高级检索

神府区块深部煤储层可压性评价方法及应用

彭文春, 米洪刚, 徐立富, 吴见

彭文春,米洪刚,徐立富,等. 神府区块深部煤储层可压性评价方法及应用[J]. 煤炭科学技术,2025,53(3):237−246. DOI: 10.12438/cst.2024-1620
引用本文: 彭文春,米洪刚,徐立富,等. 神府区块深部煤储层可压性评价方法及应用[J]. 煤炭科学技术,2025,53(3):237−246. DOI: 10.12438/cst.2024-1620
PENG Wenchun,MI Honggang,XU Lifu,et al. Fracability evaluation and classification of deep coal reservoirs in the Shenfu block[J]. Coal Science and Technology,2025,53(3):237−246. DOI: 10.12438/cst.2024-1620
Citation: PENG Wenchun,MI Honggang,XU Lifu,et al. Fracability evaluation and classification of deep coal reservoirs in the Shenfu block[J]. Coal Science and Technology,2025,53(3):237−246. DOI: 10.12438/cst.2024-1620

神府区块深部煤储层可压性评价方法及应用

基金项目: 中海油“十四五”重大科技资助项目(KJGG-2022-1002)
详细信息
    作者简介:

    彭文春: (1989—),男,湖北孝感人,工程师。E-mail:pengwch2@cnooc.com.cn

  • 中图分类号: TE37

Fracability evaluation and classification of deep coal reservoirs in the Shenfu block

  • 摘要:

    神府区块深部煤层气资源丰富,全区域深煤层可压性评价是实现储层有效改造的重要基础。以神府区块8+9号煤层为研究对象,根据测井、试井和排采等数据,分析深部煤储层的力学性质和地应力特征,建立储层可压性评价指数,对比分析了不同可压性储层生产特征。结果表明:① 研究区8+9号煤层静态弹性模量为7.5 GPa,静态泊松比为0.35,动态弹性模量平均为6.3 GPa,动态泊松比平均为0.37,区域分布差异较大;② 8+9号煤层垂向应力介于25.1~54.8 MPa,平均为49.1 MPa,最大水平主应力介于20.4~45.2 MPa,平均为39.5 MPa,最小水平主应力介于17.5~40.8 MPa,平均为33.8 MPa,水平主应力差介于2.9~6.8 MPa,平均为5.7 MPa;③ 由煤层动态弹性模量、动态抗拉强度、动态抗压强度、动态泊松比、水平主应力差以及顶底板–煤层最小水平主应力差综合计算出可压性指数,8+9号煤层的可压性指数介于–12.1~17.6,划分为6类储层,其中以Ⅰ类、Ⅱ类、Ⅴ类储层分布较广。气井开发效果显示,在其他条件类似前提下,可压性指数越高,煤储层改造越充分,产气效果越好;但是,神府区块深部煤储层力学性质、地应力和可压性平面分布格局较为复杂,需要详细甄别以制定针对性压裂改造方案。建立的深部煤储层可压性评价方法,可为深部煤层气储层分类改造和高效开发提供依据和指导。

    Abstract:

    The deep coal reservoir resources are abundant in the Shenfu block, and conducting the evaluation of deep coal seam fracability in the whole region is an important foundation to realize effective reservoir reconstruction. The No.8+9 coal seams in the Shenfu block are taken as the research objects. Based on the data of logging, well test and drainage, the mechanical properties and in-situ stress characteristics of deep coal reservoirs are analyzed to establish the evaluation index of reservoir fracability, and different types of reservoirs and their production characteristics are compared and analyzed. The results show that: ① The static Elastic modulus and static Poisson’s radio of No.8+9 coal seams in the research area are 7.5 GPa and 0.35, respectively. And the average dynamic Elastic modulus and dynamic Poisson’s radio of No.8+9 coal seams are 6.3 GPa and 0.37, respectively, with significant regional distribution differences. ② The vertical stress of No. 8+9 coal seams ranges from 25.1 to 54.8 MPa, with an average of 49.1 MPa. The maximum horizontal principal stress ranges from 20.4 to 45.2 MPa, with an average of 39.5 MPa. The minimum horizontal principal stress ranges from 17.5 to 40.8 MPa, with an average of 33.8 MPa. The difference in horizontal principal stress ranges from 2.9 to 6.8 MPa, with an average of 5.7 MPa. ③ The fracability index is calculated by the dynamic Elastic modulus, dynamic tensile strength, dynamic compressive strength, dynamic Poisson's ratio, horizontal principal stress difference of coal, and minimum horizontal principal stress difference between the roof and floor of the coal seam. The fracability index of No.8+9 coal seams is between−12.1−17.6, which can be divided into 6 categories. The No.8+9 coal seams have a wide distribution of Class I, Class II and Class V reservoirs. The development effect of gas wells shows that under other similar conditions, the higher the fracability index, the more complete the transformation of coal reservoirs, and the better the gas production effect. However, the mechanical properties, in-situ stress, and compressibility of deep coal reservoirs in the Shenfu block are distributed in a complex plane, and it is necessary to carefully identify and develop targeted and appropriate fracturing transformation plans for segmented areas. The evaluation method of deep coal reservoir fracability is established to provide a basis and theoretical guidance for reservoir classification and transformation and the efficient development of deep coalbed methane in the study area.

