高级检索

大倾角工作面覆岩三维破断运移演化规律

解盘石, 黄宝发, 伍永平, 罗生虎, 朱明建, 易磊磊, 徐辉, 陈建杰

解盘石,黄宝发,伍永平,等. 大倾角工作面覆岩三维破断运移演化规律[J]. 煤炭科学技术,2025,53(2):12−26. DOI: 10.12438/cst.2024–1646
引用本文: 解盘石,黄宝发,伍永平,等. 大倾角工作面覆岩三维破断运移演化规律[J]. 煤炭科学技术,2025,53(2):12−26. DOI: 10.12438/cst.2024–1646
XIE Panshi,HUANG Baofa,WU Yongping,et al. Three-dimensional fracture migration evolution law of overburden rock in steeply dipping working face[J]. Coal Science and Technology,2025,53(2):12−26. DOI: 10.12438/cst.2024–1646
Citation: XIE Panshi,HUANG Baofa,WU Yongping,et al. Three-dimensional fracture migration evolution law of overburden rock in steeply dipping working face[J]. Coal Science and Technology,2025,53(2):12−26. DOI: 10.12438/cst.2024–1646

大倾角工作面覆岩三维破断运移演化规律

基金项目: 国家自然科学基金资助项目(52174126);陕西省杰出青年科学基金资助项目(2023-JC-JQ-42);西安科技大学优博培育计划资助项目(PY24002)
详细信息
    作者简介:

    解盘石: (1981—),男,陕西三原人,教授,博士。E-mail:xieps@xust.edu.cn

    通讯作者:

    黄宝发: (1998—),男,陕西安康人,博士研究生。E-mail:3251403264@qq.com

  • 中图分类号: TD325

Three-dimensional fracture migration evolution law of overburden rock in steeply dipping working face

  • 摘要:

    大倾角煤层安全高效开采的关键是对采场围岩与装备的多维耦合控制,定量化表征大倾角采场覆岩空间结构破断特征、采动裂隙发育和空隙分布特征是实现该类煤层精准岩层控制的前提。以大倾角长壁大采高工作面为工程背景,采用数值计算、现场实测与理论分析相结合的研究方法,在厘定覆岩空间移动变形规律的基础上,引入三维曲率、岩体空隙率及分形几何理论定量描述了采场不同区域破断岩块的运移–堆砌–铰接特征及岩体裂隙分布规律,实现了大倾角大采高工作面开采过程中三维结构组成及采动裂隙场空间占位的动态精细定量表征。研究表明,大倾角大采高破断顶板在采场空间发生了多维度耦合的非均衡运动,中、上部顶板以垂直岩层运动为主,下部顶板演变为倾向下滑。顶板破坏形式沿倾向、走向、垂向呈现三维区域异化,上部破断岩块错层、跨层迁移形成倾斜砌体结构,采空区后方存在“非均匀矸石–弯曲悬臂梁–破断岩块”承载结构形成非均匀空顶区域,承载结构相互约束,随倾向位置、覆岩层位不同发生动态演化。支架阻力分区波动性分布,中部阻力>上、下部,走向非同步来压。曲率分布呈“横、竖 O–X”形态,“O”型内部垮落岩块非平行同步下沉,倾向、反倾向堆砌结构并存,正负曲率不一,岩块间形成弱铰接结构。随覆岩层位升高,离层破坏区域向中下部和采空区中部偏移,岩体空隙率和分形维数呈现先增大后减小的现象。研究结果揭示了采空区内部覆岩三维破断运移规律,丰富了大倾角煤层岩层控制理论,也为顶板岩层运移规律的精细定量分析提供了新方法。

    Abstract:

