高级检索

基于五维地震数据的深层煤层气微尺度裂缝预测技术研究及应用

张雷, 徐凤银, 童姜楠, 张枫, 王峰, 侯伟, 常益行, 侯淞译, 裴向兵, 曹振义, 陈彤, 李雪峰, 周科, 李永洲, 甄怀宾, 曾文婷

张 雷,徐凤银,童姜楠,等. 基于五维地震数据的深层煤层气微尺度裂缝预测技术研究及应用[J]. 煤炭科学技术,2025,53(3):186−198. DOI: 10.12438/cst.2025-0020
引用本文: 张 雷,徐凤银,童姜楠,等. 基于五维地震数据的深层煤层气微尺度裂缝预测技术研究及应用[J]. 煤炭科学技术,2025,53(3):186−198. DOI: 10.12438/cst.2025-0020
ZHANG Lei,XU Fengyin,TONG Jiangnan,et al. Research and application of micro-scale fracture prediction technology for deep coalbed methane based on five-dimensional seismic data[J]. Coal Science and Technology,2025,53(3):186−198. DOI: 10.12438/cst.2025-0020
Citation: ZHANG Lei,XU Fengyin,TONG Jiangnan,et al. Research and application of micro-scale fracture prediction technology for deep coalbed methane based on five-dimensional seismic data[J]. Coal Science and Technology,2025,53(3):186−198. DOI: 10.12438/cst.2025-0020

基于五维地震数据的深层煤层气微尺度裂缝预测技术研究及应用

基金项目: 国家自然科学基金资助项目(42272156);中国石油天然气股份有限公司“十四五”攻关性应用性资助项目(2023ZZ18-02)
详细信息
    作者简介:

    张雷: (1982—),男,内蒙古巴彦淖尔人,正高级工程师,博士。E-mail:zhanglei2010@petrochina.com.cn

    通讯作者:

    童姜楠: (1990—),男,陕西西安人,高级工程师,硕士。E-mail:tongjiangnan@petrochina.com.cn

  • 中图分类号: TD713

Research and application of micro-scale fracture prediction technology for deep coalbed methane based on five-dimensional seismic data

  • 摘要:

    鄂尔多斯盆地东缘大吉区块深层煤层气规模开发采用水平井+大规模体积压裂的过程中,在采用相似压裂工艺以及技术参数的条件下,部分井出现了压裂窜扰现象,极大地影响了压裂改造和产气效果。前期通过三维地震精细解释发现区块断层不发育,推测局部微尺度裂缝发育可能是水平井压裂发生窜扰的重要因素。在深层煤层气领域,以研究区深层8号煤为目的层,依托研究区“两宽一高”高品质三维地震资料,通过OVT(Offset Vector Tile)域处理获得了包含时间、空间(三维坐标)、偏移距(或炮检距)和方位角的五维地震数据,首次采用方位统计法开展了微尺度裂缝发育程度、方位和发育期次等方面的研究。结果表明:研究区微尺度裂缝整体较为发育,发育5个规模较大的裂缝带,南部相比北部微尺度裂缝发育程度更高;裂缝发育受控于区域2期构造活动,呈现出2组不同的平面展布方向,其中燕山期构造活动形成近东西向与北西向裂缝,喜山期构造活动形成近南北向与北东向裂缝。结合区域不同时期构造应力场、野外露头、成像测井、阵列声波测井等成果资料,验证了本次裂缝发育程度和方向研究成果的可靠性。应用上述微裂缝预测成果指导了后期研究区水平井压裂方案的优化和实施,窜扰比例明显下降,窜扰比例从2023年的14.58%大幅下降为5.23%,同时经统计2023年投产井平均日产气量为6.7×104 m3,2024年投产井平均日产气量为7.5×104 m3,表明压窜影响显著降低,开发效果持续向好。该预测方法可为相同地质条件区块深层煤层气微尺度裂缝预测提供重要借鉴。

    Abstract:

