Influence of rock mechanics characteristics on fracturing fractures and differentiated development strategies in the Zhengzhuang block of the southern Qinshui Basin
-
摘要:
煤储层岩石力学参数对天然裂缝的形成演化及人工裂缝的扩展规律具有重要控制作用,是影响煤储层压裂改造的关键因素。为明确郑庄区块岩石力学参数特征和压裂裂缝发育规律,实现煤储层高效改造和开发,利用阵列声波测井资料建立纵横波转换模型,基于岩石力学参数试验和测井计算建立动静态岩石力学参数转换模型,利用声波时差、密度等常规测井数据,计算得到郑庄区块岩石力学参数分布规律。在此基础上,利用FrSmart压裂模拟软件建立郑庄区块不同井区水平井的地质力学模型,开展压裂模拟探究岩石力学参数和压裂规模对压裂裂缝形态的影响,并针对不同井区提出差异化开发对策。研究结果表明:郑庄区块静态杨氏模量在0.28~1.45 GPa,平均为0.95 GPa,静态泊松比为0.31~0.34,平均为0.32,整体呈不均匀分布。随着煤储层杨氏模量的不断增大和泊松比的减小,压裂缝长和单缝宽均有逐渐减小的趋势。压裂缝长和单缝宽与压裂规模有正相关关系,增加压裂液量和砂量可以有效增加压裂缝长和单缝宽,提高裂缝体积。增大施工排量,压裂缝长、单缝宽、裂缝体积均大幅度增加。现场在郑庄区块北部开展大规模大排量压裂先导试验,裂缝监测结果显示:平均压裂缝长超400 m,缝宽在40 m以上,平均单段储层改造体积170×104 m3,改造效果较以往提升580%。在后续开发过程中,郑庄区块北部井区建议采用大规模大排量压裂,最佳井距为320 m;中北部井区建议采用中等压裂规模进行改造,最佳井距为300 m;西南部井区建议采用中等规模压裂,最佳井距为260 m。
Abstract:The rock mechanical parameters of coal reservoirs play an important role in controlling the formation and evolution of natural fractures and the propagation of artificial fractures, and are the key factors affecting the fracturing transformation of coal reservoirs. In order to clarify the characteristics of rock mechanical parameters and the development law of fracturing fractures in Zhengzhuang block, and realize the efficient transformation and development of coal reservoirs, a longitudinal and transverse wave conversion model was established based on array acoustic logging data, a dynamic and static rock mechanical parameter conversion model was established based on rock mechanical parameter tests and logging calculations, and the distribution law of rock mechanical parameters in Zhengzhuang block was calculated by using conventional logging data such as acoustic time difference and density. On this basis, the FrSmart fracturing simulation software was used to establish the geomechanical models of horizontal wells in different well areas in the Zhengzhuang block, and the fracturing simulation was carried out to explore the influence of rock mechanical parameters and fracturing scale on the fracture morphology, and propose differentiated development strategies for different well areas. The results show that the static Young's modulus of Zhengzhuang block is between 0.28~1.45 GPa, the average value is 0.95 GPa, the static Poisson's ratio is 0.31~0.34, and the average value is 0.32, and the overall distribution is uneven. With the continuous increase of Young's modulus and the decrease of Poisson's ratio in coal reservoirs, the length of fracturing fractures decreases gradually, and the width of fracturing fractures gradually increases. There is a positive correlation between fracture length and fracture width and fracture scale, and increasing the amount of fracturing fluid and sand can effectively increase the fracture length and width and increase the fracture volume. With the increase of construction displacement, the length, width and volume of fractures were greatly increased. The pilot test of large-scale and large-displacement fracturing was carried out in the northern part of the Zhengzhuang block, and the fracture monitoring results showed that the average fracture length was more than 400m, the fracture width was more than 40 m, and the average volume of single reservoir reconstruction was 170×104 m3, and the transformation effect was increased by 580% compared with the past. In the subsequent development process, it is recommended to use large scale and high displacement fracturing in the northern well area of Zhengzhuang block, with an optimal well spacing of 320 m; It is recommended to use a moderate fracturing scale for the renovation of the central and northern well areas, with an optimal well spacing of 300 m; It is recommended to use medium scale fracturing in the southwestern well area, with an optimal well spacing of 260 m.
