Study on scientific productivity determination and scientific productivity improvement of rock burst mine
-
摘要:
我国埋深
1000 m以上的煤炭资源储量占总储量的50%以上,未来将是煤炭资源供应的主要部分,开展冲击地压矿井科学产能确定研究并科学提升冲击地压矿井产能,对于保障我国深部煤炭资源的安全高效开采有重要意义。针对冲击地压矿井产能确定与产能提升问题,利用理论分析、现场监测等研究方法,完成了含有冲击地压煤层的矿井井田范围科学划分,分析了冲击地压矿井不同的采煤方法、开采顺序、开采布局下采煤面扰动响应特征,建立了冲击地压矿井科学产能的确定方法,提出了冲击地压矿井产能科学提升的顶层设计与实践方法。研究结果表明:明确了冲击地压矿井冲击倾向性鉴定与冲击危险性确定的必要性,实现含有冲击地压煤层的矿井井田范围科学规划;研究了采煤方法、开采顺序与布局以及开采参数对采煤面扰动响应特征,得出了冲击地压矿井采煤面科学设计的系统性方法,为冲击地压矿井产能提升创造条件;提出了冲击地压矿井产能确定的技术路径,基于采动力学构建了“分阶段、分区域、分时期、看卸压力度、看历史防控水平”的冲击地压矿井采煤面推进速度确定方法;构建了冲击地压矿井产能提升的顶层设计,明确指出了控制产能的关键是产能提升所带来的冲击危险性,实现采动强度与卸压力度平衡,降低冲击危险性,从而有效的进行产能提升。构建了冲击地压矿井从井田范围科学规划、采煤面科学设计到产能科学确定及科学提升产能的一体化技术路径,为冲击地压矿井科学产能确定及科学提升产能提供了科学指导。Abstract:China's coal resources with a buried depth of more than
1000 m account for more than 50% of the total reserves, which will be the main part of coal resources supply in the future. It is of great significance to carry out the scientific productivity of rock burst mines and scientifically improve the productivity to ensure the safe and efficient mining of deep coal resources in China. Aiming at the problem of productivity determination and productivity improvement of rock burst mine, the range of mine field containing rock burst coal seam is scientifically divided by theoretical analysis and field monitoring, and the disturbance response characteristics of mining face under different mining methods, mining sequences and mining layouts in rock burst mine are analyzed, the determination method of scientific productivity of rock burst mine is established, and the top-level design and practice method of scientific productivity improvement of rock burst mine are put forward. The research results show that it is necessary to identify the impact tendency and determine the impact risk of the rock burst mine, and to realize the scientific planning of the mine field range with rock burst coal seam; The mining method, mining sequence and layout, and the response characteristics of mining parameters to the disturbance of coal face are studied, and the systematic method of scientific design of coal face in rock burst mine is obtained, which creates conditions for the productivity improvement of rock burst mine. This paper puts forward the technical path to determine the productivity of rock burst mine, and based on mining dynamics, constructs a method to determine the advancing speed of coal face in rock burst mine by stages, regions, periods, unloading pressure and historical prevention and control level. The top-level design of productivity improvement in rock burst mine is constructed, and it is clearly pointed out that the key to control productivity is the impact risk brought by productivity improvement, so as to achieve the balance between mining intensity and unloading pressure and reduce the impact risk, thus effectively improving productivity. The integrated technical path from scientific planning of mine field scope and scientific design of coal face to scientific determination and improvement of productivity in rock burst mine is constructed, which provides scientific guidance for scientific determination and improvement of productivity in rock burst mine. -
-
表 1 采动影响下推进速度综合确定表
Table 1 Comprehensive table for determining advancing speed under the influence of mining activities
确定推进速度V 分区域确定推进速度Vqy 分时期确定推进速度Vsq 综合确定推进速度 看力度确定推进速度Vld Vqy∪Vld=Va Vsq∪Vld=Vb Va∪Vb=Ve 看水平确定推进速度Vsp Vqy∪Vsp=Vc Vsq∪Vsp=Vd Vc∪Vd=Vf 综合确定推进
速度Va∪Vc=Vg Vb∪Vd=Vh Va∪Vb∪Vc
∪Vd=Vi表 2 基于冲击危险区域对推进速度进行确定
Table 2 Determination of advancing speed based on rock burst hazard zones
冲击危险区域 推进速度 产能类型 无 高 增产 弱 中 稳产 中 低 保产 强 较低 降产 表 3 矿井状态不同时期相应推进速度调整
Table 3 Adjustment table of corresponding advancing speed of overlying strata structure in different stable periods
矿井状态 采掘扰动释量 推进速度 产能类型 稳定期 较小 适当增速推进 增产 小 正常推进 稳产 非稳定期 大 适当调减推进 保产 较大 停工停产 降产 -
[1] 李东印,王伸,刘文超. 煤矿科学采矿及科学产能的研究进展[J]. 煤炭科学技术,2016,44(9):1−5. LI Dongyin,WANG Shen,LIU Wenchao. Research progress on scientific mining and scientific productivity in coal mines[J]. Coal Science and Technology,2016,44(9):1−5.