  • 2021年以来,我国先后发现大宁–吉县和神府区块等千亿方级深部煤层气大气田,水平井峰值日产气量由吉深6–7平01井和阳煤1 HF井的10万m3左右刷新至约20万m3,标志着深部煤层气快速进入规模开发阶段,成为我国天然气增储上产的重要领域之一[14]。与中浅部煤层相比,深部煤层以高含气量、高游离气比例、低孔隙度和特低渗透率为典型特征,需要大规模体积压裂才能产生有效运移通道。但是,不同区域地质条件差异明显,目前尚未形成统一的深部煤储层可压性定量评价体系[57]

    深部煤储层可压性影响因素较多,煤体结构、煤岩类型、天然裂缝发育程度等特殊的影响因素难以定量化,深部环境条件复杂性改变了煤储层力学性质和地应力场,增加了深部煤储层形成有效缝网的难度[814]。主要体现在:① 临兴–神府区块深部煤储层以原生结构煤为主,性脆且割理较为发育,有利于裂缝扩展,但纵向上分布不连续,常夹杂构造煤分层,不利于射孔位置的选择;② 深部煤储层弹性模量、抗压强度、抗拉强度等力学性质增强,与顶底板岩层力学性质差异减弱,裂缝容易垂向扩展沟通含水层;③ 深部煤储层最小水平主应力增加,提高了破裂压力和裂缝闭合压力,不利于煤层裂缝顺层扩展,且煤层与顶底板之间的水平应力关系和动态变化尚不明确;④ 深部煤储层原位人工裂缝可视化监测手段缺乏,多以FracproPT、Abaqus、Ansys等软件模拟地层裂缝扩展或者微地震技术,仍不足以还原裂缝的真实展布形态。此外,深部煤储层含气性、微构造条件、水文条件等同样对储层裂缝扩展有重要的影响。因此,建立具有一定普适性的深部煤储层可压性评价方法,是保证形成复杂缝网和实现有效改造的重要基础。

    神府区块深部煤层气资源丰富,地质资源量超4 000 亿m3,提交探明地质储量超1100亿m3,但勘探开发时间较短,深部煤储层有效改造评价体系和技术尚不成熟,煤层气产量尚未达到理想目标。以区内8+9号煤层为对象,研究煤岩煤质、储层物性等地质条件,基于测井、试井和排采等数据分析深部煤储层力学性质和地应力分布特征,建立以弹性模量、泊松比、水平主应力差等工程参数组成的可压性评价计算公式,划分储层类型和对比生产动态特征,为深部煤层气开发井部署和压裂设计提供依据。

    神府区块位于鄂尔多斯盆地东缘晋西挠摺带北段,整体构造简单,现今呈现为西倾的单斜构造[15]。区块东缘以离石断裂带与吕梁山隆起相隔,地层起伏较大,倾角5°~20°,发育走滑断层和逆断层,且断层规模较大,呈现南北走向,断面倾角超过50°,主断裂断距达40 m,延伸距离15 km[16];北部发育较多小规模的张扭断层,西部地层分布较为平缓,断层发育较少。由此,研究区构造平面分带性明显,自西向东由平缓带转变为断阶带,进一步划分为深部平缓带、挠褶带、斜坡带和中深部平缓带[17],目前深部煤层气井主要集中部署在西部和南部的深部平缓带(图1a)。

    图  1  研究区构造特征和沉积环境[1516]
    Figure  1.  Structural characteristics and sedimentary environment of the study area[1516]

    研究区含煤地层为本溪组–山西组,沉积于海陆交互环境,形成了太原组8+9号煤层和山西组4+5号煤层2套主力煤层。其中,8+9号煤层段沉积环境东部的由潮坪–潟湖逐渐转变为西部的河流三角洲相(图1b);目前埋深1 028~2 211 m,平均2 022 m,厚度5.7~22.4 m,平均12.1 m,整体呈现南部、西部深,北部、东部浅,但北部和东部煤层沉积较厚(图2a、图2b)的展布特征。

    图  2  神府区块8+9号煤层埋深与厚度
    Figure  2.  Thickness and burial depth of No.8+9 coal seams in the Shenfu block

    8+9号煤层的煤岩煤质具有以下特征:① 镜质组质量分数平均72%,黏土矿物质量分数平均5%,碳质量分数占比平均超过70%;② 宏观煤岩类型以半亮煤为主,占比超过70%;③ 煤体结构以原生结构为主,占比达90%,受破坏程度低;④ 特低水分含量,低中灰分产率,中等挥发分产率,中等固定碳含量,整体煤质较好;⑤ 总含气量介于0.8~34 m3/t,平均14 m3/t,朗格缪尔体积平均为14 m3/t,煤层总体上处于含气饱和状态。

    煤层弹性模量越大,煤岩保持裂缝的能力越好;泊松比越大,弹性越大,塑性越强,越不容易压裂;抗压和抗拉强度越大,煤岩所需起裂压力越大,裂缝扩展难度增加;煤层水平应力差越大,裂缝形态越单一,方向性越明显,主裂缝延伸范围越大,水平应力差越小,裂缝发育越复杂;顶底板岩层最小水平主应力比煤层越大,顶底板的破裂压力比煤层大,在同样压裂规模下,裂缝会控制在煤层内部延伸,压窜顶底板风险越低,裂缝在煤层内延伸越长[1820]。鉴于此,笔者利用三轴力学实验、测井资料和水力压裂数据,计算并分析深部煤储层的力学性质和地应力等工程参数[8,2123],然后进行可压性评价。

    选取8+9号原生结构煤样,利用TAW–1000电液伺服控制岩石三轴应力试验机,分析原位条件下(20 MPa和60 ℃)煤岩力学性质。结果显示,煤样静态弹性模量为7.5 GPa,静态泊松比为0.35,峰值强度为100.4 MPa,应变过程经历弹性变形(OA)、塑性变形(AB)和峰后破坏(BC)3个阶段[2122](图3),煤岩压密阶段基本没有体现。在弹性变形阶段中,随着应力增加,应变呈线性增加,煤岩内部裂隙开始产生,随着围压升高,弹性阶段升高,而温度变化对弹性阶段基本无影响[19];在塑性变形阶段中,煤岩内部开始产生大量裂隙,产生的变形无法完全恢复,导致应力–应变曲线逐渐平缓,围压增加,煤岩最大变形和屈服应力增加,而温度增加导致煤岩屈服压力降低[19]。在破坏阶段中,应力超过煤岩最大承载能力,沿破裂面开始形成大裂缝,偏应力迅速降低。