    The key to safe and efficient mining of steeply dipping coal seam is the multi-dimensional coupling control of surrounding rock and equipment. Quantitative characterization of the spatial structure fracture characteristics of the overlying rock, the development of mining fractures, and the distribution characteristics of voids in the mining area are the prerequisites for achieving precise rock layer control in such coal seams. Based on the engineering background of steeply dipping longwall and large mining height working face, the research methods of numerical calculation, field measurement and theoretical analysis are combined. On the basis of determining the spatial movement and deformation law of overburden rock, the three-dimensional curvature, rock porosity, and fractal geometry theory were introduced to quantitatively describe the migration, stacking, and hinge characteristics of fractured rock blocks in different areas of the mining site, as well as the distribution law of rock fractures, Realized the dynamic and precise quantitative characterization of the three-dimensional structural composition and spatial occupancy of mining induced fracture fields during the mining process of steeply dipping and high mining height working faces. Research has shown that the fractured roof with steeply dipping and high mining height undergoes multi-dimensional coupled non equilibrium movement in the mining space. The middle and upper roof mainly moves vertically, while the lower roof evolves into a inclined downward movement. The form of roof failure presents three-dimensional regional differentiation along the dip, strike, and vertical directions. The upper broken rock blocks are staggered and migrated across layers to form a masonry structure. Behind the goaf, there is a “non-uniform gangue – curved cantilever beam – broken rock block” bearing structure that forms a non-uniform empty roof area. The bearing structures are constrained by each other and undergo dynamic evolution with different dip positions and overlying rock layers. The support resistance is distributed in fluctuating zones, with the middle resistance being greater than the upper and lower parts, and the strike is not synchronized with the pressure. The curvature distribution shows a “horizontal and vertical O–X” shape, and the “O” shaped internal collapsed rock blocks sink non parallel and synchronously. The inclined and anti inclined stacking structures coexist, and the positive and negative curvature sizes vary, forming weak articulated structures between the rock blocks. As the overburden layer increases, the detachment failure area shifts towards the middle and lower parts and the middle part of the goaf, and the porosity and fractal dimension of the rock mass first increase and then decrease. The research results have revealed the three-dimensional fracture movement law of the overlying rock within the goaf, enriched the control theory of the steeply dipping coal seam strata, and provided a new method for precise quantitative analysis of the movement law of the roof strata.

  • 图  1   煤层综合柱状图

    Figure  1.   Comprehensive histogram of coal seams

    图  2   数值计算模型

    Figure  2.   Numerical model

    图  3   覆岩空间破坏特征

    Figure  3.   Characteristics of overlying rock spatial failure

    图  4   覆岩承载结构演化

    Figure  4.   Evolution of overlying rock bearing structure

    图  5   覆岩位移分布特征

    Figure  5.   Characteristics of overlying rock displacement

    图  6   覆岩运移方向分布

    Figure  6.   Distribution of overlying rock migration direction

    图  7   曲率分布及顶板破断特征

    Figure  7.   Curvature distribution and roof fracture characteristics

    图  8   顶板空隙率分布特征

    Figure  8.   Distribution characteristics of roof porosity

    图  9   覆岩裂隙二值图及分维值

    Figure  9.   Binary map and fractal dimension map of overlying rock fractures

    图  10   分形维数变化曲线

    Figure  10.   Fractal dimension change curves

    图  11   支架阻力实测结果

    Figure  11.   Measured results of support resistance

    图  12   现场观测结果

    Figure  12.   Measured results of support resistance

    图  13   采场围岩与装备协同分区控制

    Figure  13.   Multidimensional collaborative zoning control of surrounding rock and equipment in mining areas

    图  14   动载系数变化

    Figure  14.   Change in dynamic load coefficient

    表  1   煤岩体及节理力学参数

    Table  1   Mechanical parameters of coal rock mass and joints

    岩石名称 容 重/(kg·m−3) 体积模量/MPa 剪切模量/MPa 法向刚度/MPa 切向刚度/MPa 内摩擦角/(°)
    底板 2 420 4 167 2 869 2130 1670 19
    直接底 2 550 3 435 3 876 1650 2055 20
    煤层 1 350 2 381 1 163 1100 620 18
    直接顶 2 530 3 372 3 816 1800 1920 12
    基本顶 2 640 9 302 9 137 5200 5230 16
    覆岩 2 530 3 372 3 816 1800 1920 12
    下载: 导出CSV
  • [1] 伍永平,解盘石,贠东风,等. 大倾角层状采动煤岩体重力−倾角效应与岩层控制[J]. 煤炭学报,2023,48(1):100−113.

