高级检索

中国煤层气商业开发典型案例及启示

李勇, 熊先钺, 徐立富, 徐凤银, 张伟祺, 谢金峰, 李昀

李 勇,熊先钺,徐立富,等. 中国煤层气商业开发典型案例及启示[J]. 煤炭科学技术,2025,53(3):31−46. DOI: 10.12438/cst.2025-0109
引用本文: 李 勇,熊先钺,徐立富,等. 中国煤层气商业开发典型案例及启示[J]. 煤炭科学技术,2025,53(3):31−46. DOI: 10.12438/cst.2025-0109
LI Yong,XIONG Xianyue,XU Lifu,et al. Inspirations of typical commercially developed coalbed methane cases in China[J]. Coal Science and Technology,2025,53(3):31−46. DOI: 10.12438/cst.2025-0109
Citation: LI Yong,XIONG Xianyue,XU Lifu,et al. Inspirations of typical commercially developed coalbed methane cases in China[J]. Coal Science and Technology,2025,53(3):31−46. DOI: 10.12438/cst.2025-0109

中国煤层气商业开发典型案例及启示

基金项目: 国家自然科学基金资助项目(42072194)
详细信息
    作者简介:

    李勇: (1988—),男,山东安丘人,教授,博士生导师。 E-mail:liyong@cumtb.edu.cn

    通讯作者:

    徐立富: (1998—),男,河北承德人,硕士研究生。 E-mail:xulifu98@163.com

  • 中图分类号: P618.11

Inspirations of typical commercially developed coalbed methane cases in China

  • 摘要:

    我国煤层气资源具有地域分布广、时域跨度大、品位差异大、地质条件复杂等特征,建立适合差异地质特征的煤层气开发体系能够降低开采难度,推动产业发展。通过系统总结分析30多年来我国煤层气商业开发典型案例,包括潘庄浅部高煤阶、保德浅部中低煤阶、延川南中深煤层、大宁−吉县深煤层和潘河多薄煤层的地面气井开发,以及两淮、晋城和松藻矿区的井下气体(瓦斯)抽采,取得如下主要认识:① 潘庄、潘河浅部高煤阶含气量高、渗透率较高、水动力较弱,发育向斜−水文控气模式,形成浅部高煤阶单/多支水平井单层开发模式;针对薄−超薄煤层多层综合含气特征,形成直井多组合立体开发模式;② 保德中低煤阶含气饱和度高、构造稳定且存在生物气补给,发育正向构造−水文控气模式,形成了浅部中低煤阶大平台丛式井合层开发模式;③ 延川南煤层埋藏相对较深、低孔低渗低压、水动力弱,形成中深煤层有效支撑−精细排采开发模式;④ 大宁−吉县西部煤层埋深大、低孔低渗、游离气含量高、水动力弱,形成了深煤层体积压裂−水平井开发模式;⑤ 两淮矿区发育松软低透气性高瓦斯煤层群,形成中远距离保护层卸压井上下立体开发技术;晋城矿区发育高透气性高瓦斯原生结构煤,形成中厚硬煤层四区联动井上下立体开发技术;松藻矿区发育松软低渗突出煤层群,形成了近距离三区配套三超前增透开发技术。我国煤层气开发突破了深度极限、厚度下限、单类型气体开发和复杂构造背景局限,形成了中国特色煤层气开发地质理论认识。西北和东北地区中低煤阶煤层气、南方复杂构造区煤层气、大型盆地腹部深−超深煤层气开发潜力仍有待进一步挖掘。我国煤层气开发在不同埋深、煤阶、厚度和构造背景下均实现了显著突破,有望推动和引领全球煤层气产业发展新格局。

    Abstract:

    The coalbed methane resources in China are characterized by wide geographical distribution, large time span, significant quality differences and complex coal-forming conditions, thus establishing a coalbed methane development system suitable for geological characteristics can greatly reduce the difficulty of mining and promote industrial development. Through the systematic summary of typical successful cases of commercial development of coalbed methane in China over the past 30 years, including shallow high rank coalbed methane in Panzhuang, shallow medium-low rank coalbed methane in Baode, medium deep coalbed methane in South Yanchuan, deep coalbed methane in Daning-Jixian, thin coalbed methane in Panhe, coal and coalbed methane co-mining in Huainan and Huaibei, gas drainage in four regions linkage in Jincheng and gas drainage in three regions linkage in Songzao, the main understanding is as follows:① The shallow high rank coal in Panzhuang and Panhe have high gas content, high permeability, and weak hydrodynamics under the synclinal-hydrological gas control model, forming a single-layer development model of single/multiple horizontal wells for shallow high rank coal. The vertical well multi combination three-dimensional development model is formed based on the comprehensive gas bearing characteristics of thin ultra-thin coal seams in multiple layers. ② The low rank coal in Baode has high gas saturation, stable structure, and the presence of biogas supply under the positive structure-hydrological gas control model, forming a shallow low rank coal big platform cluster well development model. ③ The coal seams in southern Yanchuan are relatively buried deep, with low porosity, low permeability, low pressure, and weak hydrodynamics, forming an effective support- fine drainage development model for medium-deep coal seam. ④ The coal seam located in the west of Daning-Jixian has a deep burial depth, low porosity and permeability, high free gas content, and weak hydrodynamics, forming a deep coal volume fracturing horizontal well development model. ⑤ The Huainan and Huaibei mining area have developed a group of soft, low-permeability, and high gas coal seams, forming a development model of medium-long distance “pressure relief of mining protective layer ground and underground three-dimensional drainage”; The Jincheng mining area has developed primary structure coal seam wit high permeability and gas content, forming a development model of “four zone linkage ground and underground three-dimensional drainage”; The Songzao mining area has developed a group of soft and low-permeability prominent coal seams, forming a development model of “three zone supporting three super-advanced enhanced permeability drainage”. The development of coalbed methane in China has basically realized the breakthrough of depth limit, thickness lower limit, single type gas reservoir development, and complex structural backgrounds, forming a geological theoretical understanding of coalbed methane development with Chinese characteristics. The potential for coalbed methane development in the northwest and northeast middle-low rank coal seams, complex structural areas in the south, and deep-ultra deep coalbed methane in large basin abdomen still needs to be further explored. Significant breakthroughs have been achieved in the development of coalbed methane in China under different burial depths, coal ranks, thicknesses and tectonic settings. which is expected to promote and lead a new pattern of global coalbed methane industry development.

  • 我国“相对富煤、贫油、少气”,煤层气产业高质量发展具有重大战略意义[1-2]。作为国家“十一五”以来三期国家油气重大专项和2019年国家能源局油气行业增储上产“七年行动计划”的重要组成,持续受到国家、政府、行业和企业重点关注。2024年颁布的《中华人民共和国能源法》,提及要加大石油和天然气资源勘探开发力度,鼓励规模化开发煤层气等非常规油气资源。煤层气是与煤炭共生的重要资源,有效规模开发对于煤矿安全生产、清洁能源供应和改善生态环境具有重要价值[3-4]