    图  3  原位条件下煤岩应力−应变曲线特征
    Figure  3.  Characteristics of stress-strain curves of coal under in-situ conditions

    深部煤储层取样较为困难,通常根据测井经验计算式(SY/T 5940—2019),利用声波测井数据计算动态力学参数[2324](式(1)—式(6)):

    $$ {E_{\rm{d}}} = \frac{{{\rho _{\mathrm{b}}}\left( {3\Delta t_{\rm{s}}^2 - 4\Delta t_{\rm{p}}^2} \right)}}{{\Delta t_{\rm{s}}^2\left( {\Delta t_{\rm{s}}^2 - \Delta t_{\rm{p}}^2} \right)}} \beta $$ (1)
    $$ {\mu _{\rm{d}}} = \frac{{\Delta t_{\rm{s}}^2 - 2\Delta t_{\rm{p}}^2}}{{2\left( {\Delta t_{\rm{s}}^2 - \Delta t_{\rm{p}}^2} \right)}} $$ (2)
    $$ {\sigma _{\mathrm{c}}} = 4.59 {E_{\rm{d}}} \left( {1 - {V_{{\mathrm{sh}}}}} \right) + 8.16 {E_{\rm{d}}} {V_{{\mathrm{sh}}}} $$ (3)
    $$ {V}_{{\mathrm{sh}}}=\frac{{2}^{{\mathrm{GCUR}}\times {\mathrm{S}}}-1}{{2}^{{\mathrm{GCUR}}}-1} $$ (4)
    $$ S=\frac{{\mathrm{GR}}-{{\mathrm{GR}}}_{\min}}{{{\mathrm{GR}}}_{\max}-{{\mathrm{GR}}}_{\min}} $$ (5)
    $$ {\sigma _\tau } = \frac{{{\sigma _{\mathrm{c}}}}}{{12}} $$ (6)

    式中:Ed为煤层动态弹性模量,GPa;ρb为煤层测井密度,g/cm3;∆ts为煤层横波时差,μs/ft;∆tp为煤层纵波时差,μs/ft;β为转换系数,9.29×104μd为动态泊松比;σc为动态抗压强度,MPa;Vsh 为泥质含量;GCUR为地层年代经验系数,取2;S为煤层自然伽马相对值;GR为煤层平均自然伽马;GRmax为煤层最大自然伽马;GRmin为煤层最小自然伽马;στ为抗拉强度,MPa。

    神府区块8+9号煤层动态弹性模量介于4.8~13.7 GPa,平均为6.3 GPa,南部和北部较高,中部偏北出现低值区;动态泊松比介于0.31~0.41,平均为0.37,全区分布较为稳定,整体较高;动态抗压强度介于2.32~80.0 MPa,平均为30.8 MPa,动态抗拉强度介于0.2~6.7 MPa,平均为2.6 MPa,南部高值区较多,中部以及北部较低。煤岩力学性质差异较大,不利于储层整体改造。

    地应力不仅是煤层起裂和渗透率改善的重要阻力,而且决定裂缝的扩展方向和形态复杂程度,是压裂设计的重要参数。根据注入/压降试井和声波测井数据,可估算获得地应力信息(式(7)—式(10))[2527]

    $$ {\sigma }_{{\rm{v}}}={\int }_{{H}_{0}}^{H}\rho \left(h\right) g{{\mathrm{d}}h}_{} $$ (7)
    $$ {\sigma }_{{\mathrm{h}}}=\left(\frac{{\mu }_{{\mathrm{s}}}}{1-{\mu }_{{\mathrm{s}}}}+B\right)\left({\sigma }_{{\rm{v}}}-\alpha {P}_{0}\right)+{\alpha P}_{0} $$ (8)
    $$ {\sigma }_{{\mathrm{H}}}=\left(\frac{{\mu }_{{\mathrm{s}}}}{1-{\mu }_{{\mathrm{s}}}}+A\right)\left({\sigma }_{{\rm{v}}}-\alpha {P}_{0}\right)+{\alpha P}_{0} $$ (9)
    $$ \alpha =1-\frac{{\rho }_{{\mathrm{b}}}(3/\Delta {t}_{{\mathrm{p}}}^{2}-4/\Delta {t}_{{\mathrm{s}}}^{2})}{{\rho }_{{\mathrm{m}}}(3/\Delta {t}_{{\mathrm{mp}}}^{2}-4/\Delta {t}_{{\mathrm{ms}}}^{2})} $$ (10)

    式中:σv为垂向应力,MPa;H为底界深度,m;H0为顶界深度,m;ρ(h)为随深度变化的密度函数,g/cm3g为重力加速度,m/s2(取值为9.8);σh为煤层最小水平主应力,MPa;P0为煤储层压力,MPa;σH为煤层最大水平主应力,MPa;μs为煤层静态泊松比;α为有效应力系数;ρm为煤层骨架密度,g/cm3;∆tmp为煤层骨架纵波时差,μs/ft;∆tms为煤层骨架横波时差,μs/ft;AB为最大、最小水平主应力方向上的构造应力系数,由注入压降反推分别介于0.37~0.73(平均0.49)和0.22~0.36(平均0.26)。

    计算结果显示,神府区块8+9号煤层垂向应力介于25.1~54.8 MPa,平均49.1 MPa;最大水平主应力介于20.4~45.2 MPa,平均为39.5 MPa;最小水平主应力介于17.5~40.8 MPa,平均为33.8 MPa;水平主应力差介于2.9~6.8 MPa,平均为5.7 MPa;侧压系数主要介于0.7~0.8间。煤层地应力差异较大,不利于储层改造。