    WU Yongping,XIE Panshi,YUN Dongfeng,et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J]. Journal of China Coal Society,2023,48(1):100−113.

    [2] 伍永平,郎丁,贠东风,等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术,2024,52(1):25−51. doi: 10.12438/cst.2023-1601

    WU Yongping,LANG Ding,YUN Dongfeng,et al. Reform and prospects of mining technology for large inclined coal seam in China[J]. Coal Science and Technology,2024,52(1):25−51. doi: 10.12438/cst.2023-1601

    [3] 解盘石,张颖异,张艳丽,等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报,2021,46(2):344−356.

    XIE Panshi,ZHANG Yingyi,ZHANG Yanli,et al. Instability law of the coal-rock interbedded roof and its influence on supports in large mining height working face with steeply dipping coal seam[J]. Journal of China Coal Society,2021,46(2):344−356.

    [4] 解盘石,黄宝发,伍永平,等. 大倾角大采高采场覆岩应力路径时空效应[J]. 煤炭学报,2023,48(S2):424−436.

    XIE Panshi,HUANG Baofa,WU Yongping,et al. Time-space effect of overburden stress path in steeply dipping and large mining height stope[J]. Journal of China Coal Society,2023,48(S2):424−436.

    [5] 范志忠,毛德兵,徐刚,等. 大倾角大采高综采面倾向长度尺度效应分析[J]. 煤炭学报,2016,41(3):581−585.

    FAN Zhizhong,MAO Debing,XU Gang,et al. Analysis on the scale effect in the fully mechanized mining panel width with large mining height and dip angle[J]. Journal of China Coal Society,2016,41(3):581−585.

    [6] 赵元放,张向阳,涂敏. 大倾角煤层开采顶板垮落特征及矿压显现规律[J]. 采矿与安全工程学报,2007,24(2):231−234. doi: 10.3969/j.issn.1673-3363.2007.02.024

    ZHAO Yuanfang,ZHANG Xiangyang,TU Min. Roof caving characteristic and strata behavior in exploiting steep coal seams[J]. Journal of Mining & Safety Engineering,2007,24(2):231−234. doi: 10.3969/j.issn.1673-3363.2007.02.024

    [7] 王金安,张基伟,高小明,等. 大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅱ):周期破断[J]. 煤炭学报,2015,40(8):1737−1745.

    WANG Jin’an,ZHANG Jiwei,GAO Xiaoming,et al. Fracture mode and evolution of main roof stratum above fully mechanized top coal caving longwall coalface in steeply inclined thick coal seam(Ⅱ):Periodic fracture[J]. Journal of China Coal Society,2015,40(8):1737−1745.

    [8] 屠洪盛,屠世浩,陈芳,等. 基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J]. 采矿与安全工程学报,2014,31(1):49−54,59.

    TU Hongsheng,TU Shihao,CHEN Fang,et al. Study on the deformation and fracture feature of steep inclined coal seam roof based on the theory of thin plates[J]. Journal of Mining & Safety Engineering,2014,31(1):49−54,59.

    [9] 唐龙,刘迅,屠洪盛,等. 采动影响下大倾角复合顶板工作面矿压规律研究[J]. 煤炭科学技术,2022,50(11):58−66.

    TANG Long,LIU Xun,TU Hongsheng,et al. Study on mine pressure law of compound roof working face with large dip angle under the influence of mining[J]. Coal Science and Technology,2022,50(11):58−66.

    [10] 王智民,梁运培,邹全乐,等. 多重采动下大倾角上覆煤岩移动及地面井变形规律[J]. 煤炭科学技术,2023,51(4):47−55.

    WANG Zhimin,LIANG Yunpei,ZOU Quanle,et al. Movement of overlying rock and deformation law of surface well under multiple mining with large dip angle[J]. Coal Science and Technology,2023,51(4):47−55.

    [11] 王红伟,焦建强,伍永平,等. 急倾斜厚煤层短壁综放采场承载结构泛化特征[J]. 煤炭科学技术,2021,49(11):56−64.

    WANG Hongwei,JIAO Jianqiang,WU Yongping,et al. Generalization characteristics of bearing structure in short wall fully-mechanized top-coal caving mining face of steeply inclined thick seam[J]. Coal Science and Technology,2021,49(11):56−64.