    During the large-scale development of deep coalbed methane in the Daji block on the eastern edge of Ordos Basin, using horizontal wells combined with large-scale volume fracturing, some wells experienced fracturing interference under similar fracturing techniques and technical parameters, significantly affecting the fracturing transformation and gas production outcomes. Through precise 3D seismic interpretation in the early stage, it was found that faults were not developed in the block, suggesting that the development of local micro-scale fractures might be a significant factor causing fracturing interference in horizontal wells. Focusing on the deep No. 8 coal seam in the study area, we rely on high-quality 3D seismic data characterized by “two wide and one high” features. Through OVT (Offset Vector Tile)domain processing, we obtained five-dimensional seismic data encompassing time, space (3D coordinates), offset (or source-receiver distance), and azimuth. For the first time, we employed azimuthal statistics to investigate the development degree, orientation, and developmental stages of micro-scale fractures. The research findings indicate that micro-scale fractures are generally well-developed in the study area, with five major fracture zones observed, and the degree of micro-scale fracture development is higher in the southern part compared to the northern part. The development of fractures is controlled by two phases of regional tectonic activity, exhibiting two distinct planar distribution directions. Specifically, fractures oriented in the near EW and NW directions were formed during the Yanshanian tectonic activity, while fractures oriented in the near SN and NE directions were formed during the Himalayan tectonic activity. By integrating regional tectonic stress fields from different periods, field outcrops, imaging logging, and array sonic logging data, we verified the reliability of our research findings on the degree and direction of fracture development. Applying these micro-fracture prediction results guided the optimization and implementation of the horizontal well fracturing plan in the study area in later stages, leading to a significant reduction in the interference ratio from 14.58% in 2023 to 5.23%. Meanwhile, statistics show that the average daily gas production for wells put into production in 2023 was 6.7×104 m3, and for wells put into production in 2024, it was 7.5×104 m3, indicating a significant reduction in fracturing interference and a continuous improvement in development effectiveness. This prediction method can provide valuable insights for predicting micro-scale fractures in deep coalbed methane blocks with similar geological conditions.

  • 图  1   大吉区块过研究区东西向地震剖面

    Figure  1.   East-west seismic profile across the study area in the Daji block

    图  2   研究区DJ17-1向5井8号煤沉积综合柱状图及井震联合标定图

    Figure  2.   Comprehensive histogram of sedimentation of No. 8 coal seam in Well DJ17-1 in the study area and joint calibration diagram of well and seismic data

    图  3   五维地震数据裂缝预测技术流程

    Figure  3.   Flowchart of fracture prediction technology using five-dimensional seismic data

    图  4   研究区OVT道集优化前后对比图

    Figure  4.   Comparison of OVT trace set optimization before and after in the study area

    图  5   研究区共偏移距道集剖面

    Figure  5.   Section of the total offset trace gather in the study area

    图  6   方位统计法各向异性强度综合分析图

    Figure  6.   Comprehensive analysis diagram of anisotropy intensity using the azimuth statistics method

    图  7   燕山、喜山期构造缝与最大主应力优势方位系图

    Figure  7.   Diagram illustrating the structural fractures and the dominant orientation of the maximum principal stress during Yanshan and Himalayan periods

    图  8   晋西挠褶带成家庄柳林太原组砂岩野外露头

    Figure  8.   Field outcrop of Chengjiazhuang and Liulin Taiyuan Formation sandstone in the Jinxi fold belt

    图  9   JS13-6井台1井压裂选段

    Figure  9.   Comprehensive analysis diagram of cluster selection for fracturing section of Well JS13-6 in Wellbay 1

    图  10   裂缝预测成果运用前后压窜比例及投产井平均日产气量统计

    Figure  10.   Statistical chart of the proportion of pressure breakthrough (blue) and the recovery degree of horizontal wells (red) before and after the application of fracture prediction results

  • [1] 张雷,边利恒,侯伟,等. 深部煤储层孔隙结构特征及其勘探意义——以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 石油学报,2023,44(11):1867−1878. doi: 10.7623/syxb202311009

    ZHANG Lei,BIAN Liheng,HOU Wei,et al. Pore structure characteristics of deep coal reservoirs and their exploration significance:a case study of the Daning-Jixian block on the eastern edge of the Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1867−1878. doi: 10.7623/syxb202311009

    [2] 李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800

    LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(3):165−172. doi: 10.12363/issn.1001-1986.21.12.0800

    [3] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1−14.