    同时,研究区地应力整体具有垂向应力>最大水平主应力>最小水平主应力的特征,最大水平主应力、最小水平主应力及垂向应力随埋深加大均呈线性增加趋势,且垂向应力增加程度高于水平主应力(图4)。由此,建立8+9号煤层地应力预测公式:σv =0.022 8H+3.118 2,σH = 0.016 8H+5.654 6,σh= 0.014 0H+5.543 6。平面上,除埋深外,还受断层影响,南部断层发育较少,应力较高,北部断层发育较多但规模较小,应力居中,而中部受主裂带影响较大,应力最小,仍需结合三维建模进一步明确地应力分布特征。

    图  4  神府区块8+9号煤地应力与埋深关系
    Figure  4.  Relationship between in-situ stress and burial depth of No.8+9 coal seams in the Shenfu block

    煤层顶底板岩层与煤层深度接近,垂向应力几乎一致,但含煤岩系中不同岩性力学强度存在差异,进而影响水平应力分布,顶底板的最小水平主应力比煤层的最小水平主应力越大,越容易控制裂缝在煤层中延伸。研究区深部煤储层顶底板发育泥岩、砂岩、灰岩和炭质泥岩,8+9号煤层顶板最大水平主应力介于19.1~50.8 MPa,平均39.4 MPa,最小水平主应力介于16.1~45.4 MPa,平均33.0 MPa,煤层–顶板最小水平主应力差介于–8.6~7.6 MPa;底板最大水平主应力介于21.4~56.0 MPa,平均41.9 MPa,最小水平主应力介于18.0~50.6 MPa,平均35.5 MPa,煤层−顶板最小水平主应力差介于–9.9~12.8 MPa。大部分煤层顶底板地应力高于煤层,局部地带顶底板地应力小于煤层,这种现象前人也曾发现[2829]。为此,煤层及其顶底板的地应力分布特征,需要根据现场实际压裂数据和室内实验进一步确定。

    煤层可压性评价主要是进行裂缝扩展难易及裂缝复杂程度的评判,根据煤岩力学性质和地应力对煤层裂缝扩展效果的影响,引入由力学性质控制的裂缝扩展参数和由地应力控制的裂缝复杂参数综合评价煤层可压性。其中,裂缝扩展参数由脆性指数、抗压强度和抗拉强度构成,脆性指数是储层孔裂隙结构、内部流体性质、矿物组成及自身力学特征的综合反应,可根据弹性参数法,利用动态弹性模量和泊松比计算[30];裂缝复杂程度取决于煤层最大、最小水平主应力差和煤层–顶底板最小水平主应力差。利用裂缝扩展参数和裂缝复杂参数乘积计算煤层可压性指数(RFI),实现对研究区深部煤储层可压性定量评价。

    $$ {F}_{{\mathrm{p}}}=\frac{{{B}_{I}}^{2}}{\sigma c\times \sigma \tau }\times 1\;000 $$ (11)
    $$ {B}_{{\mathrm{I}}}=0.5 \frac{{E}_{{\mathrm{d}}}-{E}_{{\mathrm{dmin}}}}{{E}_{{\mathrm{dmax}}}-{E}_{{\mathrm{dmin}}}}+0.5 \frac{{\mu }_{{\mathrm{dmax}}}-{\mu }_{{\mathrm{d}}}}{{\mu }_{{\mathrm{dmax}}}-{\mu }_{{\mathrm{dmin}}}} $$ (12)
    $$ {F}_{{\mathrm{c}}}=\frac{{\sigma }_{{\mathrm{rh}}}+{\sigma }_{{\mathrm{fh}}}-2{\sigma }_{{\mathrm{h}}}}{2({\sigma }_{{\mathrm{H}}}-{\sigma }_{{\mathrm{h}}})} $$ (13)
    $$ {R}_{{\mathrm{FI}}}=10\;000 {F}_{{\mathrm{p}}} {F}_{{\mathrm{c}}} $$ (14)

    式中:RFI为储层可压性指数;Fp为裂缝扩展参数;Fc为裂缝复杂参数;BI为脆性指数;Edmax为动态弹性模量最大值,GPa;Edmin为动态弹性模量最小值,GPa;μdmax为动态泊松比最大值;μdmin为动态泊松比最小值;σrh为顶板最小水平主应力,MPa;σfh为底板最小水平主应力,MPa。