-
-
表 1 水平井地质力学模型主要参数表
Table 1 Main parameter table of horizontal well geomechanical model
井区 埋深/m 最大水平主应力/MPa 最小水平主应力/MPa 垂直主应力/MPa 杨氏模量/GPa 泊松比 郑庄北部 1000 34.71 23.71 27.01 1 0.31 郑庄西南部 600 19.12 13.11 14.67 0.8 0.32 郑庄中北部 800 25.31 17.31 19.60 0.7 0.33 -
[1] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503 XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. doi: 10.12363/issn.1001-1986.22.06.0503
[2] 熊先钺,甄怀宾,李曙光,等. 大宁–吉县区块深部煤层气多轮次转向压裂技术及应用[J]. 煤田地质与勘探,2024,52(2):147−160. XIONG Xianyue,ZHEN Huaibin,LI Shuguang,et al. Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian block[J]. Coal Geology & Exploration,2024,52(2):147−160.
[3] 许浩,汤达祯,陶树,等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探,2024,52(2):33−39. XU Hao,TANG Dazhen,TAO Shu,et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration,2024,52(2):33−39.
[4] 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67. LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67.
[5] 郭广山,徐凤银,刘丽芳,等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探,2024,52(2):81−91. GUO Guangshan,XU Fengyin,LIU Lifang,et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area,Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):81−91.
[6] 丁文龙,樊太亮,黄晓波,等. 塔中地区中:下奥陶统古构造应力场模拟与裂缝储层有利区预测[J]. 中国石油大学学报(自然科学版),2010,34(5):1−6. DING Wenlong,FAN Tailiang,HUANG Xiaobo,et al. Paleo-structural stress field simulation for middle-lower Ordovician in Tazhong area and favorable area prediction of fractured reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science),2010,34(5):1−6.
[7] 吴林,朱明,冯兴强,等. 准噶尔盆地四棵树凹陷构造应力场与构造变形解析[J]. 石油学报,2022,43(4):494−506. WU Lin,ZHU Ming,FENG Xingqiang,et al. Interpretation on tectonic stress and deformation of Sikeshu sag in Junggar Basin[J]. Acta Petrolei Sinica,2022,43(4):494−506.
[8] 陈杨,姚艳斌,崔金榜,等. 郑庄区块煤储层水力压裂裂缝扩展地质因素分析[J]. 煤炭科学技术,2014,42(7):98−102. CHEN Yang,YAO Yanbin,CUI Jinbang,et al. Analysis on geological control factors of hydraulic fracture extension of coal reservoirs in Zhengzhuang Block[J]. Coal Science and Technology,2014,42(7):98−102.
[9] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544. XU Fengyin,NIE Zhizhong,SUN Wei,et al. Theoretical and technological system for Highly efficient development of deepcoalbed methane in the Eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.
[10] 聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探,2024,52(2):1−12. NIE Zhihong,XU Fengyin,SHI Xiaosong,et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):1−12.
[11] 张冠杰,程奇,张雷,等. 渤海湾盆地渤中19-6气田变质岩潜山储层三维岩石力学参数求取及意义[J/OL]. 地球科学. ZHANG Guanjie,CHENG Qi,ZHANG Lei,et al. Calculation of 3-D reservoir rock mechanical parameters of metamorphic rock reservoirs in the Bozhong 19-6 gas field of the Bohai Bay Basin and their significance[J/OL]. Earth Science.