[2] 应急管理部. 煤矿安全规程[EB/OL]. [2022−01−06]. https://www.gov.cn/zhengce/2022-11/15/content_5712798.htm. [3] 潘一山,宋义敏,刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2081−2095. PAN Yishan,SONG Yimin,LIU Jun. Pattern,change and new situation of coal mine rockburst prevention and control in China[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2081−2095.
[4] 王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14. WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14.
[5] 齐庆新,刘天泉,史元伟,等. 冲击地压的摩擦滑动失稳机理[J]. 矿山压力与顶板管理,1995,12(S1):174−177,200. QI Qingxin,LIU Tianquan,SHI Yuanwei,et al. Mechanism of frction sliding destability of rock burst[J]. Journal of Mining & Safety Engineering,1995,12(S1):174−177,200.
[6] 齐庆新,史元伟,刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报,1997(2):34−38. QI Qingxin,SHI Yuanwei,LIU Tianquan. Mechanism of instability caused byviscous sliding in rock burst[J]. Journal of China Coal Society,1997(2):34−38.
[7] 齐庆新,高作志,王升. 层状煤岩体结构破坏的冲击矿压理论[J]. 煤矿开采,1998,8(2):14−17. QI Qingxin,GAO Zuozhi,WANG Sheng. The theory of rockburst led by structure failure of bedded coal rock mass[J]. Journal of Mining and Strata Control Engineering,1998,8(2):14−17.
[8] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098. PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098.
[9] DOU L M,MU Z L,LI Z L,et al. Research progress of monitoring,forecasting,and prevention of rockburst in underground coal mining in China[J]. International Journal of Coal Science & Technology,2014,1(3):278−288.
[10] HE J,DOU L M,GONG S Y,et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:46−53. doi: 10.1016/j.ijrmms.2017.01.005
[11] LI Z L,DOU L M,WANG G F,et al. Risk evaluation of rock burst through theory of static and dynamic stresses superposition[J]. Journal of Central South University,2015,22(2):676−683. doi: 10.1007/s11771-015-2570-2
[12] 潘俊锋,宁宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586−596. PAN Junfeng,NING Yu,MAO Debing,et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):586−596.
[13] 姜福兴,冯宇,KOUAME K J A,等. 高地应力特厚煤层“蠕变型” 冲击机理研究[J]. 岩土工程学报,2015,37(10):1762−1768. doi: 10.11779/CJGE201510003 JIANG Fuxing,FENG Yu,et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1762−1768. doi: 10.11779/CJGE201510003
[14] 窦林名,李振雷,张敏. 煤矿冲击地压灾害监测预警技术研究[J]. 煤炭科学技术,2016,44(7):41−46. DOU Linming,LI Zhenlei,ZHANG Min. Study on monitoring and early warning technology of mine pressure bump disaster[J]. Coal Science and Technology,2016,44(7):41−46.
[15] 窦林名,王盛川,巩思园,等. 冲击矿压风险智能判识与监测预警云平台[J]. 煤炭学报,2020,45(6):2248−2255. DOU Linming,WANG Shengchuan,GONG Siyuan,et al. Cloud platform of rock-burst intelligent risk assessment and multi-parameter monitoring and early warning[J]. Journal of China Coal Society,2020,45(6):2248−2255.
[16] 刘少虹,潘俊锋,王洪涛,等. 基于冲击启动过程的近场围岩冲击危险性电磁波CT评估方法[J]. 煤炭学报,2019,44(2):384-396. Electromagnetic wave CT evaluation method for rock burst hazard in near field based on rock burst start-up process[J]. Journal of China Coal Society,2019,44(2):384-396.