    利用研究区150口井测井资料计算煤层可压性指数,根据计算结果对8+9号煤层做了插值预测,并进行了煤层分类评价,结合排采数据分析不同储层类型的生产特征。

    神府区块8+9号煤可压性指数介于–12.1~17.6,划分为≤–5、–5~–1、–1~0、0~1、1~5、≥5共6类储层(表1图5)。

    表  1  神府区块8+9号煤储层分类
    Table  1.  Classification of No.8+9 coal seams in the Shenfu block
    储层
    类型
    弹性模量/
    GPa
    泊松比 抗压强度/
    MPa
    抗拉强度/
    MPa
    煤层最大水平主应力/MPa 煤层最小水平主应力/MPa 顶板最小水平主应力/MPa 底板最小水平主应力/MPa 脆性指数 可压性指数
    5~13.7
    (6.9)
    0.32~0.38
    (0.36)
    25.6~80
    (37)
    2.1~6.7
    (3)
    35.6~42.8
    (39.5)
    30.6~36.5
    (33.6)
    32.4~40.8
    (36.4)
    33.3~44.3
    (38.9)
    0.2~0.9
    (0.4)
    5.1~17.6
    (9.2)
    4.8~9.2
    (6.2)
    0.36~0.39
    (0.37)
    25.3~53.1
    (33.2)
    2.1~4.4
    (2.8)
    30.3~43
    (39.5)
    26~36.7
    (33.6)
    25.7~39.1
    (33.8)
    28.9~41.2
    (36.6)
    0.2~0.5
    (0.3)
    1.0~4.5
    (2.4)
    5.6~7.1
    (6.1)
    0.37~0.41
    (0.38)
    29.4~40.2
    (32.7)
    2.4~3.4
    (2.7)
    36.9~43.6
    (39.8)
    31.5~36.9
    (33.7)
    22.7~34.6
    (29.2)
    31.8~40.5
    (35.7)
    0.2~0.3
    (0.25)
    0.2~0.9
    (0.5)
    4.9–11.5
    (6.5)
    0.35~0.39
    (0.37)
    25.8~62.4
    (34.2)
    2.1~5.2
    (2.8)
    20.4~42.5
    (36.5)
    17.5~36.1
    (31)
    16.1~36
    (29.4)
    18.0~37.3
    (32.1)
    0.2~0.7
    (0.3)
    −1.0~0
    (–0.5)
    5.2~7.8
    (6)
    0.36~0.39
    (0.37)
    22.7~41.2
    (31.4)
    2.3~3.4
    (2.6)
    37.4~42.2
    (40)
    31.8~35.7
    (34.1)
    25~35.2
    (30.8)
    28~37.6
    (33.4)
    0.2~0.4
    (0.3)
    −4.8~1.1
    (–2.9)
    5.1~7.5
    (6.3)
    0.36.~0.37
    (0.37)
    27.5~40.1
    (32.9)
    2.3~3.3
    (2.7)
    35.7~41.1
    (38.7)
    30.5~35
    (33)
    25.2~31.5
    (28.6)
    20.6~33.3
    (29.7)
    0.2~0.4
    (0.3)
    −5~−12.1
    (–7.2)
      注:数据格式为:$\dfrac{最小值\sim 最大值}{平均值} $。
    下载: 导出CSV 
    | 显示表格
    图  5  研究区8+9号煤储层可压性指数分布
    Figure  5.  Distribution of fractur ability index for No.8+9 coal reservoirs in the study area

    Ⅰ类储层可压性指数≥5,占比16%,主要分布在区块中部以及北部。该类储层脆性指数最高(平均0.4),裂缝容易形成与保存,但抗压强度和抗拉强度最高(分别平均37 MPa和3 MPa),所需启裂压力较大,且煤层与顶底板最小水平主应力差最大,裂缝容易控制在煤层中,裂缝形态整体较长、较低、较窄[8]

    Ⅱ类储层可压性指数1~5,占比26%,区域分布较为广泛。该类储层顶底板最小水平主应力仍比煤层大,但脆性指数较低,抗拉强度和抗压强度较低,裂缝开裂压力降低,但保持能力较弱,同时需要控制裂缝高度。

    Ⅲ类储层可压性指数0~1,占比12%,分布较少。该类储层脆性指数最低,塑性较强,且煤层最小水平主应力大于顶板,小于底板,裂缝容易向上延伸,更需着重控制压裂规模。

    Ⅳ类储层可压性指数–1~0,占比12%,主要分布在北部。该类储层塑性较强,与Ⅲ类储层相似,煤层最小水平主应力大于顶板,小于底板。

    Ⅴ类储层可压性指数–5~–1,占比24%,全区均有分布。该类储层脆性指数、抗压强度和抗拉强度最小,裂缝较难开启和保存,煤层最小水平主应力大于顶底板,裂缝容易穿层。

    Ⅵ类储层可压性指数≤–5,占比10%,研究区分布较少,主要分布在最北部。此类储层脆性指数较低,且煤层最小水平主应力与顶板最小水平主应力相差最大,裂缝容易在垂向上延伸,导致裂缝形态呈现较短、较高、较宽的特点[8]

    统计神府区块南部8+9号煤层地质参数和压裂施工方案近似的43口生产井数据,分析不同类型煤层生产特征(表2)。结果表明,在埋深、煤厚、含气量及排量、砂量、液量等主要参数相似的情况下,煤层可压性指数越高,产气效果就越好。选取主要典型井进行生产动态特征分析(图6)。

    表  2  相似地质–工程参数条件下不同储层改造后产气量对比
    Table  2.  Comparison of gas production after reservoir modification under similar geological engineering parameter
    储层类型 井数 可压性指数 埋深/m 煤厚/m 含气量/(m3·t−1 排量/
    (m3·min−1
    加砂量/
    m3
    液量/
    m3
    平均产气量/
    (m3·d−1
    Ⅰ类 5 5.2~10.3 1 993~2110 12.2~13.7 12.5~15.4 18 180~200 1 800~2 000 4501
    Ⅱ类 12 1.1~4.8 2 002~2130 11.3~15.5 10.7~18.4 18 180~200 1 800~2 000 3964
    Ⅲ类 7 0.2~0.9 1 980~2070 10.8~14.3 11.3~15.4 18 180~200 1 800~2 000 3625
    Ⅳ类 5 −0.9~−0.1 1 995~2088 11.1~14.2 11.8~15.1 18 110~200 1 800~2 000 3419
    Ⅴ类 11 −4.7~−1.1 2 013~2120 11.3~14.4 11.5~14.6 18 180~200 1 800~2 000 3327
    Ⅵ类 3 −5.3~−7.8 2 006~2094 11.4~12.5 11.6~18.7 18 180~200 1 800~2 000 3176
    下载: 导出CSV 
    | 显示表格
    图  6  研究区不同类储层生产特征
    Figure  6.  Production characteristics of different reservoirs in the study area

    SF–1井8+9号煤层可压性指数为7.2,属于Ⅰ类储层。煤层厚度12.5 m,原生结构煤,含气量14.6 m3/t。压裂施工排量18 m3/min,加砂量180 m3,总净液量1 845 m3。排水32 d后见气,最高日产气量超过12 000 m3,日产水量不超过10 m3,排采前期压降快,目前产量稳定在6 000 m3/d左右(图6a)。

    SF–2井8+9号煤层可压性指数为4.8,属于Ⅱ类储层。煤层厚度14.3 m,原生结构煤,含气量17.8 m3/t。压裂施工排量18 m3/min,加砂量200 m3,总净液量1 884 m3。排水28 d后见气,最高日产气量超过9 000 m3,目前稳产超过2 000 m3,日产水量在1 m3左右(图6b)。排采采取阶段性提产措施,在2 000 m3稳定后,提升至5 000 m3左右,后又升至8 000 m3左右,后期因产液量低,停机自喷,产量维持在3 000 m3左右,但波动幅度相对较大。