    经过30多年探索与实践,我国煤层气开发在不同盆地/地区、不同煤阶、不同深度上取得了重大突破,包括有:① 2003年阜新刘家区煤矿采用地面预抽实现日供气2×104 m3,沁南枣园煤层气项目通过15口试验井实现日供气2×104 m3,初步实现了小规模商业化生产[5-6];② 2005—2006年潘河和潘庄项目相继投产开发,实施6口水平井,实现单井最高日产气10.5×104 m3,平均日产达5×104 m3,成为首个高煤阶煤层气商业化生产示范区基地[7];③ 2013年保德区块煤层气取得重大突破,探明中−低阶煤层气储量183.63×108 m3,完成7.7×108 m3产能建设,成为我国首个中低煤阶煤层气商业化开发代表[8];④ 2015年延川南区块完成规模建产,通过地质−工程一体化工艺实现日产气超110×104 m3,成为首个实现商业化开发的中深部煤层气田[9-10];⑤ 2016年四川盆地南部筠连山地煤层气田年产量超过1×108 m3,成为首个南方具有商业价值的煤层气产业基地[11];⑥ “十三五”期间,我国不断完善煤矿区煤与煤层气协调开采技术,形成两淮模式、晋城模式和松藻模式[12-13];⑦ 2021年大宁−吉县水平井吉深 6−7平01井初期日产气10.1×104 m3,在2024年底实现区块深部煤层气日产气超600×104 m3,引领我国深层煤层气开发迈入新台阶[14-15];⑧ 2022年以来,新疆在准噶尔盆地南缘等实现煤层气年产量0.8×108 m3,带动西北地区中低煤阶煤层气开发[16];⑨ 2023年潘河区块多薄煤层气成功规模建产,成为首个薄煤层商业化生产基地[17]。2021年前后,我国煤层气形成了“2+3+n”煤层气开发格局,以沁水盆地南部和鄂尔多斯盆地东缘为核心开发,以准噶尔盆地、二连盆地和黔西−滇东为接替开发,以其他地区作为勘探有利区。

    2023年全国新增探明煤层气地质储量3 179.3×108 m3,历年累计探明10 998.3×108 m3,储量增长率40.7%,基本改变了资源动用率低的难题。随着鄂尔多斯盆地深部煤层气的规模效益开发,煤层气可能在近年形成“两超多强”格局,即鄂尔多斯盆地东缘和沁水盆地南部作为全国煤层气产量主要贡献者,四川盆地高煤阶煤层气、准噶尔盆地中低煤阶煤层气和二连盆地低煤阶煤层气等作为支撑。随着全国深部煤层气勘探开发持续推进,深部煤层气在全国煤层气产量占比迅速增加,从而可能形成“一超多强”格局,即鄂尔多斯盆地深部煤层气成为全国煤层气产量主要贡献者。

    综合来看,我国煤层气地域分布广、时域跨度大、品位差异大、地质条件复杂、储层非均质性强,2 000 m以浅的煤层气资源90%均分布在地质构造复杂区[18],2 000 m以深煤层气在2019年以来取得重大勘探突破,在大宁−吉县区块建成了我国首个百万吨深部煤层气(煤岩气)田。但是我国煤层气产业整体总体处于初步阶段,亟待建立适合于我国地质特征的煤层气开发技术体系。本文通过总结我国煤层气商业开发典型区块的储层发育特征、富集成藏模式和关键开发技术,以期为我国煤层气大规模勘探开发提供理论和技术支持。

    潘庄区块是我国首个进入商业生产的煤层气对外合作项目基地,1992年开展主力煤层勘探评价工作,2001年提交3号煤和15号煤探明地质储量;2006—2007年引进国外先进技术对3号煤试验实施6口多分支水平井,最高日产气10.5×104 m3,创造了当时煤层气产量最高纪录[7];2012—2016年主力煤层全面生产,完成5×108 m3规模建产;2017—2019年进行15号煤接替开发,投产单分支水平井180余口,提高产量60%;2019年开始进行薄煤层评价和开发,试采单井日产气超过5 000 m3。2023年产气量超过14×108 m3,历年累计产气量84.8×108 m3,对我国煤层气产量贡献巨大(图1)。

    图  1  我国典型煤层气开发区块煤层气产量变化
    Figure  1.  Coalbed methane production changes in typical coalbed methane development blocks in China

    潘庄区块位于沁水盆地南部,构造相对简单,断层不发育,背斜和向斜相间出现,整体为单斜构造[7]。区内主采煤层为山西组3号煤和太原组15号煤,埋深介于116~850 m,煤层气富集高产的主要地质要素包括[19-21]:① 煤层分布稳定厚度较大(平均6.3和4.1 m),镜质组含量高(平均73%),灰分产率低(7.7%~16.5%),提供了良好的生烃物质基础;② 煤层热演化程度高(镜质体反射率Ro=3.49%~3.65%),含气量高(15~30 m3/t),顶板泥岩厚度大且水动力场较弱的有利成藏条件;③ 煤体结构较好,以原生-碎裂结构为主,割理裂隙发育(裂缝密度(7~26)条/dm),渗透率较高(平均1.84×10−3 μm2),提供了良好的渗流通道。基于高热力场、低应力场、弱水动力场的综合作用,形成了向斜−水文综合控气模式[21-23],高变质程度煤岩在良好盖层和水力封闭条件下,在煤层中保存滞留高含气量,相对稳定的区域构造和较高渗透率是潘庄区块煤层气成功开发的重要因素(图2 a)。

    图  2  潘庄区块煤层气成藏模式和关键技术[28-29]
    Figure  2.  Coalbed methane enrichment model and key technologies in Panzhuang block [28-29]

    针对区块含气量高、渗透率较高、厚度稳定的浅部高煤阶开发条件,形成了单分支水平井适配关键技术:① 采用近钻头技术,建立了钻前资料收集、钻中轨迹调整、钻后评价及井位优化四大随钻体系,保证了水平井煤层钻遇率;② 形成3号煤多分支水平井和15号煤L型水平井开发技术,特别形成了强携带煤粉、减阻、扶正和防磨的新型L型井配套技术(图2 b),15号煤L型井平均产气量超过104 m3[24];③ 采用有杆泵排采工艺,制定“522”排采制度。将生产周期划分为排水、解吸、上产、稳产和衰减5个阶段,重点管理流压和套压、固相控制,实现井底压力和产气量的平衡和稳定[25]。潘庄区块煤层气形成单层主采、层间接替、薄煤层合采逐步递进的全煤系多层煤层气立体开发,成为我国高技术产业化示范工程,对于沁水盆地南部郑庄、樊庄和柿庄等其他区块高煤阶煤层气开发有重要的推动作用[26-27]

    保德区块位于鄂尔多斯盆地东缘晋西挠褶带北段,构造相对简单,断层和褶皱不发育,整体为西倾的单斜[30]。区内山西组4+5号煤和太原组8+9号煤分布连续,埋深300~1 180 m,由于热演化程度(Ro=0.70%~0.98%)较低,含气量较低,介于4~12 m3/t,但煤层累计厚度(10~30 m)大,生物气与热成因气共存,含气饱和度达90%以上;煤体结构以原生结构为主,具有较高的渗透率,介于(0.1~12.0)×10−3 μm2,平均约4.0×10−3 μm2;整体水动力较弱,矿化度介于1 000~15 000 mg/L,处于径流区、弱径流区到滞留区的过渡带[30-32]。与潘庄区块煤层气成藏模式不同,保德区块主体为正向构造−水文控气模式,以区块北部单缓斜坡正向构造带为富集高产区(图3 a),整体而言煤层累计厚度大、高渗透率是研究区煤层气成功开发的重要因素[33-34]

    图  3  保德区块煤层气成藏模式和开发指标评价[30]
    Figure  3.  Coalbed methane enrichment mode and evaluation of development indicators in Baode block [30]