[12] 张兵,冯兴强,米洪刚,等. 鄂尔多斯盆地临兴地区致密砂岩储层岩石力学参数和地应力分析[J]. 中国海上油气,2023,35(6):51−59. ZHANG Bing,FENG Xingqiang,MI Honggang,et al. Analysis on in situ stress and rock mechanics parameters of tight sandstone reservoirs in Linxing block,Ordos basin[J]. China Offshore Oil and Gas,2023,35(6):51−59.
[13] 赵进雍,冀冬生,吴见,等. 准噶尔盆地四棵树凹陷侏罗系—白垩系储层岩石力学参数研究[J]. 地质力学学报,28(4):573-582 补全出版年份 ZHAO Jinyong,JI Dongsheng,WU Jian,et al. Research on rock mechanics parameters of the Jurassic-Cretaceous reservoir in the Sikeshu sag,Junggar Basin,China[J]. Journal of Geomechanics,28 ( 4):573-582.
[14] 肖阳,马中慧,刘书云,等. 珠江口盆地潜山储层地质力学及压裂参数优化研究[J]. 科学技术与工程,2024,24(4):1392−1401. doi: 10.12404/j.issn.1671-1815.2301579 XIAO Yang,MA Zhonghui,LIU Shuyun,et al. Geomechanics and fracturing parameter optimization of buried hill reservoir in Pearl River mouth basin[J]. Science Technology and Engineering,2024,24(4):1392−1401. doi: 10.12404/j.issn.1671-1815.2301579
[15] 高向东,王延斌,倪小明,等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报,2020,45(S2):912−921. GAO Xiangdong,WANG Yanbin,NI Xiaoming,et al. Mechanical properties of deep coal and rock in Linxing area and its influence on coal reservoir fracturing[J]. Journal of China Coal Society,2020,45(S2):912−921.
[16] 徐田录,吴承美,张金凤,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏,2024,36(4):35−43. doi: 10.12108/yxyqc.20240404 XU Tianlu,WU Chengmei,ZHANG Jinfeng,et al. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs,2024,36(4):35−43. doi: 10.12108/yxyqc.20240404
[17] 张聪,李梦溪,胡秋嘉,等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J/OL]. 煤田地质与勘探. ZHANG Cong,LI Mengxi,HU Qiujia,et al. Characteristics and development technical countermeasures of media-deep coalbed methane reservoir in southern Qinshui Basin[J]. Coal Geology & Exploration.
[18] 贾慧敏,胡秋嘉,樊彬,等. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术[J]. 煤田地质与勘探,2021,49(2):34−42. JIA Huimin,HU Qiujia,FAN Bin,et al. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. Coal Geology & Exploration,2021,49(2):34−42.
[19] 张聪,李梦溪,冯树仁,等. 沁水盆地南部郑庄区块15号煤与3号煤储层物性及产气差异研究[J]. 煤田地质与勘探,2022,50(9):145−153. doi: 10.12363/issn.1001-1986.21.12.0816 ZHANG Cong,LI Mengxi,FENG Shuren,et al. Reservoir properties and gas production difference between No. 15 coal and No. 3 coal in Zhengzhuang Block,southern Qinshui Basin[J]. Coal Geology & Exploration,2022,50(9):145−153. doi: 10.12363/issn.1001-1986.21.12.0816
[20] 李可心,张聪,李俊,等. 沁水盆地南部煤层气水平井射孔优化[J]. 新疆石油地质,2024,45(5):581−589. LI Kexin,ZHANG Cong,LI Jun,et al. Optimization of perforation in CBM horizontal wells in southern Qinshui basin[J]. Xinjiang Petroleum Geology,2024,45(5):581−589.
[21] 朱庆忠,刘立军,陈必武,等. 高煤阶煤层气开发工程技术的不适应性及解决思路[J]. 石油钻采工艺,2017,39(1):92−96. ZHU Qingzhong,LIU Lijun,CHEN Biwu,et al. Inadaptability of high-rank CBM development engineering and its solution idea[J]. Oil Drilling & Production Technology,2017,39(1):92−96.