    [12] 池小楼,杨科,付强,等. 大倾角厚煤层走向长壁分层开采再生顶板力学行为与稳定控制[J]. 煤炭科学技术,2023,51(6):1−10.

    CHI Xiaolou,YANG Ke,FU Qiang,et al. Mechanical behavior and stability control of regenerated roof in long wall stratified mining of thick steeply dipping coal seam[J]. Coal Science and Technology,2023,51(6):1−10.

    [13] 柴敬,杜文刚,张丁丁,等. 基于BOTDA技术感测的大倾角煤层顶板活动规律研究[J]. 岩石力学与工程学报,2019,38(9):1809−1818.

    CHAI Jing,DU Wengang,ZHANG Dingding,et al. Study on roof activity law in steeply inclined seams based on BOTDA sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(9):1809−1818.

    [14] 马守龙,南新科,张明,等. 深部大倾角不对称空间围岩结构工作面合理支架阻力研究[J]. 采矿与安全工程学报,2024,41(5):899−907.

    MA Shoulong,NAN Xinke,ZHANG Ming,et al. Reasonable resistance of supports in deep and steep longwall panels with asymmetric spatial surrounding rock[J]. Journal of Mining and Safety Engineering,2024,41(5):899−907.

    [15] 罗生虎,王同,伍永平,等. 大倾角煤层群长壁开采承载拱与间隔岩层采动应力演化特征[J]. 煤炭学报,2023,48(2):551−562.

    LUO Shenghu,WANG Tong,WU Yongping,et al. Evolution characteristics of mining stress of bearing arch and interval strata in longwall mining of steeply dipping coal seam groups[J]. Journal of China Coal Society,2023,48(2):551−562.

    [16] 朱开鹏,李志林,罗生虎,等. 大倾角煤层覆岩应力非对称传递时空演化特征[J]. 煤田地质与勘探,2024,52(10):129−140.

    ZHU Kaipeng,LI Zhilin,LUO Shenghu,et al. Spatiotemporal evolutionary characteristics of asymmetric stress transfer in overburden of steeply dipping coal seams[J]. Coal Geology & Exploration,2024,52(10):129−140.

    [17] 赵象卓,王春刚,周坤友,等. 大倾角特厚煤层半煤岩巷道失稳地质动力条件及支护优化[J]. 煤炭科学技术,2022,50(11):20−29.

    ZHAO Xiangzhuo,WANG Chungang,ZHOU Kunyou,et al. Geo-dynamic conditions instability and support optimization of semi coal-rock roadway in large inclined and extra thick coal seam[J]. Coal Science and Technology,2022,50(11):20−29.

    [18] 张进鹏,刘立民,刘传孝,等. 深部大倾角煤岩层巷道断面形状与耦合支护[J]. 中南大学学报(自然科学版),2021,52(11):4074−4087. doi: 10.11817/j.issn.1672-7207.2021.11.028

    ZHANG Jinpeng,LIU Limin,LIU Chuanxiao,et al. Cross-section shape and coupling support of deep and large-inclined coal and rock roadway[J]. Journal of Central South University (Science and Technology),2021,52(11):4074−4087. doi: 10.11817/j.issn.1672-7207.2021.11.028

    [19] 左建平,徐丞谊,孙运江,等. 采动岩层整体移动“类双曲线” 理论模型及验证:从二维“类双曲线” 到三维“类双曲面” 模型[J]. 煤炭学报,2024,49(4):1731−1751.

    ZUO Jianping,XU Chengyi,SUN Yunjiang,et al. Theoretical model and verification of“analogous hyperbola(hyperboloid)” for the overall movement of mining rock strata:From two-dimensional“analogous hyperbola” to three-dimensional“analogous hyperboloid” models[J]. Journal of China Coal Society,2024,49(4):1731−1751.

    [20] 冯锦艳,刘旭杭,于志全. 大倾角煤层采动裂隙演化规律[J]. 煤炭学报,2017,42(8):1971−1978.