    针对区块煤层累计厚度大、含气量低、渗透率高的浅部中低煤阶开发条件,形成了全生命周期动静态气藏精细描述−产能评价−开发指标预测方法[8,30-31]:① 结合地震、测井、试井、排采和测试等多项数据,实现了多维度、长周期、多要素、高精度、全方位煤层气藏精细化描述和产能评价控制因素(图3b、图3c),精确评价地质−工程双甜点区;② 通过Arps递减、预测模型、现代产量递减分析和数值模拟等多种方法,验证预测模型的准确性,进一步预测采收率等开发指标参数(图3 d);③ 根据不同地质单元内预测采收率,进一步完善地质和开发方案,如构造上倾处采用L型水平井开发单煤层、构造下倾处采用丛式井进行合采、“双控制逐级排采法”为核心的箱型排采模式;同时在压降连通区实施一区一策,非连通区一井一策,解决了煤层气上产难和连续性差的问题。上述技术体系在北部杨家湾鼻隆富集区成功实施,有效提高了煤层气产量,至今保持5×108 m3以上产能建设10 a,成为我国中低煤阶煤层气商业化生产典型。

    潘河区块原与潘庄区块同属一个煤层气勘探区,是我国第1个煤层气产业化示范工程项目基地,自2005年开始一期先导试验建设,2009年全面投产205口直井开发3号煤,2012年高峰产气62×104 m3;2017年投产83口水平井开发15号煤,保证稳产2×108 m3;2023年薄煤层气全面开发,是我国首个薄煤层气大规模开发项目,标志着我国薄煤层气开发取得新突破(图2图4[26]

    图  4  潘河区块多层系立体动用产量接替情况
    Figure  4.  Production succession situation of multi-layered three-dimensional utilization in Panhe block

    该区块3号煤和15号煤储层特征与潘庄相似,薄煤层包括5~9号和11~13号共8层,单层平均厚度介于0.42~1.25 m,累计厚度介于2.66~7.66 m,渗透率介于(0.2~2.8)×10−3 μm2,含气量平均为16 m3/t,储层压力和解吸压力相近,发育多薄煤层叠置封盖立体控气模式,为合采提供了储层条件(表1[17]

    表  1  潘河区块薄煤层储层特征和压裂方案[17]
    Table  1.  Characteristics and fracturing scheme of thin coal seam reservoirs in Panhe block[17]
    煤层 厚度/m 间距/m Ro/% 含气量/ (m3·t−1 渗透率/10−3 μm2 顶板岩性 压裂方案
    5 0.70 12.58 3.77 12.5 石灰岩(厚度<1 m) 5号与3号煤平均间距为 11.90 m,
    采用投球分层压裂
    6 0.42 12.58 3.80 13.1 0.2 石灰岩(厚度约1 m)
    7 0.78 21.63 3.80 15.7 1.5 泥岩、粉砂质泥岩 采用大规模整体压裂,使缝高
    贯穿各煤层及中间隔层
    8 0.62 21.63 3.89 13.4 1.6 泥岩、粉砂质泥岩
    9 1.25 21.63 3.91 16.5 2.8 泥岩、粉砂质泥岩
    11 0.62 21.63 4.01 16.3 石灰岩或泥岩
    12 0.55 7.89 3.74 16.1 0.4 砂质泥岩 采用投球分层压裂,防止裂缝延伸至
    15号煤或中间石灰岩层
    13 0.58 7.89 3.89 16.7 0.3 石灰岩(厚度3~4 m)
    下载: 导出CSV 
    | 显示表格

    对于薄煤层厚度有限、展布不均的问题,以“厚层兼顾薄层,多层优于少层”为原则,采用直井多层压裂合采:层间距离24 m以上采用封隔措施分别压裂,煤层间存在石灰岩或与已压裂层位较近时采用投球分层压裂,层间不存在石灰岩或与已压裂层位较远时采用合层压裂,基本形成了3个压裂组合类型(表1),包括5、6号煤,7~9号、11号煤,12~13号煤[17]。潘河区块薄煤层开发项目于2023年全面建成投产,产量1.35×108 m3,单井日产气量超104 m3,实现了厚度2 m 以下高煤阶煤层气商业开发,为贵州织纳、六盘水煤田、云南东部恩洪区块和吉林东部珲春盆地等地区薄煤层勘探开发提供技术指导和借鉴[17,27]

    延川南区块位于鄂尔多斯盆地东缘南部,处于陕北斜坡、渭北隆起和晋西挠褶带的过渡地带,地质构造简单,整体为北西倾向的单斜,被中部西掌断裂带划分为谭坪和万宝山构造区[35]。区内以山西组2号煤为主采煤层,埋深介于800~1 600 m,煤厚2.8~6.9 m;热演化程度高(Ro=1.9%~3.2%),含气量介于10~22 m3/t,为原生−碎裂结构的无烟煤;孔渗物性差,处于弱径流−滞流水动力环境,煤层气保存条件较好[36-37]。在地质上提出了“沉积控煤、构造控藏、水动力控储、地应力控缝、物性控产”的五元成藏要素,主体发育单缓斜坡正向高部位控气模式,其中一类甜点包括中位森林泥炭沼泽相、煤层厚度>4 m、构造简单且局部隆起、距离断层>500 m、闭合应力<20 MPa、矿化度>30 000 mg/L、渗透率>0.3×10−3 μm2等条件,主要分布在万宝山构造区中南部[38-39]

    针对气田中等含气量、低压力、低孔−低渗高煤阶中深部煤层开发条件,探索出地质−钻井−压裂−采气多位一体化设计理念和模式[9,40-42]。① 地质−钻井一体化:基于纵向煤层甜点优化开发层系,开发较薄煤层合采的直井部署、单层厚煤层水平井部署和以水平井为主、直井为辅的综合开采部署,建立与地质条件适配性的井组组合(图5);② 地质−压裂一体化:提出了升排量(12—14—20 m3/min)、增液量(1 200—2 000—4 500 m3)、强砂量(100—200—500 m3)、综合粒径(100目(0.148 mm)、70目(0.212 mm)和40目(0.425 mm))为核心的有效支撑压裂理念,实现主裂缝充分延伸铺砂、次级裂缝有效充填的造长缝、远支撑效果(图5),裂缝半长增加到6倍以上,定向井单井产能提升到2倍以上;③ 地质−采气一体化:建立了快速反排、控压上产的四段三压三控排采制度,见气前控制液面降幅(10~20 m)实现快速反排,见气初控制液面降幅(3~5 m)实现优快上产,峰值前控制流压降幅(0.01~0.03 MPa)实现相对稳产,峰值后控制排液实现缓慢递减,单井上产周期由12个月降低至1个月(图5)。Y3井区动用以上技术实现了定向井单井日产气2×104 m3、水平井单井日产气6.5×104 m3的高效开发,延川南开发模式为我国中深部煤层气的勘探开发提供了良好的技术示范和借鉴意义[9-10]

    图  5  延川南中深部煤层气地质−工程一体化理念和模式[9,38,41]
    Figure  5.  Concept and model of geo-engineering integration for deep coalbed methane in Southern Yanchuan [9,38,41]

    大宁−吉县区块位于鄂尔多斯盆地东缘南部,跨晋西挠褶带和伊陕斜坡,地质构造简单,断层发育较少,整体为宽缓的西倾单斜,具有一隆、一坳、两斜坡的构造形态特征[15]。区域内太原组8号煤埋深2 000~2 800 m,具有以下地质特征[37,43]:① 煤层大面积分布,厚度主体8~10 m,热演化程度高(Ro=2.4%~2.9%),含气性好(20~30 m3/t),提供了丰富的地质资源量;② 顶底板以灰岩−泥岩致密性较好,且处于滞留区(35 600~332 000 mg/L),为游离气(占比10%~43%)储存提供了良好的保存条件;③ 正向微构造和极低渗透率介于(0.05~0.10)×10−3 μm2,不利于水平井钻遇煤层。目前基于广覆式生烃、自生自储毯式成藏特点,建立了2种游离气富集高产区成藏模式(图6 a):微幅褶皱成藏模式和鼻状构造成藏模式,其主要特点包括厚度>5 m,Ro>2%的原生结构煤;裂隙−割理发育,含气量高(>20 m3/t),游离气富集;水动力条件较弱(>105 mg/L);压后即见气,自喷生产[44-45]