    ZOU Caineng,ZHAO Qun,CONG Lianzhu,et al. Development progress,potential and prospect of shale gas in China[J]. Natural Gas Industry,2021,41(1):1−14.

    [4] 刘德华,肖佳林,关富佳. 页岩气开发技术现状及研究方向[J]. 石油天然气学报,2011,33(1):119−123,169. doi: 10.3969/j.issn.1000-9752.2011.01.027

    LIU Dehua,XIAO Jialin,GUAN Fujia. Current situation and research direction of shale gas development[J]. Journal of Oil and Gas Technology,2011,33(1):119−123,169. doi: 10.3969/j.issn.1000-9752.2011.01.027

    [5] 董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(S1):107−114. doi: 10.7623/syxb2012S1013

    DONG Dazhong,ZOU Caineng,YANG Hua,et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica,2012,33(S1):107−114. doi: 10.7623/syxb2012S1013

    [6]

    MACBETH C,LI X Y. AVD:An emerging new marine technology for reservoir characterization:Acquisition and application[J]. Geophysics,1999,64(4):1153−1159. doi: 10.1190/1.1444622

    [7] 印兴耀,马正乾,向伟,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ):裂缝储层岩石物理理论[J]. 石油物探,2022,61(2):183−204. doi: 10.3969/j.issn.1000-1441.2022.02.001

    YIN Xingyao,MA Zhengqian,XIANG Wei,et al. Review of fracture prediction driven by the seismic rock physics theory(Ⅰ):Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum,2022,61(2):183−204. doi: 10.3969/j.issn.1000-1441.2022.02.001

    [8] 印兴耀,马正乾,宗兆云,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ):五维地震裂缝预测技术[J]. 石油物探,2022,61(3):373−391. doi: 10.3969/j.issn.1000-1441.2022.03.001

    YIN Xingyao,MA Zhengqian,ZONG Zhaoyun,et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ):Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum,2022,61(3):373−391. doi: 10.3969/j.issn.1000-1441.2022.03.001

    [9] 刘俊州,韩磊,时磊,等. 致密砂岩储层多尺度裂缝地震预测技术:以川西XC 地区为例[J]. 石油与天然气地质,2021,42(3):747−754. doi: 10.11743/ogg20210319

    LIU Junzhou,HAN Lei,SHI Lei,et al. Seismic prediction of tight sandstone reservoir fractures in XC area western Sichuan Basin[J]. Oil & Gas Geology,2021,42(3):747−754. doi: 10.11743/ogg20210319

    [10] 徐丽萍,杨勤勇. 多波多分量地震技术发展与展望[J]. 勘探地球物理进展,2002,25(3):47−52.

    XU Liping,YANG Qinyong. Development and prospect of multi wave and multi component seismic technology[J]. Advances in Exploration Geophysics,2002,25(3):47−52.

    [11] 王光杰,陈东,赵爱华,等. 多波多分量地震探测技术[J]. 地球物理学进展,2000,15(1):54−60. doi: 10.3969/j.issn.1004-2903.2000.01.004

    WANG Guangjie,CHEN Dong,ZHAO Aihua,et al. Multi-component seismic exploration[J]. Progress in Geophysics,2000,15(1):54−60. doi: 10.3969/j.issn.1004-2903.2000.01.004

    [12] 杨柳,沈亚,管俊亚,等. 多维数据裂缝检测技术探索及应用[J]. 石油地球物理勘探,2016,51(S1):58−63.

    YANG Liu,SHEN Ya,GUAN Junya,et al. Fracture detection based on multi-dimension data[J]. Oil Geophysical Prospecting,2016,51(S1):58−63.