    SF–3井8+9号煤层可压性指数为–0.7,属于Ⅳ类储层。煤层厚度12.7 m,原生结构煤,含气量14.5 m3/t。压裂施工排量18 m3/min,加砂量185 m3,总净液量1 857 m3。排水56 d后见气,最高日产气量3 500 m3,前期产水量6 m3/d左右,目前产气量2 000 m3/d,产水量3 m3/d,产量较低但较为稳定(图6c)。

    1)神府区块8+9号煤层力学性质差异较大,静态弹性模量为7.5 GPa,动态弹性模量平均为6.3 GPa,以南部和北部较高;静态泊松比为0.35,动态泊松比平均为0.37,区域分布整体较高,不利于储层压裂改造。

    2)神府区块8+9号煤层垂向应力(平均49.1 MPa)>最大水平主应力(平均39.5 MPa)>最小水平主应力(平均33.8 MPa),裂缝主要垂向扩展,受埋深、断层影响导致在平面上分布有较大差异,不利于井位部署和整体规划。

    3)由煤层脆性指数、抗压强度和抗拉强度构建的裂缝扩展参数,以及煤层最大、最小水平主应力差和煤与顶底板最小水平主应力差构建的裂缝复杂参数,综合计算煤层可压性指数。神府区块8+9号煤可压性指数介于–12.1~17.6,按照≥5、1~5、0~1、–1~0、–5~–1、≤–5划分为6类储层,在其他条件类似时,可压性指数越大,煤层产气效果相对越好。

    4)研究区8+9号煤以Ⅰ类(16%),Ⅱ类(26%)和Ⅴ类(24%)分布较多,储层压裂改造难度较大,同时需要全面考虑区域分布差异性,针对不同区域不同储层类型特征制定相应的压裂设计方案,实现储层有效改造和提高煤层气产量。

  • 图  1   研究区构造特征和沉积环境[1516]

    Figure  1.   Structural characteristics and sedimentary environment of the study area[1516]

    图  2   神府区块8+9号煤层埋深与厚度

    Figure  2.   Thickness and burial depth of No.8+9 coal seams in the Shenfu block

    图  3   原位条件下煤岩应力−应变曲线特征

    Figure  3.   Characteristics of stress-strain curves of coal under in-situ conditions

    图  4   神府区块8+9号煤地应力与埋深关系

    Figure  4.   Relationship between in-situ stress and burial depth of No.8+9 coal seams in the Shenfu block

    图  5   研究区8+9号煤储层可压性指数分布

    Figure  5.   Distribution of fractur ability index for No.8+9 coal reservoirs in the study area

    图  6   研究区不同类储层生产特征

    Figure  6.   Production characteristics of different reservoirs in the study area

    表  1   神府区块8+9号煤储层分类

    Table  1   Classification of No.8+9 coal seams in the Shenfu block

    储层
    类型
    弹性模量/
    GPa
    泊松比 抗压强度/
    MPa
    抗拉强度/
    MPa
    煤层最大水平主应力/MPa 煤层最小水平主应力/MPa 顶板最小水平主应力/MPa 底板最小水平主应力/MPa 脆性指数 可压性指数
    5~13.7
    (6.9)
    0.32~0.38
    (0.36)
    25.6~80
    (37)
    2.1~6.7
    (3)
    35.6~42.8
    (39.5)
    30.6~36.5
    (33.6)
    32.4~40.8
    (36.4)
    33.3~44.3
    (38.9)
    0.2~0.9
    (0.4)
    5.1~17.6
    (9.2)
    4.8~9.2
    (6.2)
    0.36~0.39
    (0.37)
    25.3~53.1
    (33.2)
    2.1~4.4
    (2.8)
    30.3~43
    (39.5)
    26~36.7
    (33.6)
    25.7~39.1
    (33.8)
    28.9~41.2
    (36.6)
    0.2~0.5
    (0.3)
    1.0~4.5
    (2.4)
    5.6~7.1
    (6.1)
    0.37~0.41
    (0.38)
    29.4~40.2
    (32.7)
    2.4~3.4
    (2.7)
    36.9~43.6
    (39.8)
    31.5~36.9
    (33.7)
    22.7~34.6
    (29.2)
    31.8~40.5
    (35.7)
    0.2~0.3
    (0.25)
    0.2~0.9
    (0.5)
    4.9–11.5
    (6.5)
    0.35~0.39
    (0.37)
    25.8~62.4
    (34.2)
    2.1~5.2
    (2.8)
    20.4~42.5
    (36.5)
    17.5~36.1
    (31)
    16.1~36
    (29.4)
    18.0~37.3
    (32.1)
    0.2~0.7
    (0.3)
    −1.0~0
    (–0.5)
    5.2~7.8
    (6)
    0.36~0.39
    (0.37)
    22.7~41.2
    (31.4)
    2.3~3.4
    (2.6)
    37.4~42.2
    (40)
    31.8~35.7
    (34.1)
    25~35.2
    (30.8)
    28~37.6
    (33.4)
    0.2~0.4
    (0.3)
    −4.8~1.1
    (–2.9)
    5.1~7.5
    (6.3)
    0.36.~0.37
    (0.37)
    27.5~40.1
    (32.9)
    2.3~3.3
    (2.7)
    35.7~41.1
    (38.7)
    30.5~35
    (33)
    25.2~31.5
    (28.6)
    20.6~33.3
    (29.7)
    0.2~0.4
    (0.3)
    −5~−12.1
    (–7.2)
      注:数据格式为:$\dfrac{最小值\sim 最大值}{平均值} $。
    下载: 导出CSV

