journal of Materials Research and Technology,2021,14:2799−2811. doi: 10.1016/j.jmrt.2021.08.106
[147] ZHANG Y L,LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials–A review[J]. Construction and Building Materials,2020,234:117424. doi: 10.1016/j.conbuildmat.2019.117424
[148] RODRÍGUEZ,BERNAL,MEJÍA DE GUTIÉRREZ,et al. Alternative concrete based on alkali-activated slag[J]. Materiales de Construccion,2008,58(291):53. doi: 10.3989/mc.2008.v58.i291.104
[149] O’CONNELL M,MCNALLY C,RICHARDSON M G. Performance of concrete incorporating GGBS in aggressive wastewater environments[J]. Construction and Building Materials,2012,27(1):368−374. doi: 10.1016/j.conbuildmat.2011.07.036
[150] AL-DULAIJAN S U,MASLEHUDDIN M,AL-ZAHRANI M M,et al. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate[J]. Cement and Concrete Composites,2003,25(4-5):429−437. doi: 10.1016/S0958-9465(02)00083-5
[151] 柯国军,李如意. 硫酸盐环境下煅烧煤矸石粉在混凝土中的作用[J]. 混凝土,2017(8):77−80. KE Guojun,LI Ruyi. Effect of calcined coal gangue powder in concrete under sulfate attack[J]. Concrete,2017(8):77−80.
[152] MA H Q,ZHU H G,WU C,et al. Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism[J]. Powder Technology,2020,368:112−124. doi: 10.1016/j.powtec.2020.04.054
[153] CHI M C,CHEN H,WENG T L,et al. Durability of alkali-activated fly ash/slag concrete[J]. Materials Science Forum,2017,904:157−161. doi: 10.4028/www.scientific.net/MSF.904.157
[154] YU L L,XIA J W,GU J X,et al. Degradation mechanism of coal gangue concrete suffering from sulfate attack in the mine environment[J]. Materials,2023,16(3):1234. doi: 10.3390/ma16031234
[155] 亢强. 矿物掺合料对混凝土抗硫酸盐侵蚀性能影响的研究[J]. 粉煤灰综合利用,2009,23(3):47−49. doi: 10.3969/j.issn.1005-8249.2009.03.015 KANG Qiang. Study on resistance to sulfate attack on concrete containing mineral additive[J]. Fly Ash Comprehensive Utilization,2009,23(3):47−49. doi: 10.3969/j.issn.1005-8249.2009.03.015
[156] WANG Q,YAN P Y,YANG J W,et al. Influence of steel slag on mechanical properties and durability of concrete[J]. Construction and Building Materials,2013,47:1414−1420. doi: 10.1016/j.conbuildmat.2013.06.044
[157] SUN J W,CHEN Z H. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack[J]. Powder Technology,2018,338:725−733. doi: 10.1016/j.powtec.2018.07.041
[158] 阎杰,单豆豆,邢国斌,等. 活化煤矸石粉作为矿物掺合料对煤矸石混凝土性能的影响[J]. 辽宁工程技术大学学报(自然科学版),2023,42(3):266−273. YAN Jie,SHAN Doudou,XING Guobin,et al. Influence of activated coal gangue powder as mineral admixture on performance of coal gangue concrete[J]. Journal of Liaoning Technical University (Natural Science),2023,42(3):266−273.
[159] 金阳,毋存粮,陈小羊,等. 自燃煤矸石作矿物掺合料对混凝土性能的影响[J]. 混凝土,2021(9):86−89,93. JIN Yang,WU Cunliang,CHEN Xiaoyang,et al. Influence of self-ignited coal gangue as mineral admixture on properties of concretes[J]. Concrete,2021(9):86−89,93.
[160] ZHANG X G,LIN J,LIU J X,et al. Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine[J]. Energies,2017,10(9):1309. doi: 10.3390/en10091309
[161] GONG P,MA Z G,NI X Y,et al. An experimental investigation on the mechanical properties of gangue concrete as a roadside support body material for backfilling gob-side entry retaining[J]. Advances in Materials Science and Engineering,2018,2018(1):1326053. doi: 10.1155/2018/1326053
[162] GUO Y X,LI C,LI M. Experimental study on cement stabilized macadam-gangue mixture in road base[J]. International Journal of Coal Preparation and Utilization,2019,42(3):580−593.
[163] 张道平. 矿用煤矸石混凝土力学性能试验研究[J]. 煤,2023,32(9):1−5. doi: 10.3969/j.issn.1005-2798.2023.09.001 ZHANG Daoping. Physical and mechanical properties of coal gangue concrete designed for coal mines[J]. Coal,2023,32(9):1−5. doi: 10.3969/j.issn.1005-2798.2023.09.001
[164] 申海生,和卫红,赵春洲,等. 煤矸石基混凝土在井下巷道硬化工程中的应用试验[J]. 矿业安全与环保,2021,48(6):65−71. SHEN Haisheng,HE Weihong,ZHAO Chunzhou,et al. Application test of coal gangue-based concrete in underground roadway hardening engineering[J]. Mining Safety & Environmental Protection,2021,48(6):65−71.
[165] 任连伟,李波,邹友峰,等. 废弃蒸压砌块与煤矸石在煤矿采空区地基加固中的试验研究[J]. 煤炭科学技术,2023,51(11):51−62. REN Lianwei,LI Bo,ZOU Youfeng,et al. Experimental study on performance of waste autoclaved blocks and coal gangue in coal mine goaf ground grouting improvement[J]. Coal Science and Technology,2023,51(11):51−62.
[166] 刘浪,罗屹骁,朱梦博,等. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践[J]. 煤炭科学技术,2024,52(4):83−92. LIU Lang,LUO Yixiao,ZHU Mengbo,et al. Mining technology and practice of full-solid waste cemented backfilling in narrow strip of extra-thick coal seam under buildings[J]. Coal Science and Technology,2024,52(4):83−92.
[167] 刘丽红,刘红维. 煤矸石作粗骨料配制混凝土在生态工程中的应用[J]. 四川建材,2022,48(5):12−13,19. LIU Lihong,LIU Hongwei. Application of coal gangue as coarse aggregate to prepare concrete in ecological engineering[J]. Sichuan Building Materials,2022,48(5):12−13,19.