    FENG Jinyan,LIU Xuhang,YU Zhiquan. Numerical simulation study on the mining-induced fracture evolution of steep coal seam[J]. Journal of China Coal Society,2017,42(8):1971−1978.

    [21] 李树刚,刘李东,赵鹏翔,等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术,2022,50(1):95−104.

    LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Analysis and application of fracture evolution law of overburden compacted area on fully-mechanized mining face under multiple factors[J]. Coal Science and Technology,2022,50(1):95−104.

    [22] 冉启灿,梁运培,邹全乐,等. 倾斜煤层群覆岩 “三场” 非对称特征及靶向抽采机制[J]. 煤炭科学技术,2024,52(4):177−192. doi: 10.12438/cst.2024-0068

    RAN Qican,LIANG Yunpei,ZOU Quanle,et al. Asymmetric characteristics of “three-field” in overburden of inclined coal seam groups and target extraction mechanism[J]. Coal Science and Technology,2024,52(4):177−192. doi: 10.12438/cst.2024-0068

    [23] 李树刚,刘李东,赵鹏翔,等. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术[J]. 煤炭科学技术,2023,51(8):105−115.

    LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Key technologies for extraction and identification of gas target area for pressure relief in inclined thick coal seam[J]. Coal Science and Technology,2023,51(8):105−115.

    [24] 胡博胜,伍永平,文虎,等. 大倾角工作面飞矸冲击破碎特征研究[J]. 煤炭科学技术,2024,52(10):1−10. doi: 10.12438/cst.2023-1322

    HU Bosheng,WU Yongping,WEN Hu,et al. Fractal characteristics and fracture mechanisms of flying gangue in longwall workings of the steeply dipping seam[J]. Coal Science and Technology,2024,52(10):1−10. doi: 10.12438/cst.2023-1322

    [25] 杨科,池小楼,刘钦节,等. 大倾角煤层综采工作面再生顶板与支架失稳机理[J]. 煤炭学报,2020,45(9):3045−3053.

    YANG Ke,CHI Xiaolou,LIU Qinjie,et al. Cataclastic regenerated roof and instability mechanism of support in fully mechanized mining face of steeply dipping seam[J]. Journal of China Coal Society,2020,45(9):3045−3053.

    [26] 罗生虎,田程阳,伍永平,等. 大倾角煤层综放开采顶煤破坏运移规律与支架稳定性分析[J]. 采矿与安全工程学报,2023,40(1):25−35,47.

    LUO Shenghu,TIAN Chengyang,WU Yongping,et al. Migration laws of top coal failure and stability analysis of support on fully mechanized top coal caving mining in steeply dipping coal seam[J]. Journal of Mining & Safety Engineering,2023,40(1):25−35,47.

    [27] 解盘石,黄宝发,伍永平,等. 大倾角煤层伪俯斜采场围岩运移与支架相互作用规律研究[J]. 中国矿业大学学报,2024,53(4):664−679.

    XIE Panshi,HUANG Baofa,WU Yongping,et al. Study on the interaction between strata movement and support in pitching oblique mining area of steeply dipping seam[J]. Journal of China University of Mining & Technology,2024,53(4):664−679.

    [28]

    MA L,WU Y,LEI Q C,et al. 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame[J]. Combustion and Flame,2016,166:66−75. doi: 10.1016/j.combustflame.2015.12.031

    [29] 王少锋,王德明,曹凯,等. 采空区及上覆岩层空隙率三维分布规律[J]. 中南大学学报(自然科学版),2014,45(3):833−839.

    WANG Shaofeng,WANG Deming,CAO Kai,et al. Distribution law of 3D fracture field of goaf and overlying strata[J]. Journal of Central South University (Science and Technology),2014,45(3):833−839.

    [30] 谢和平,于广明,杨伦,等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报,1999,18(2):147−151. doi: 10.3321/j.issn:1000-6915.1999.02.007

    XIE Heping,YU Guangming,YANG Lun,et al. Research on the fractal effects of crack network in overburden rock stratum[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(2):147−151. doi: 10.3321/j.issn:1000-6915.1999.02.007

图(14)  /  表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  14
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 网络出版日期:  2025-02-20
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回