[17] 刘少虹,潘俊锋,王洪涛,等. 基于地震波和电磁波CT联合探测的采掘巷道冲击危险性评价方法[J]. 煤炭学报,2018,43(11):2980−2991. LIU Shaohong,PAN Junfeng,WANG Hongtao,et al. Assessment of rock burst risk in roadway based on the combination of seismic and electromagnetic wave CT technology[J]. Journal of China Coal Society,2018,43(11):2980−2991.
[18] 夏永学,陆闯,冯美华. 基于改进D-S证据理论的冲击地压预警方法[J]. 地下空间与工程学报,2022,18(4):1082−1088. XIA Yongxue,LU Chuang,FENG Meihua. Early warning method of rock burst based on improved D-S evidence theory[J]. Chinese Journal of Underground Space and Engineering,2022,18(4):1082−1088.
[19] 袁亮,姜耀东,何学秋等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318. YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318.
[20] 崔峰,张廷辉,来兴平,等. 冲击地压矿井科学产能确定初步构想[J]. 采矿与安全工程学报,2023,40(1):48−59. CUI Feng,ZHANG Tinghui,LAI Xingping,et al. Preliminary conception of scientific productivity determination in rock burst mines[J]. Journal of Mining & Safety Engineering,2023,40(1):48−59.
[21] 国家矿山安全监察局综合司.关于公开征求《煤矿安全规程(修订草案征求意见稿)》意见的函[EB/OL] 2024−09−30]https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/zqyj_01/202409/t20240930_502784.shtml.
[22] 国家矿山安全监察局. 关于印发《冲击地压矿井鉴定暂行办法》的通知[EB/OL]. [2023−06−08]. https://www.gov.cn/zhengce/zhengceku/202306/content_6886950.htm [23] 崔瀛潇. 基于Unity3D引擎的三维可视化技术在煤炭地震勘探中的应用[J]. 中国煤炭地质,2014,26(4):58−63. doi: 10.3969/j.issn.1674-1803.2014.04.13 CUI Yingxiao. Application of 3D visualization technology based on Unity3D engine in coal seismic prospecting[J]. Coal Geology of China,2014,26(4):58−63. doi: 10.3969/j.issn.1674-1803.2014.04.13
[24] 张超,孔媛政,袁国霞,等. Voxler平台在煤矿富水性勘查中的三维可视化应用[J]. 地质学报,2019,93(S1):310−313. doi: 10.1111/1755-6724.14109 ZHANG Chao,KONG Yuanzheng,YUAN Guoxia,et al. Application of voxler platform in 3D visualization of coal mine water yield exploration[J]. Acta Geologica Sinica,2019,93(S1):310−313. doi: 10.1111/1755-6724.14109
[25] 国家煤矿安监局. 关于印发《防治煤矿冲击地压细则》的通知[EB/OL]. [2023−06−08]. https://www.gov.cn/zhengce/zhengceku/2019-12/09/content_5459585.htm. [26] 宋选民,顾铁凤,闫志海. 浅埋煤层大采高工作面长度增加对矿压显现的影响规律研究[J]. 岩石力学与工程学报,2007,26(S2):4007−4012. SONG Xuanmin,GU Tiefeng,YAN Zhihai. Effects of increasing working face’s length on underground pressure behaviors of mining super-high faces under shallow coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S2):4007−4012.
[27] 应急管理部,国家矿山安监局,国家发展改革委,国家能源局. 关于印发煤矿生产能力管理办法和核定标准的通知[EB/OL]. [2021−04−27]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202105/t20210517_385335.shtml. [28] ZOU Q L,CHEN Z H,ZHAN J F,et al. Morphological evolution and flow conduction characteristics of fracture channels in fractured sandstone under cyclic loading and unloading[J]. International Journal of Mining Science and Technology,2023,33(12):1527−1540. doi: 10.1016/j.ijmst.2023.11.003
[29] 王凯,左晓欢,杜锋,等. 循环载荷作用下煤岩复合结构宏-细观破坏特征及能量-损伤本构模型[J]. 煤炭学报,2024,49(2):767−784. WANG Kai,ZUO Xiaohuan,DU Feng,et al. Macro-mesoscopic perspective damage characteristics and energy-damage con-stitutive model of coal-rock composite structures subjected to cyclic loading[J]. Journal of China Coal Society,2024,49(2):767−784.