    图  6  大宁−吉县深部煤层气成藏模式和关键开发技术[44,46]
    Figure  6.  Deep coalbed methane enrichment model and key production technologies in Daning-Jixian [44,46]

    针对区块高含气量、高游离气量、极低孔渗高煤阶深煤层开发条件,探索出“黑金靶体精细评价−水平井精准控靶−人工气藏有效构建”的水平井大规模体积压裂关键技术。① 为解决煤层平面起伏和纵向非均质性,建立以气测峰值>50%,自然伽马<60 API,灰分产率<10%,含气量>26 m3/t,原生结构煤等作为水平井纵向“黑金”靶体(图6 b),形成钻前轨迹优化设计−精准入靶−靶后微调地质导向技术(图6 c),有效提高优质储层钻遇率[46-47];② 建立了大井型(井距350~450 m)、长水平段(>2 000 m)的井网部署模式,大排量(>20 m3/min)、大砂量(单段400~600 m3)的大规模体积压裂改造工艺,形成“地应力场−天然裂缝−人工裂缝−井型井位−井网井距”五位一体的水平井分段分簇压裂方案,创造有效的人工气藏(图6 d);③ 充分动用地层高压能量,建立自喷生产+增压气举+人工举升的5段式全生命周期排采技术,总结水平井各段产气特征和地质−工程控制因素,持续推进水平井精细设计和评价。研究区2024年累计提交探明地质储量2 112×108 m3,日产气超过600×104 m3,初步实现了商业化开发,成功推动了我国深部煤层气资源勘探开发迈入新台阶[47-48]。鄂尔多斯盆地深煤层自生自储连续聚集,储层厚度大、保存条件相对较好,勘探开发应该围绕“黑金靶体”为核心逐层划分,通过大规模体积压裂有效提高煤层气产量。

    两淮矿区位于华北板块东南缘的徐淮地块,南北方向上以蚌埠隆起为界划分为淮北和淮南矿区,地质构造复杂,断层十分发育,以海陆过渡相山西组煤层群(8~15层可采)分布为主[49-50]。区域煤层具有埋深大(400~2 000 m)、结构差(0.2<坚固性系数f<0.8)、渗透率低(0.001×10−3 μm2~0.010×10−3 μm2)、瓦斯含量高(12~32 m3/t)、瓦斯压力大(最高6.4 MPa)等特点,其中淮南矿区以中煤阶为主,淮北矿区以气煤到无烟煤均有分布,属于我国低渗突出软煤层群典型代表[50-51]

    针对矿区中远距离松软低透气性高瓦斯煤层群开采条件,建立了“保护层卸压井上下立体抽采”技术(图7 a),将煤炭的采前、采中、采后3阶段与规划准备区、生产区和采空区三区域相互结合和动态演化,实现煤与瓦斯协同开采,主要分为3个阶段[52-54]:第1阶段为规划准备区(采前)提前5~10 a通过地面直井和水平分段压裂井进行保护层和被保护层瓦斯快速预抽,并利用水力压裂加砂及超高压水力割缝增渗强化抽采技术,实现难抽煤层井下高效增渗及区域、局部增渗协调补充,将瓦斯含量降低到8 m3/t以下。第2阶段为生产区(采中)利用井上下联合抽采(1~2a),通过地面采动区井一井多用、保护层(上、下、中间)卸压抽采技术、以孔代巷技术实现卸压瓦斯最大化抽采。第3阶段为采空区(采后)地面钻井、井下采空区埋管抽采相结合的方式进行采空区煤层气抽采。两淮模式与晋城模式有所相似,区别在于针对低透气性松软煤层,提出首层保护层抽采技术、卸压层抽采技术和水力化增透技术等(图7 b、图7 c),大幅提高煤层透气性。该模式主要适用于地质构造复杂但地势平缓、煤质松软(0.2< f <0.8)、渗透率低、高瓦斯含量(>16 m3/t)和瓦斯压力的煤矿区。

    图  7  两淮矿区瓦斯抽采模式和关键技术[53-54]
    Figure  7.  The gas drainage mode and key technologies in the Huainan and Huaibei mining areas [53-54]

    晋城矿区位于沁水盆地东南缘,区内构造较为平缓,断层发育较少,整体被北东向晋城长治断褶带划分为东部老矿区和西部新矿区,包括潘庄、寺河、潘庄等井田[55]。矿区广泛发育太原组海陆过渡相煤系和山西组陆相煤系,以山西组3号煤为主要开采层位,其具有厚度稳定(4~7 m),多以单层分布,呈现东部稍厚、西部偏薄的特征;变质程度高(Ro=3.64%~4.69%),含气量高(10~38 m3/t),孔渗物性较好(孔隙度平均约8.3%,渗透率0.1×10−3~5.0×10−3 μm2),属于我国高透气性、高瓦斯原生结构煤的典型代表[55-56]

    针对矿区单一中硬高瓦斯煤层开发条件,形成了独特的“四区联动井上下立体抽采”技术(图8 a、b),主要划分为4个阶段[57-58]。第1阶段为规划区(8~10 a后进行采煤作业区)配套地面钻井预抽,直接采用地面直井清水快速钻井技术、单-双主支多分支水平井钻采技术、活性水大排量加砂压裂技术、低压集输技术等进行瓦斯抽采,根据矿区瓦斯含量设计足够的抽采时间,最大限度降低瓦斯含量(<16 m3/t)。第2阶段为准备区(3~8 a进行回采)井上下联合抽采,采用区域递进式、条带迈步式、千米长钻孔定向钻进技术等方式,贯通地面抽采井压裂改造区域形成立体抽采网络,实现井上下联动开采,有效降低瓦斯含量(<8 m3/t)。第3阶段为生产区(现有煤炭开采区域)先抽后采、边抽边采,采用垂直采动井、采动L型井等进行提前抽采(图8 c),监测瓦斯含量降低后保持边抽边采,提高瓦斯抽采量。第四阶段为采空区绿色抽采,主要用于查明剩余煤层气资源赋存情况,建立废弃矿井采空区煤层气资源量评价方法等。该套抽采技术主要特点是先采气后采煤,以采气保采煤,并在时间、空间和方式上有效实现了采煤采气一体化协同开发模式,提高煤及其伴生气的资源利用率。晋城模式主要适用于区域地势平缓,煤质较硬(f >1),瓦斯含量较高(>16 m3/t),渗透率>10−3 μm2,地应力较弱的煤矿区,现已在山西阳泉、西山、潞安、大同等矿区成功应用,进一步向河南平顶山、甘肃窑街、贵州新田等矿区推广[59]

    图  8  晋城矿区四区联动瓦斯抽采模式[58]
    Figure  8.  The gas drainage mode in four region linkage in Jincheng mining area [58]

    松藻矿区位于云贵高原与四川盆地的过渡带,地表起伏不定,多为高山低估,且处于构造复合部位,地应力叠加集中,不利于地面钻井抽采[60]。矿区主要发育龙潭组海陆过渡相煤系,全区稳定可采8号煤,厚度2.02~3.83 m,煤层间距小于20 m;属于高变质阶段无烟煤,瓦斯含量介于17.1~29.0 m3/t,渗透率0.001×10−3~0.100×10−3 μm2,属于我国复杂地质条件、松软低渗突出煤层群的典型代表[51,60-61]