    [13] 周路,周江辉,代瑞雪,等. OVT 域五维地震属性在双鱼石地区栖霞组裂缝预测中的应用[J]. 地学前缘,2023,30(1):213−228.

    ZHOU Lu,ZHOU Jianghui,DAI Ruixue,et al. Application of 5-dimensional seismic attributes in OVT domain in fracture prediction of Qixia Formation in shuangyushiarea[J]. Earth Science Frontiers,2023,30(1):213−228.

    [14] 陈志刚,李丰,王霞,等. 叠前各向异性强度属性在乍得Bongor盆地P潜山 裂缝性储层预测中的应用[J]. 地球物理学报,2018,61(11):4625−4634. doi: 10.6038/cjg2018L0640

    CHEN Zhigang,LI Feng,WANG Xia,et al. Application of prestack anisotropic intensity attribute in prediction of P Buried hill fractured reservoir in Bongor Basin,Chad[J]. Chinese Journal of Geophysics,2018,61(11):4625−4634. doi: 10.6038/cjg2018L0640

    [15]

    XU X Y,WANG W F,LI X S,et al. Sequence control factors and hydrocarbon accumulation pattern of Es3 in Kenxi slope zone of Bohai Bay basin[J]. Journal of Coastal Research,2019,94:91−95 doi: 10.2112/SI94-017.1

    [16] 戴俊生,冯阵东,刘海磊,等. 几种储层裂缝评价方法的 适用条件分析[J]. 地球物理学进展,2011,26(4):1234−1242. doi: 10.3969/j.issn.1004-2903.2011.04.014

    DAI Junsheng,FENG Zhendong,LIU Hailei,et al. Analysis for the applicable conditions of several methods of reservoir fracture evaluation[J]. Progress in Geophysics,2011,26(4):1234−1242. doi: 10.3969/j.issn.1004-2903.2011.04.014

    [17] 曾勇,屈永华,宋金宝. 煤层裂隙系统及其对煤层气产出的影响[J]. 江苏地质,2000,24(2):91−94.

    ZENG Yong,QU Yonghua,SONG Jingbao. The coal seam system of fissures and their influence on the occurrence of coal Seams[J]. Jiangsu Geology,2000,24(2):91−94.

    [18] 徐凤银,甄怀宾,李曙光,等. 深部煤层气储层改造技术迭代升级历史与发展方向:以鄂尔多斯盆地东缘大吉区块为例[J/OL]. 煤炭科学技术,2025:1−27[2025−01−23]. https://link.cnki.net/urlid/11.2402.TD.20250123.1055.002.

    XU Fengyin,ZHEN Huaibin,LI Shuguang,et al. History and development direction of iterative upgrading of deep coalbed methane reservoir reconstruction technology:Taking Daji Block in the eastern edge of the Ordos Basin as an example [J/OL]. Journal of Coal Science and Technology,2025:1−27[2025−01−23]. https://link.cnki.net/urlid/11.2402.TD.20250123.1055.002.

    [19] 巢海燕,李泽,甄怀宾,等. 大宁-吉县区块深部煤层气水平井压裂干扰行为及其机理 [J/OL]. 煤炭科学技术,2024:1−16 [2024−12−06]. https://link.cnki.net/urlid/11.2402.TD.20241206.1017.00.

    CHAO Haiyan,LI Ze,ZHEN Huaibin,et al. Interference behavior and mechanism of deep coalbed methane horizontal well fracturing in Daning-Jixian block [J/OL]. Journal of Coal Science and Technology,2024:1−16 [2024−12−06]. https://link.cnki.net/urlid/11.2402.TD.20241206.1017.00.