[30] 王磊,钟浩,范浩,等. 循环荷载下含瓦斯煤力学特性及应变场演化规律研究[J]. 煤炭科学技术,2024,52(6):90−101. doi: 10.12438/cst.2024-0328 WANG Lei,ZHONG Hao,FAN Hao,et al. Study on the mechanical properties and strain field evolution of gas-bearing coal under cyclic loading[J]. Coal Science and Technology,2024,52(6):90−101. doi: 10.12438/cst.2024-0328
[31] 尹祥础,尹灿. 非线性系统的失稳前兆与地震预报-响应比理论及其应用[J]. 中国科学,1991,21(5):512−518. YIN Xiangchu,YIN Can. The precursor of instability for nonlinear system and earthquake prediction-Load/unload response ratio theory and its application[J]. Science in China(Series B),1991,21(5):512−518.
[32] YIN Xiangchu,YIN Can. The precursor of instability for non liner system and its application to earthquake prediction[J]. Science in China,1991,34(8):977−986.
[33] 崔峰,贾冲,来兴平,等. 基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J]. 煤炭学报,2022,47(2):745−761. CUI Feng,JIA Chong,LAI Xingping,et al. Study on advancing rate of steeply inclined extra-thick coal seam in rock burst mine based on loading-unloading response ratio[J]. Journal of China Coal Society,2022,47(2):745−761.
[34] 崔峰,张廷辉,来兴平,等. 冲击地压矿井不同采动强度下的开采扰动特征及其产能[J]. 煤炭学报,2021,46(12):3781−3793. CUI Feng,ZHANG Tinghui,LAI Xingping,et al. Mining disturbance characteristics and productivity of rock burst mines under different mining intensities[J]. Journal of China Coal Society,2021,46(12):3781−3793.
[35] 窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报,2015,40(7):1469−1476. DOU Linming,HE Jiang,CAO Anye,et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society,2015,40(7):1469−1476.
[36] 王家臣,王兆会. 高强度开采工作面顶板动载冲击效应分析[J]. 岩石力学与工程学报,2015,34(S2):3987−3997. WANG Jiachen,WANG Zhaohui. Impact effect of dynamic load induced by roof in high-intensity mining face[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):3987−3997.
[37] 高明仕,徐东,贺永亮,等. 厚硬顶板覆岩冲击矿震影响的远近场效应研究[J]. 采矿与安全工程学报,2022,39(2):215−226. GAO Mingshi,XU Dong,HE Yongliang,et al. Investigation on the near-far field effect of rock burst subject to the breakage of thick and hard overburden[J]. Journal of Mining & Safety Engineering,2022,39(2):215−226.
[38] KIJKO A,FUNK C W. Space-time interaction amongst clusters of mining induced seismicity[J]. Pure and Applied Geophysics,1996,147(2):277−288. doi: 10.1007/BF00877483
[39] HANKS T C,MCGUIRE R K. The character of high-frequency strong ground motion[J]. The Bulletin of the Seismological Society of America,1981,71(6):2071−2095. doi: 10.1785/BSSA0710062071
[40] 潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution,type,mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851.
[41] 崔峰,张廷辉. 日月引潮力对冲击地压的触发机制及时间窗口效应研究[J]. 岩石力学与工程学报,2021,40(S2):3107−3117. CUI Feng,ZHANG Tinghui. Research on the trigger mechanism and time window effect of rock burst subjected to sun-moon tidal force[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3107−3117.
[42] 李宏艳,康立军,徐子杰,等. 不同冲击倾向煤体失稳破坏声发射先兆信息分析[J]. 煤炭学报,2014,39(2):384−388. LI Hongyan,KANG Lijun,XU Zijie,et al. Precursor information analysis on acoustic emission of coal with different outburst proneness[J]. Journal of China Coal Society,2014,39(2):384−388.
[43] 来兴平,贾冲,胥海东,等. 急倾斜深埋巨厚煤层掘巷冲击地压前兆特征及其灾害防治[J]. 煤炭学报,2024,49(1):337−350. LAI Xingping,JIA Chong,XU Haidong,et al. Precursory characteristics and disaster prevention of rock burst in roadway excavation in steeply inclined extra-thick coal seam[J]. Journal of China Coal Society,2024,49(1):337−350.
[44] 田向辉,李振雷,宋大钊,等. 某冲击地压频发工作面微震冲击前兆信息特征及预警方法研究[J]. 岩石力学与工程学报,2020,39(12):2471−2482. TIAN Xianghui,LI Zhenlei,SONG Dazhao,et al. Study on microseismic precursors and early warning methods of rockbursts in a working face[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2471−2482.