    针对矿区近距离松软低渗突出煤层群开发条件,开发了“三区配套三超前增透抽采”技术(图9),主要划分为3个阶段[62-64]。第1阶段为开拓超前瓦斯抽采,包括抽采准备巷道超前部署,如穿层抽采巷道最低超前4个月,采面本层抽采巷道最低超前 6个月、不作采面本层抽采的回采巷道最低超前2个月等。第2阶段为瓦斯抽采超前煤炭生产,包括抽采系统超前运行,如突出薄、中厚煤层巷道超前掘进条带预抽采最低分别超前6个月、12个月,突出薄、中厚煤煤层采面本层采前预抽采最低超前3个月、6个月,突出煤层揭煤点的预抽采最低超前6个月等。第3阶段为保护层开采超前被保护层开采,中厚煤层保护煤量可采期, 最低超前30个月,可供布面的中厚煤层保护煤量可采期,最低超前20个月等。在此期间形成了围岩抽采、本层抽采、采空区抽采和邻近层抽采的综合抽采技术,并针对首采突出煤或单一严重突出煤层,进行水力压裂、水力割缝等增透技术。该模式主要特点体现在掘前预抽、采前预抽、采中抽采、采后抽采以及利用水力压裂增透,适用于地表条件和地质构造复杂、煤质松软(0.2<f<0.8)、瓦斯含量高(>16 m3/t),渗透率<0.1×10−3 μm2的煤矿区,目前在山西、河南、四川、贵州、云南等省进行了成果推广应用。

    图  9  松藻矿区瓦斯抽采流程[64]
    Figure  9.  The gas drainage process in Songzao mining area [64]

    新疆维吾尔自治区2 000 m以浅煤层气资源量7.5×1012 m3,主要发育低煤阶(Ro=0.4%~0.7%),占比85.77%,受陆内断陷/坳陷等剧烈构造活动导致区域内煤储层发育特征差异较大,埋深介于33~3 600 m,煤层数量介于0~89层,厚度介于0.09~130.95 m,煤体破坏程度大,含气量介于0~20 m3/t,渗透率(0.005~181.900)×10−3 μm2,煤层倾角0~60°,煤层气富集主要分布在准噶尔盆地、吐哈盆地、塔里木盆地等[16,65]。区域内煤层气富集受构造控制,形成浅部缓坡带和急倾斜生物成因气富集模式、深部部缓坡带和急倾斜热成因气富集模式、以及混合成因气富集模式等,开发难度主要体现在我国低煤阶煤层气尚且没有大规模开发案例,且薄煤层组开发只有潘河区块可以借鉴经验,缺乏技术参考;大倾斜破碎煤层对于井位部署、井轨迹控制、压裂工艺等带来较大的挑战[12,66]。准南赋煤带CSP-1H水平井、CS11-向2定向井最高产量分别高达2.8×104 、1.9×104 m3/d,齐8井最高产气量达55 320 m3/d;准噶尔盆地白家海凸起彩探1H井最高5.7×104 m3/d、稳产期2×104 m3/d等一批高产井均显示了新疆煤层气的良好发展潜力[67],需要进一步建立和完善适合区域特征的开发方案,以中浅部低煤阶煤层气和深部煤层气开发为增储核心,以浅部老矿区煤与瓦斯协调开发和多薄煤层组合开发为上产重要途径。同时东北地区借鉴以成功开发的阜新、铁法等煤田,建立和发展适合海拉尔盆地和二连盆地等低煤阶煤层气开发模式,共同填补我国低煤阶煤层气大规模商业开发空白。

    黔西−川南地区2 000 m以浅高煤阶煤层气资源量约9.69×1011 m3,是我国煤层气产业重要组成部分,近年也实现了深部3 000~4 000 m煤层气勘探突破[11,68]。四川盆地南部筠连地区山地煤层埋深主体介于400~800 m,发育34套煤层,累计厚度0~26 m,渗透率介于(0.02~0.18)×10−3 μm2,含气量介于1.8~20.99 m3/t,变质程度高(Ro=2.54%~3.46%),煤体结构较好[11,68-69]。区域内高煤阶煤层气为水动力控制的宽缓向斜富集模式,向斜轴部含气量高于两翼[11],整体上筠连地区煤储层发育特征和成藏模式与沁南相似,但差异在于筠连储层渗透率低、含气量相对较低以及山地复杂地质条件等,可以充分借鉴沁南现有勘探开发模式寻找富集高产区,充分发挥主煤层和薄煤层接替开发,建立山地高煤阶低渗薄煤层组开发模式,在现有产量规模持续提升,成为提高我国煤层气产量的潜力地区。

    除此之外,四川盆地深部煤层气具有热演化程度高、气藏超饱和、地层能量强等地质条件,也展现了良好的开发潜力。其中龙潭组海陆过渡相薄-中厚煤层群(7~15层)主体埋深介于2 000~4 500 m,单层厚度介于0.1~4.5 m,累计厚度2~17 m,镜质组反射率普遍超过2.0%,含气量平均15 m3/t左右,含气饱和度介于138%~151%,游离气比例高,累计地质资源量11.98×1012 m3[70]。但超深、超压、超低渗及单层煤厚度薄等问题增加了水平井轨迹控制和煤层钻遇难度,是制约深部煤层气高效开发的重要因素,需要系统梳理成藏模式,落实资源潜力和有利区,探索适合于深部薄煤层群的开发技术。

    我国2 000~3 000 m煤层气地质资源量约为22×1012 m3, >3 000 m煤层气地质资源量约为18.47×1012 m3,具有较好的开发潜力[27]。目前我国处于深部煤层气勘探开发的浪潮,集中在3 000 m以内,华北以大宁−吉县为核心、临兴−神府为潜力开发区、神木−佳县和三交北等为重要勘探区的鄂尔多斯盆地东缘,出现吉深6−7平01井、深煤1号、JM-2H等一批超过5×104 m3的高产井[10];渝东南南川区块富含游离气深部煤层气,平均含气量超过30 m3/t,游离气占比39%~41%,Y2直井日产气1.3×104 m3[71]。而随着勘探深度不断突破,>3 000 m煤层同样显示出较强的开发前景。西北准噶尔盆地白家海地区和吐哈盆地超深煤层气,彩探1H井(>3 500 m)稳产2×104 m3,柯新1H煤层气井深度超过4 500 m[10];鄂尔多斯盆地深部煤层气勘探逐渐由盆地东缘向中部推进,大牛地区块阳煤1HF井垂深2 880 m,峰值日产气10.4×104 m3;纳林河地区(3 100~3 400 m)纳林1H井峰值日产气5.7×104 m3;苏里格气田A-1直井煤层埋深超过3 400 m,日产气6 200 m3 [10,72-73]。深层和超深层煤层气有效开发是煤层气产量提高的重要组成部分,需要借鉴现有技术,结合区域地质差异,建立地质适配性储层改造技术,稳定推进现有开发成熟区产量增长,不断突破新技术、新领域,实现全方位资源充分动用。

    1)我国浅部煤层气商业开发区普遍具有含气量高、渗透率较高、水动力较弱的地质特征,存在埋深浅、钻井造斜位置浅及煤粉堵塞等开发问题,针对性形成了潘庄高煤阶单分支水平井开发模式、潘河薄煤层直井立体开发模式和保德中低煤阶大平台丛式井合层开发模式,实现了单层主采、层间接替、薄煤层合采的全序列煤层气资源开发。