    [20] 王文东,喻文锋,高攀,等. 页岩气井间压裂窜扰机理及影响规律[J]. 天然气工业,2024,44(1):128−138. doi: 10.3787/j.issn.1000-0976.2024.01.012

    WANG Wendong,YU Wenfeng,GAO Pan,et al. Mechanism and influence law of inter-well fracturing interference in shale gas wells[J]. Natural Gas Industry,2024,44(1):128−138. doi: 10.3787/j.issn.1000-0976.2024.01.012

    [21] 段贵府,牟建业,闫骁伦,等. 川南深层页岩气水平井压裂窜扰主控因素及诱导机制[J]. 中国石油勘探,2024,29(3):146−158. doi: 10.3969/j.issn.1672-7703.2024.03.013

    DUAN Guifu,MOU Jianye,YAN Xiaolun,et al. Key controlling factors and inducement mechanism of fracture-driven interactions(FDIs) between deep shale gas horizontal wells in southern Sichuan Basin[J]. China Petroleum Exploration,2024,29(3):146−158. doi: 10.3969/j.issn.1672-7703.2024.03.013

    [22] 王霞,李丰,张延庆,等. 五维地震数据规则化及其在裂缝表征中的应用[J]. 石油地球物理勘探,2019,54(4):844−852.

    WANG Xia,LI Feng,ZHANG Yanqing,et al. 5D seismic data regularization and application in fracture characterization[J]. Oil Geophysical Prospecting,2019,54(4):844−852.

    [23] 魏欣伟,薛姣,罗霞. 基于OVT域地震数据的叠前AVOA裂缝密度反演[J]. 石油物探,2021,60(5):816−825. doi: 10.3969/j.issn.1000-1441.2021.05.012

    WEI Xinwei,XUE Jiao,LUO Xia. Fracture density estimation using an amplitude-versus-offset-and-azimuth inversion based on prestack seismic data in the offset vector tile domain[J]. Geophysical Prospecting for Petroleum,2021,60(5):816−825. doi: 10.3969/j.issn.1000-1441.2021.05.012

    [24] 苑书金,于常青. 各向异性介质中的弹性阻抗及其反演[J]. 地球物理学进展,2006,21(2):520−523. doi: 10.3969/j.issn.1004-2903.2006.02.028

    YUAN Shujin,YU Changqing. Elastic impedance and seismic inversion in anisotropic media[J]. Progress in Geophysics,2006,21(2):520−523. doi: 10.3969/j.issn.1004-2903.2006.02.028

    [25] 李爱山,印兴耀,张繁昌,等. VTI介质中的弹性阻抗与参数提取[J]. 地球物理学进展,2008,23(6):1878−1885.

    LI Aishan,YIN Xingyao,ZHANG Fanchang,et al. Elastic impedance in VTI media and parameter extraction[J]. Progress in Geophysics,2008,23(6):1878−1885.

    [26] 陈怀震,印兴耀,张金强,等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报,2014,57(10):3431−3441. doi: 10.6038/cjg20141029

    CHEN Huaizhen,YIN Xingyao,ZHANG Jinqiang,et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics,2014,57(10):3431−3441. doi: 10.6038/cjg20141029

    [27] 罗辑,吴国忱,宗兆云,等. 基于方位弹性阻抗反演的裂缝型储层流体检测方法[J]. 石油地球物理勘探,2015,50(6):1154−1165.

    LUO Ji,WU Guochen,ZONG Zhaoyun,et al. Fluid identifica-tion in fractured reservoirs based on azimuthal elastic impedance inversion[J]. Oil Geophysical Prospecting,2015,50(6):1154−1165.

    [28]

    SENA A G. Seismic traveltime equations for azimuthally anisotropic and isotropic media:Estimation of interval elastic properties[J]. Geophysics,1991,56(12):2090−2101. doi: 10.1190/1.1443021

    [29]

    WINKLER K W. Laboratory observations of azimuthal velocity variations caused by borehole stress concentrations[C]//SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists,1994:1133−1135.

    [30]

    SENGUPTA M K. Sensitivity analysis of amplitude versus offset (AVO) method[C]//SEG Technical Program Expanded Abstracts 1987. Society of Exploration Geophysicists,1987:1679.

    [31] 郝守玲,赵群. 裂缝介质对P波方位各向异性特征的影响——物理模型研究[J]. 勘探地球物理进展,2004,27(3):6.