    表  2   相似地质–工程参数条件下不同储层改造后产气量对比

    Table  2   Comparison of gas production after reservoir modification under similar geological engineering parameter

    储层类型 井数 可压性指数 埋深/m 煤厚/m 含气量/(m3·t−1 排量/
    (m3·min−1
    加砂量/
    m3
    液量/
    m3
    平均产气量/
    (m3·d−1
    Ⅰ类 5 5.2~10.3 1 993~2110 12.2~13.7 12.5~15.4 18 180~200 1 800~2 000 4501
    Ⅱ类 12 1.1~4.8 2 002~2130 11.3~15.5 10.7~18.4 18 180~200 1 800~2 000 3964
    Ⅲ类 7 0.2~0.9 1 980~2070 10.8~14.3 11.3~15.4 18 180~200 1 800~2 000 3625
    Ⅳ类 5 −0.9~−0.1 1 995~2088 11.1~14.2 11.8~15.1 18 110~200 1 800~2 000 3419
    Ⅴ类 11 −4.7~−1.1 2 013~2120 11.3~14.4 11.5~14.6 18 180~200 1 800~2 000 3327
    Ⅵ类 3 −5.3~−7.8 2 006~2094 11.4~12.5 11.6~18.7 18 180~200 1 800~2 000 3176
    下载: 导出CSV
  • [1] 朱光辉,季洪泉,米洪刚,等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探,2024,52(8):12−21. doi: 10.12363/issn.1001-1986.24.02.0089

    ZHU Guanghui,JI Hongquan,MI Honggang,et al. Discovery and enlightenment of deep coalbed methane gas field in Shenfu[J]. China Industrial Economics,2024,52(8):12−21. doi: 10.12363/issn.1001-1986.24.02.0089

    [2] 吴裕根,门相勇,娄钰. 我国“十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001

    WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001

    [3] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

    LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.

    [4] 闫霞,熊先钺,李曙光,等. 深部煤层气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁—吉县区块为例[J/OL]. 天然气工业,2024:1−13. (2024−04−19). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=TRQG20240416001&dbname=CJFD&dbcode=CJFQ.

    YAN Xia,XIONG Xianyue,LI Shuguang,et al. Output contribution and main controlling factors of horizontal wells in deep coalbed methane:Taking Daning-Jixian block in the eastern margin of Ordos Basin as an example[J/OL]. China Industrial Economics,2024:1−13. (2024−04−19). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=TRQG20240416001&dbname=CJFD&dbcode=CJFQ.

    [5] 赵志刚,朱学申,王存武,等. 基于资源性与可压性的深部煤层气甜点预测[J]. 煤田地质与勘探,2024,52(8):22−31. doi: 10.12363/issn.1001-1986.24.01.0042

    ZHAO Zhigang,ZHU Xueshen,WANG Cunwu,et al. Dessert prediction of deep coalbed methane based on resource and compressibility[J]. China Industrial Economics,2024,52(8):22−31. doi: 10.12363/issn.1001-1986.24.01.0042

    [6] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002

    [7] 李勇,高爽,吴鹏,等. 深部煤层气游离气含量预测模型评价与校正:以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报,2023,44(11):1892−1902. doi: 10.7623/syxb202311011

    LI Yong,GAO Shuang,WU Peng,et al. Evaluation and correction of prediction model of free gas content in deep coalbed methane:A case study of deep coal seam in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1892−1902. doi: 10.7623/syxb202311011

    [8] 米洪刚,吴见,彭文春,等. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探,2024,52(8):32−43. doi: 10.12363/issn.1001-1986.24.03.0167

    MI Honggang,WU Jian,PENG Wenchun,et al. Mechanical characteristics and fracture propagation mechanism of deep coal reservoirs in the Shenfu block[J]. Coal Geology & Exploration,2024,52(8):32−43. doi: 10.12363/issn.1001-1986.24.03.0167

    [9] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012

    YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012

    [10] 郭笑笑. 老厂雨旺区煤储层非均质性及可改造性研究[D]. 北京:中国地质大学(北京),2021.

    GUO Xiaoxiao. Study on heterogeneity and reconstructability of coal reservoir in Yuwang District of Laochang[D]. Beijing:China University of Geosciences,2021.

    [11] 苏育飞,宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质,2023,35(5):46−57. doi: 10.3969/j.issn.1674-1803.2023.05.07

    SU Yufei,SONG Ru. Study on geological characteristics of deep CBM inYushewu block,Qinshui basin and evaluation of transformability[J]. Coal Geology of China,2023,35(5):46−57. doi: 10.3969/j.issn.1674-1803.2023.05.07

    [12] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811. doi: 10.7623/syxb202311004

    QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811. doi: 10.7623/syxb202311004

    [13] 李勇,陈涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术,2024,52(2):171−182. doi: 10.12438/cst.2023-0910

    LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182. doi: 10.12438/cst.2023-0910

    [14] 王成旺,甄怀宾,陈高杰,等. 大宁—吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质,2022,34(2):1−5. doi: 10.3969/j.issn.1674-1803.2022.02.01

    WANG Chengwang,ZHEN Huaibin,CHEN Gaojie,et al. Assessment of coal No. 8 reservoir features and fracturability in Da' Ning-Jixian Block deep part[J]. Coal Geology of China,2022,34(2):1−5. doi: 10.3969/j.issn.1674-1803.2022.02.01

    [15] 米立军,朱光辉. 鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探,2021,26(3):53−67.

    MI Lijun,ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field,northeastern Ordos Basin[J]. China Petroleum Exploration,2021,26(3):53−67.