    2)中深部−深部煤层气商业开发区具有含气量高且富含游离气、单层厚度稳定分布、水动力弱、微幅正向构造发育的地质特征,形成了延川南中深煤层有效支撑−精细排采开发模式和大宁−吉县深煤层体积压裂−水平井开发模式,其中大宁−吉县区块针对性形成了“黑金靶体精细评价−水平井精准控靶−人工气藏有效构建”针对性技术体系,实现了储层充分改造和煤层气高效产出。

    3)井下煤层气抽采商业开发区具有瓦斯含量高、煤层分布差异大、煤体结构复杂、地表条件复杂等地质特征,基于不同区域地质特征和储层发育条件,形成了两淮矿区中远距离松软低渗煤层群的“保护层卸压井上下立体抽采”、晋城矿区单一中硬厚煤层的“四区联动井上下立体抽采”和松藻矿区近距离松软低渗突出煤层群的“三区配套三超前增透抽采”开发模式,在空间、时间、方式上与煤炭开采协调,实现了煤与煤层气资源综合开发。

    4)我国煤层气开发突破了深部限制,由浅部煤层气(煤矿瓦斯)向深部煤层气拓展;突破了开发厚度下限,由单一厚煤层开发、多层较厚煤层合采向薄煤层群合层开发拓展;突破了开发资源类型,由煤层气单一资源开发向煤系气立体开发拓展。未来仍需持续深化地质−工程一体化认识,稳定沁水盆地南部和鄂尔多斯盆地东缘等现有煤层气商业开发区产量,推动西北和东北中低煤阶层气、南方复杂构造区煤层气和大型盆地腹部深层−超深层煤层气突破,在此基础上不断完善我国煤层气勘探开发模式,形成具有中国特色的煤层气开发地质理论认识。

  • 图  1   我国典型煤层气开发区块煤层气产量变化

    Figure  1.   Coalbed methane production changes in typical coalbed methane development blocks in China

    图  2   潘庄区块煤层气成藏模式和关键技术[28-29]

    Figure  2.   Coalbed methane enrichment model and key technologies in Panzhuang block [28-29]

    图  3   保德区块煤层气成藏模式和开发指标评价[30]

    Figure  3.   Coalbed methane enrichment mode and evaluation of development indicators in Baode block [30]

    图  4   潘河区块多层系立体动用产量接替情况

    Figure  4.   Production succession situation of multi-layered three-dimensional utilization in Panhe block

    图  5   延川南中深部煤层气地质−工程一体化理念和模式[9,38,41]

    Figure  5.   Concept and model of geo-engineering integration for deep coalbed methane in Southern Yanchuan [9,38,41]

    图  6   大宁−吉县深部煤层气成藏模式和关键开发技术[44,46]

    Figure  6.   Deep coalbed methane enrichment model and key production technologies in Daning-Jixian [44,46]

    图  7   两淮矿区瓦斯抽采模式和关键技术[53-54]

    Figure  7.   The gas drainage mode and key technologies in the Huainan and Huaibei mining areas [53-54]

    图  8   晋城矿区四区联动瓦斯抽采模式[58]

    Figure  8.   The gas drainage mode in four region linkage in Jincheng mining area [58]

    图  9   松藻矿区瓦斯抽采流程[64]

    Figure  9.   The gas drainage process in Songzao mining area [64]

    表  1   潘河区块薄煤层储层特征和压裂方案[17]

    Table  1   Characteristics and fracturing scheme of thin coal seam reservoirs in Panhe block[17]

    煤层 厚度/m 间距/m Ro/% 含气量/ (m3·t−1 渗透率/10−3 μm2 顶板岩性 压裂方案
    5 0.70 12.58 3.77 12.5 石灰岩(厚度<1 m) 5号与3号煤平均间距为 11.90 m,
    采用投球分层压裂
    6 0.42 12.58 3.80 13.1 0.2 石灰岩(厚度约1 m)
    7 0.78 21.63 3.80 15.7 1.5 泥岩、粉砂质泥岩 采用大规模整体压裂,使缝高
    贯穿各煤层及中间隔层
    8 0.62 21.63 3.89 13.4 1.6 泥岩、粉砂质泥岩
    9 1.25 21.63 3.91 16.5 2.8 泥岩、粉砂质泥岩
    11 0.62 21.63 4.01 16.3 石灰岩或泥岩
    12 0.55 7.89 3.74 16.1 0.4 砂质泥岩 采用投球分层压裂,防止裂缝延伸至
    15号煤或中间石灰岩层
    13 0.58 7.89 3.89 16.7 0.3 石灰岩(厚度3~4 m)
    下载: 导出CSV
  • [1] 叶建平. 中国煤层气勘探开发及其科技进步历程回顾与思考[J]. 煤田地质与勘探,2025,53(1):114−127. doi: 10.12363/issn.1001-1986.24.11.0723

    YE Jianping. China’s CBM exploration and production and associated technological advancements:A review and reflections[J]. Coal Geology & Exploration,2025,53(1):114−127. doi: 10.12363/issn.1001-1986.24.11.0723

    [2] 李勇,潘松圻,宁树正,等. 煤系成矿学内涵与发展:兼论煤系成矿系统及其资源环境效应[J]. 中国科学:地球科学,2022,52(10):1948−1965.

    LI Yong,PAN Songqi,NING Shuzheng,et al. Coal measure metallogeny:Metallogenic system and implication for resource and environment[J]. Science China:Earth Sciences,2022,52(10):1948−1965.

    [3] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

    [4] 邹才能,马锋,潘松圻,等. 论地球能源演化与人类发展及碳中和战略[J]. 石油勘探与开发,2022,49(2):411−428. doi: 10.11698/PED.2022.02.20

    ZOU Caineng,MA Feng,PAN Songqi,et al. Earth energy evolution,human development and carbon neutral strategy[J]. Petroleum Exploration and Development,2022,49(2):411−428. doi: 10.11698/PED.2022.02.20

    [5] 刘亚姣,张晶,颜敏. 阜新市刘家区煤层气开发利用现状[J]. 中国煤层气,2013,10(3):23−25. doi: 10.3969/j.issn.1672-3074.2013.03.005

    LIU Yajiao,ZHANG Jing,YAN Min. Current status of coalbed methane development and utilization in Liujia disctrict of Fuxin City[J]. China Coalbed Methane,2013,10(3):23−25. doi: 10.3969/j.issn.1672-3074.2013.03.005

    [6] 高风,惠小勇,吴锦瑜. 我国陆采煤层气首次实现商品化[N]. 中国矿业报,2003-11-27.

    GAO Feng,HUI Xiaoyong,WU JInyu. China's onshore coal seam gas achieves commercialization for the first time[N]. China MIning News,2003-11- 27.

    [7] 米洪刚,朱光辉,赵卫,等. 沁水盆地潘庄煤层气田地质工程一体化应用实践[J]. 中国石油勘探,2022,27(1):120−126. doi: 10.3969/j.issn.1672-7703.2022.01.011

    MI Honggang,ZHU Guanghui,ZHAO Wei,et al. Application practice of geology and engineering integration in Panzhuang CBM Field,Qinshui Basin[J]. China Petroleum Exploration,2022,27(1):120−126. doi: 10.3969/j.issn.1672-7703.2022.01.011

    [8] 温声明,文桂华,李星涛,等. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探,2018,23(2):69−75. doi: 10.3969/j.issn.1672-7703.2018.02.009

    WEN Shengming,WEN Guihua,LI Xingtao,et al. Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J]. China Petroleum Exploration,2018,23(2):69−75. doi: 10.3969/j.issn.1672-7703.2018.02.009

    [9] 陈贞龙,王运海,刘晓,等. 延川南深部煤层气开发关键技术与地质工程一体化实践[J]. 煤田地质与勘探,2025,53(1):142. doi: 10.12363/issn.1001-1986.24.09.0592

    CHEN Zhenlong,WANG Yunhai,LIU Xiao,et al. Practice and understanding of efficient developme-nt of Deep CBM in Southern Yanchuan CBM field[J]. Coal Geology & Exploration,2025,53(1):142. doi: 10.12363/issn.1001-1986.24.09.0592

    [10] 方志明,王润东,杨晨龙. 深部煤层气开发的机遇与挑战[J/OL]. 中国矿业大学学报,2024:1−18. 〔2024−12−02〕. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=ZGKD20241128002&dbname=CJFD&dbcode=CJFQ.