    HAO Shouling,ZHAO Qun. The effect of fractured medium on P wave azimuthal anisotorpy:A Physical model study[J]. Progress in Exploration Geophysics,2004,27(3):189−194.

    [32] 王霞,张延庆,李丰,等. 方位统计法各向异性表征技术研究[C]//中国石油学会(CPS),国际勘探地球物理学家学会(SEG). CPS/SEG北京2018国际地球物理会议暨展览电子论文集. 北京:中国学术期刊(光盘版)电子杂志社,2018:154−157.
    [33] 童姜楠,孙雄伟,王峰,等. 智能相控波形指示反演技术及其在煤系地层薄砂岩预测中的应用[J]. 石油物探,2025,64(1):129−137 . doi: 10.12431/issn.1000-1441.2025.64.01.010

    TONG Jiangnan,SUN Xiongwei,WANG Feng,et al. Intelligent phased waveform indication inversion technology and its application in predicting thin sandstone in coal-bearing strata[J]. Petroleum Geophysical Prospecting,2025,64(1):129−137. doi: 10.12431/issn.1000-1441.2025.64.01.010

    [34] 印兴耀,张洪学,宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001

    YIN Xingyao,ZHANG Hongxue,ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001

    [35] 周健,陈勉,金衍,等. 压裂中天然裂缝剪切破坏机制研究[J]. 岩石力学与工程学报,2008,27(S1):2637−2641.

    ZHOU Jian,CHEN Mian,JIN Yan,et al. Mechanism study of shearing slippage damage of natural fracture in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2637−2641.

    [36] 侯振坤,杨春和,王磊,等. 大尺寸真三轴页岩水平井 水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407−414.

    HOU Zhenkun,YANG Chunhe,WANG Lei,et al. Physical simulation experiment and fracture extension law analysis of hydraulic fracturing in large-scale true triaxial shale horizontal wells[J]. Rock and Soil Mechanics,2016,37(2):407−414.

    [37] 黄沛铭. 库车坳陷博孜−大北区带超深致密砂岩储层裂缝特征与定量预测[D]. 徐州:中国矿业大学,2023.

    HUANG Peiming. Fracture characteristics and quantitative prediction of ultra-deep tight sandstone reservoirs in the Bozi-Dabei zone of the Kuqa Depression[D]. Xuzhou:China University of Mining and Technology,2023.

    [38] 孟庆修. 塔北隆起三道桥古潜山白云岩储层裂缝分布规律与主控 因素研究[D]. 北京:中国地质大学,2023.

    MENG Qingxiu. Study on the distribution pattern and main controlling factors of fractures in dolomite reservoirs of the Sandaoqiao Buried Hill in the Tabei Uplift[D]. Beijing:China University of Geosciences,2023.

    [39] 李雨桐,杨西燕,范存辉. 富有机质页岩天然裂缝表征研究进展[J]. 石油地质与工程,2023,37(1):32−38. doi: 10.3969/j.issn.1673-8217.2023.01.006

    LI Yutong,YANG Xiyan,FAN Cunhui. Progress in characterization of natural fractures in organic-rich shale[J]. Petroleum Geology and Engineering,2023,37(1):32−38. doi: 10.3969/j.issn.1673-8217.2023.01.006

    [40] 杨秀春,屈争辉,姜波,等. 山西大宁−吉县地区中新生代构造特征及其演化[J]. 中国煤炭地质,2013,25(5):1−6. doi: 10.3969/j.issn.1674-1803.2013.05.01

    YANG Xiuchun,QU Zhenghui,JIANG Bo,et al. Mesozoic-Cenozoic structural features and their evolution in Daning-Jixian area,Shanxi[J]. Coal Geology of China,2013,25(5):1−6. doi: 10.3969/j.issn.1674-1803.2013.05.01

图(10)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  2
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 网络出版日期:  2025-03-19
  • 刊出日期:  2025-03-24

目录

    /

    返回文章
    返回