    [16] 徐长贵,季洪泉,王存武,等. 鄂尔多斯盆地东缘临兴-神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026

    XU Changgui,JI Hongquan,WANG Cunwu,et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing-Shenfu block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(8):1−11. doi: 10.12363/issn.1001-1986.24.01.0026

    [17] 郭广山,徐凤银,刘丽芳,等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探,2024,52(2):81−91. doi: 10.12363/issn.1001-1986.23.08.0521

    GUO Guangshan,XU Fengyin,LIU Lifang,et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area,Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):81−91. doi: 10.12363/issn.1001-1986.23.08.0521

    [18] 张帆,马耕,刘晓,等. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究[J]. 煤田地质与勘探,2017,45(6):84−89. doi: 10.3969/j.issn.1001-1986.2017.06.014

    ZHANG Fan,MA Geng,LIU Xiao,et al. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. Coal Geology & Exploration,2017,45(6):84−89. doi: 10.3969/j.issn.1001-1986.2017.06.014

    [19] 高向东,王延斌,倪小明,等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报,2020,45(S2):912−921.

    GAO Xiangdong,WANG Yanbin,NI Xiaoming,et al. Mechanical properties of deep coal and rock in Linxing area and its influence on coal reservoir fracturing[J]. Journal of China Coal Society,2020,45(S2):912−921.

    [20] 王晓锋,唐书恒,解慧,等. 沁水盆地南部煤储层水力压裂裂缝发育特征的数值模拟研究[J]. 现代地质,2012,26(3):527−532. doi: 10.3969/j.issn.1000-8527.2012.03.012

    WANG Xiaofeng,TANG Shuheng,XIE Hui,et al. Numerical simulation research on propagation of hydraulic fractures of coal reservoir in south Qinshui basin[J]. Geoscience,2012,26(3):527−532. doi: 10.3969/j.issn.1000-8527.2012.03.012

    [21] 高亚楠,高峰,谢晶,等. 温度-围压-瓦斯压力作用下煤岩力学性质及有限变形行为[J]. 煤炭学报,2021,46(3):898−911.

    GAO Yanan,GAO Feng,XIE Jing,et al. Mechanical properties and finite deformation behavior of coal under temperature,confining pressure and gas pressure[J]. Journal of China Coal Society,2021,46(3):898−911.

    [22] 肖光明. 温度与加载速率影响下的煤岩力学行为及强度特性研究[D]. 徐州:中国矿业大学,2022.

    XIAO Guangming. Study on mechanical behavior and strength characteristics of coal and rock under the influence of temperature and loading rate[D]. Xuzhou:China University of Mining and Technology,2022.

    [23]

    WANG Z W,LI Y,QU J H,et al. Detailed in situ stress characterization combining well logging and improved magnitude calculation model of nos. 8+9 coal seam in northeastern Ordos basin[J]. Energy & Fuels,2024,38(6):5137−5148.

    [24] 邱峰,刘晋华,蔡益栋,等. 基于测井的煤层力学特性评价及煤层气开发有利区预测:以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探,2023,51(4):46−56. doi: 10.12363/issn.1001-1986.22.10.0808

    QIU Feng,LIU Jinhua,CAI Yidong,et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging:A case study of No. 3 coal bed in Zhengzhuang Block,southern Qinshui Basin[J]. Coal Geology & Exploration,2023,51(4):46−56. doi: 10.12363/issn.1001-1986.22.10.0808

    [25] 余雄鹰,王越之,李自俊. 声波法计算水平主地应力值[J]. 石油学报,1996,17(3):59−63. doi: 10.3321/j.issn:0253-2697.1996.03.009

    YU Xiongying,WANG Yuezhi,LI Zijun. Calculation of horizontal principal in situ stress with acoustic wave method[J]. Acta Petrolei Sinica,1996,17(3):59−63. doi: 10.3321/j.issn:0253-2697.1996.03.009

    [26] 鞠玮,王胜宇,姜波,等. 滇东-黔西地区现今地应力场与二叠系煤储层渗透率特征[J]. 煤炭科学技术,2022,50(2):179−186.

    JU Wei,WANG Shengyu,JIANG Bo,et al. Characteristics of present-day in situ stress field and the Permian coal reservoir permeability in the eastern Yunnan and western Guizhou regions[J]. Coal Science and Technology,2022,50(2):179−186.

    [27] 赖锦,白天宇,肖露,等. 地应力测井评价方法及其地质与工程意义[J]. 石油与天然气地质,2023,44(4):1033−1043. doi: 10.11743/ogg20230418

    LAI Jin,BAI Tianyu,XIAO Lu,et al. Well-logging evaluation of in situ stress fields and its geological and engineering significances[J]. Oil & Gas Geology,2023,44(4):1033−1043. doi: 10.11743/ogg20230418

    [28] 谢正龙,刘之的,韩鸿来,等. 大吉区块深部(层)煤层气储层地应力测井预测研究[J]. 物探与化探,2024,48(2):356−365.

    XIE Zhenglong,LIU Zhidi,HAN Honglai,et al. Log-based in situ stress prediction of deep coalbed methane reservoirs in the Daji block[J]. Geophysical and Geochemical Exploration,2024,48(2):356−365.

    [29] 安琦,杨帆,杨睿月,等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报,2024,49(5):2376−2393.

    AN Qi,YANG Fan,YANG Ruiyue,et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu Block,Ordos Basin[J]. Journal of China Coal Society,2024,49(5):2376−2393.

    [30] 张亚飞,张松航,邓志宇,等. 基于层次分析灰色定权聚类的煤层气开发甜点预测方法:以柿庄北区块为例[J]. 煤炭科学技术,2024,52(5):166−175. doi: 10.12438/cst.2023-0708

    ZHANG Yafei,ZHANG Songhang,DENG Zhiyu,et al. A prediction method for coalbed methane development sweet spots based on hierarchical analysis and grey fixed-weight clustering:Taking Shizhuangbei block as an example[J]. Coal Science and Technology,2024,52(5):166−175. doi: 10.12438/cst.2023-0708

图(6)  /  表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  9
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-07
  • 网络出版日期:  2025-03-16
  • 刊出日期:  2025-03-24

目录

/

返回文章
返回