    FANG Zhiming,WANG Rundong,YANG Chenlong. Opportunities and challenges in deep coalbed methane development[J/OL]. China Industrial Economics,2024:1−18. 〔2024−12−02〕. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=ZGKD20241128002&dbname=CJFD&dbcode=CJFQ.

    [11] 梁兴,单长安,李兆丰,等. 山地煤层气勘探创新实践及有效开采关键技术:以四川盆地南部筠连煤层气田为例[J]. 天然气工业,2022,42(6):107−129. doi: 10.3787/j.issn.1000-0976.2022.06.010

    LIANG Xing,SHAN Chang’an,LI Zhaofeng,et al. Exploration innovation practice and effective exploitation key technology of mountain coalbed methane:Taking the Junlian coalbed methane field in southern Sichuan Basin as an example[J]. Natural Gas Industry,2022,42(6):107−129. doi: 10.3787/j.issn.1000-0976.2022.06.010

    [12] 谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014,39(8):1391−1397.

    XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391−1397.

    [13] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267.

    LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.

    [14] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

    LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.

    [15] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002

    [16] 桑树勋,李瑞明,刘世奇,等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报,2024,49(1):563−585.

    SANG Shuxun,LI Ruiming,LIU Shiqi,et al. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society,2024,49(1):563−585.

    [17] 张兵,李勇,贾雨婷,等. 薄—超薄煤层特征及天然气合层开发突破:以沁水盆地潘河区块为例[J]. 天然气工业,2023,43(10):83−93. doi: 10.3787/j.issn.1000-0976.2023.10.009

    ZHANG Bing,LI Yong,JIA Yuting,et al. Characteristics and commingled natural gas production breakthrough of thin and ultra-thin coal beds in the Panhe Block of the Qinshui Basin[J]. Natural Gas Industry,2023,43(10):83−93. doi: 10.3787/j.issn.1000-0976.2023.10.009

    [18] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

    ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

    [19] 叶建平,吴建光,房超,等. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业,2011,31(5):16−20,113. doi: 10.3787/j.issn.1000-0976.2011.05.004

    YE Jianping,WU Jianguang,FANG Chao,et al. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry,2011,31(5):16−20,113. doi: 10.3787/j.issn.1000-0976.2011.05.004

    [20] 印薇薇,张海锋,苏羽. 潘庄区块煤层气开发井网优化数值模拟研究[J]. 中国煤层气,2022,19(3):7−11. doi: 10.3969/j.issn.1672-3074.2022.03.002

    YIN Weiwei,ZHANG Haifeng,SU Yu. Research on numerical simulation of well pattern optimization for coalbed methane development in panzhuang block[J]. China Coalbed Methane,2022,19(3):7−11. doi: 10.3969/j.issn.1672-3074.2022.03.002

    [21] 黄孝波,赵佩,董泽亮,等. 沁水盆地煤层气成藏主控因素与成藏模式分析[J]. 中国煤炭地质,2014,26(2):12−17. doi: 10.3969/j.issn.1674-1803.2014.02.03

    HUANG Xiaobo,ZHAO Pei,DONG Zeliang,et al. Main controlling factors of CBM reservoiring and its mode in Qinshui basin[J]. Coal Geology of China,2014,26(2):12−17. doi: 10.3969/j.issn.1674-1803.2014.02.03

    [22] 赵贤正,杨延辉,孙粉锦,等. 沁水盆地南部高阶煤层气成藏规律与勘探开发技术[J]. 石油勘探与开发,2016,43(2):303−309. doi: 10.11698/PED.2016.02.19

    ZHAO Xianzheng,YANG Yanhui,SUN Fenjin,et al. Enrichment mechanism and exploration and development technologies of high rank coalbed methane in south Qinshui Basin,Shanxi Province[J]. Petroleum Exploration and Development,2016,43(2):303−309. doi: 10.11698/PED.2016.02.19

    [23] 杨延辉,张鹏豹,刘忠,等. 沁水盆地南部深层高阶煤层气成藏特征[J]. 中国石油勘探,2024,29(5):107−119. doi: 10.3969/j.issn.1672-7703.2024.05.009

    YANG Yanhui,ZHANG Pengbao,LIU Zhong,et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration,2024,29(5):107−119. doi: 10.3969/j.issn.1672-7703.2024.05.009

    [24] 秦绍锋,王若仪. 潘河区块煤层气L型水平井排采工艺及配套技术研究[J]. 煤炭科学技术,2019,47(9):132−137.

    QIN Shaofeng,WANG Ruoyi. Study on gas drilling technology and supporting technology for L-type horizontal well in Panhe Block[J]. Coal Science and Technology,2019,47(9):132−137.

    [25] 朱建英,高正龙,高丽军,等. 煤层气井排采制度定量优化方法:以潘庄煤层气井为例[J]. 中国煤层气,2024,21(4):23−25. doi: 10.3969/j.issn.1672-3074.2024.04.005

    ZHU Jianying,GAO Zhenglong,GAO Lijun,et al. Quantitative optimization method for drainage system of coalbed methane wells:Taking Panzhuang coalbed methane well as an example[J]. China Coalbed Methane,2024,21(4):23−25. doi: 10.3969/j.issn.1672-3074.2024.04.005

    [26] 叶建平,侯淞译,张守仁. “十三五” 期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738

    YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738

    [27] 吴裕根,门相勇,娄钰. 我国“十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001

    WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001

    [28] 琚宜文,乔鹏,卫明明,等. 区域构造与演化控制下煤层气富集高产典型模式[J]. 煤田地质与勘探,2022,50(9):1−12. doi: 10.12363/issn.1001-1986.22.01.0059

    JU Yiwen,QIAO Peng,WEI Mingming,et al. Typical coalbed methane(CBM) enrichment and production modes under the control of regional structure and evolution[J]. Coal Geology & Exploration,2022,50(9):1−12. doi: 10.12363/issn.1001-1986.22.01.0059

    [29] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001

    GAO Deli,BI Yansen,XIAN Baoan. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001

    [30] 徐凤银,张伟,李子玲,等. 鄂尔多斯盆地保德区块煤层气藏描述与提高采收率关键技术[J]. 天然气工业,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010

    XU Fengyin,ZHANG Wei,LI Ziling,et al. Coalbed methane reservoir description and enhanced recovery technologies in Baode block,Ordos Basin[J]. Natural Gas Industry,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010

    [31] 徐凤银,陈东,梁为,等. 煤层气(煤矿瓦斯)勘探开发技术进展及发展方向[M]. 北京:科学出版社,2020.
    [32] 张雷,徐凤银,李子玲,等. 煤层气田单/合层开发影响因素分析及应用:以保德区块为例[J]. 煤田地质与勘探,2022,50(9):68−77. doi: 10.12363/issn.1001-1986.21.12.0865

    ZHANG Lei,XU Fengyin,LI Ziling,et al. Analysis on influencing factors of single/multi-layer development of coalbed methane field:A case study of Baode Block[J]. Coal Geology & Exploration,2022,50(9):68−77. doi: 10.12363/issn.1001-1986.21.12.0865

    [33] 杨秀春,毛建设,林文姬,等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质,2021,42(3):381−388.