[22] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012 YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012
[23] LIU S Q,SANG S X,PAN Z J,et al. Study of characteristics and formation stages of macroscopic natural fractures in coal seam #3 for CBM development in the east Qinnan block,Southern Quishui Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,34:1321−1332. doi: 10.1016/j.jngse.2016.08.010
[24] 张聪,李可心,贾慧敏,等. 郑庄北中深部煤层气水平井产能影响因素及开发技术优化[J]. 煤田地质与勘探,2024,52(6):1−12. ZHANG Cong,LI Kexin,JIA Huimin,et al. Factors influencing the productivity and technology optimization of horizontal wells for moderately deep coalbed methane in the northern Zhengzhuang block[J]. Coal Geology & Exploration,2024,52(6):1−12.
[25] HOU L L,LIU X J,LIANG L X,et al. Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity[J]. Journal of Natural Gas Science and Engineering,2020,75:103133. doi: 10.1016/j.jngse.2019.103133
[26] 周文,高雅琴,单钰铭,等. 川西新场气田沙二段致密砂岩储层岩石力学性质[J]. 天然气工业,2008,28(2):34-37. ZHOU Wen,GAO Yaqin,SHAN Yuming,et al. Natural Gas Industry,2008,28(2):34-37.
[27] 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846−866. LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846−866.
[28] 刘建华,吴超,陶兴华. 钻井岩石力学参数三维建模方法及其现场应用[J]. 钻采工艺,2020,43(1):13−16,7-8. LIU Jianhua,WU Chao,TAO Xinghua. Three-dimensional modeling method for drilling rock mechanics and its field application[J]. Drilling & Production Technology,2020,43(1):13−16,7-8.
[29] DUMITRESCU C C. Brittleness and geomechanical properties estimation using wireline and seismic data in the duvernay shale basin,Canada[C]//Proceedings of the 9th Unconventional Resources Technology Conference. American Association of Petroleum Geologists,2021.
[30] 雷群,翁定为,熊生春,等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发,2021,48(5):1035−1042. doi: 10.11698/PED.2021.05.15 LEI Qun,WENG Dingwei,XIONG Shengchun,et al. Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development,2021,48(5):1035−1042. doi: 10.11698/PED.2021.05.15
[31] 李倩,李童,蔡益栋,等. 煤层气储层水力裂缝扩展特征与控因研究进展[J]. 煤炭学报,2023,48(12):4443−4460. LI Qian,LI Tong,CAI Yidong,et al. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs[J]. Journal of China Coal Society,2023,48(12):4443−4460.
[32] 杨帆,李斌,张红杰,等. 深部煤层气水平井大规模极限体积压裂技术:以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发,2024,51(2):389−398. doi: 10.11698/PED.20230513 YANG Fan,LI Bin,ZHANG Hongjie,et al. Large-scale extreme volume fracturing technology for deep coalbed methane horizontal wells:Taking Linxing block in the eastern margin of Ordos Basin as an example[J]. China Industrial Economics,2024,51(2):389−398. doi: 10.11698/PED.20230513
[33] 李斌,杨帆,张红杰,等. 神府区块深部煤层气高效开发技术研究[J]. 煤田地质与勘探,2024,52(8):57−68. doi: 10.12363/issn.1001-1986.24.01.0082 LI Bin,YANG Fan,ZHANG Hongjie,et al. Technology for efficient production of deep coalbed methane in the Shenfu block[J]. Coal Geology & Exploration,2024,52(8):57−68. doi: 10.12363/issn.1001-1986.24.01.0082
[34] 智慧文,胡永章. 元坝气田地应力测井计算研究[J]. 物探化探计算技术,2015,37(6):743−748. doi: 10.3969/j.issn.1001-1749.2015.06.12 ZHI Huiwen,HU Yongzhang. Study on well logging with crustal stress calculation in Yuanba gas field[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015,37(6):743−748. doi: 10.3969/j.issn.1001-1749.2015.06.12