    YANG Xiuchun,MAO Jianshe,LIN Wenji,et al. Exploration history and enlightenment of coalbed methane in Baode Block[J]. Xinjiang Petroleum Geology,2021,42(3):381−388.

    [34] 郑司建,桑树勋. 煤层气勘探开发研究进展与发展趋势[J]. 石油物探,2022,61(6):951−962. doi: 10.3969/j.issn.1000-1441.2022.06.001

    ZHENG Sijian,SANG Shuxun. Progress of research on coalbed methane exploration and development[J]. Geophysical Prospecting for Petroleum,2022,61(6):951−962. doi: 10.3969/j.issn.1000-1441.2022.06.001

    [35] 曾凡武,姜志高,蔡潇. 延川南深部煤层气富集高产关键因素[J]. 中国煤层气,2022,19(4):16−20.

    ZENG Fanwu,JIANG Zhigao,CAI Xiao. Key factors for enrichment and high production of deep coalbed methane in southern Yanchuan[J]. China Coalbed Methane,2022,19(4):16−20.

    [36] 姚红生,肖翠,陈贞龙,等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发,2022,12(4):545−555.

    YAO Hongsheng,XIAO Cui,CHEN Zhenlong,et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):545−555.

    [37] 李勇,徐凤银,唐书恒,等. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向[J]. 天然气工业,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005

    LI Yong,XU Fengyin,TANG Shuheng,et al. Progress and development direction of coalbed methane(coal-rock gas)exploration and development in the Ordos Basin[J]. Natural Gas Industry,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005

    [38] 陈刚,胡宗全. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J]. 煤炭学报,2018,43(6):1572−1579.

    CHEN Gang,HU Zongquan. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1572−1579.

    [39] 陈贞龙,郭涛,李鑫,等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术,2019,47(9):112−118.

    CHEN Zhenlong,GUO Tao,LI Xin,et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology,2019,47(9):112−118.

    [40] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296.

    YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.

    [41] 姚红生,陈贞龙,何希鹏,等. 深部煤层气“有效支撑” 理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009

    YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009

    [42] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11,141.

    WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1−11,141.

    [43] 范立勇,周国晓,杨兆彪,等. 鄂尔多斯盆地深部煤层气差异富集的地质控制[J]. 煤炭科学技术,2025,53(1):203−215. doi: 10.12438/cst.2024-1144

    FAN Liyong,ZHOU Guoxiao,YANG Zhaobiao,et al. Geological control of differential enrichment of deep coalbed methane in the Ordos Basin[J]. Coal Science and Technology,2025,53(1):203−215. doi: 10.12438/cst.2024-1144

    [44] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003

    [45] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.

    YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir-controlling mechanism and production-controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.

    [46] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544.

    XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the Eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.

    [47] 闫霞,熊先钺,李曙光,等. 深层煤岩气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁−吉县区块为例[J]. 天然气工业,2024,44(10):80−92. doi: 10.3787/j.issn.1000-0976.2024.10.006

    YAN Xia,XIONG Xianyue,LI Shuguang,et al. Production contributions of deep CBM horizontal well sections and their controlling factors:A case study of Daning-Jixian area,eastern Or-dos Basin[J]. Natural Gas Industry,2024,44(10):80−92. doi: 10.3787/j.issn.1000-0976.2024.10.006

    [48] 陈明,王大猛,余莉珠,等. 大宁−吉县区块深部煤层气井排采制度研究与实践[J/OL]. 煤炭学报,1−11[2025−02−27]. https://doi.org/10.13225/j.cnki.jccs.2024.0318.

    CHEN Ming,WANG Dameng,YU Lizhu,et al. Drainage system research and application of deep coalbed methane gas reservoirs in the Daning-Jixian block[J/OL]. Journal of China Coal Society,1−11[2025−02−27]. https://doi.org/10.13225/j.cnki.jccs.2024.0318.

    [49] 桑树勋,韩思杰,周效志,等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发,2023,13(4):403−415.

    SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development,2023,13(4):403−415.

    [50] 蒋健明,韩锋,丁海,等. 安徽省两淮煤田废弃煤炭矿井剩余资源综合调查、开发利用现状及展望[J]. 中国矿业,2024,33(8):46−58. doi: 10.12075/j.issn.1004-4051.20240752

    JIANG Jianming,HAN Feng,DING Hai,et al. Comprehensive survey,status and prospect of exploitation and utilization of residual resources of abandoned coal mine in Huainan and Huaibei Coalfields,Anhui Province[J]. China Mining Magazine,2024,33(8):46−58. doi: 10.12075/j.issn.1004-4051.20240752

    [51] 雷毅,申宝宏,刘见中. 煤矿区煤层气与煤炭协调开发模式初探[J]. 煤矿开采,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001

    LEI Yi,SHEN Baohong,LIU Jianzhong. Initial discussion of coalbed methane and coal coordination mining mode[J]. Coal mining Technol-ogy,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001

    [52] 孔祥喜,唐永志,李平,等. 淮南矿区松软低透煤层煤层气开发利用技术与思考[J]. 煤炭科学技术,2022,50(12):26−35.

    KONG Xiangxi,TANG Yongzhi,LI Ping,et al. Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology,2022,50(12):26−35.

    [53] 桑树勋,皇凡生,单衍胜,等. 碎软低渗煤储层强化与煤层气地面开发技术进展[J]. 煤炭科学技术,2024,52(1):196−210. doi: 10.12438/cst.2023-0997

    SANG Shuxun,HUANG Fansheng,SHAN Yansheng,et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology,2024,52(1):196−210. doi: 10.12438/cst.2023-0997

    [54] 李琰庆,唐永志,唐彬,等. 淮南矿区煤与瓦斯共采技术的创新与发展[J]. 煤矿安全,2020,51(8):77−81.

    LI Yanqing,TANG Yongzhi,TANG Bin,et al. Innovation and development of coal and gas co-mining technology in Huainan mining area[J]. Safety in Coal Mines,2020,51(8):77−81.

    [55] 高磊. 晋城矿区井上下联合瓦斯抽采工艺及现场应用[J]. 煤炭与化工,2023,46(6):100−104.

    GAO Lei. Combined gas extraction technology and field application in Jincheng mining area[J]. Coal and Chemical Industry,2023,46(6):100−104.

    [56] 李广昌,成国清,傅雪海. 晋城新区煤层瓦斯赋存特征及评价[J]. 煤田地质与勘探,2001,29(6):18−20. doi: 10.3969/j.issn.1001-1986.2001.06.006

    LI Guangchang,CHENG Guoqing,FU Xuehai. Occurrence characteristice and evaluation of CBM in the new area,Jincheng[J]. Coal Geology & Exploration,2001,29(6):18−20. doi: 10.3969/j.issn.1001-1986.2001.06.006

    [57] 刘彦青,赵灿,李国富,等. 晋城矿区煤与煤层气协调开发模式优化决策方法[J]. 煤炭学报,2020,45(7):2575−2589.

    LIU Yanqing,ZHAO Can,LI Guofu,et al. Optimized decision method of coordinated development mode of coal and coalbed methane in Jincheng mining area[J]. Journal of China Coal Society,2020,45(7):2575−2589.

    [58] 李国富,张遂安,季长江,等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J]. 煤炭科学技术,2022,50(12):14−25.

    LI Guofu,ZHANG Suian,JI Changjiang,et al. Mechanism and technical system of ground and underground combined drainage of CBM in "four region linkage" in coal mining area[J]. Coal Science and Technology,2022,50(12):14−25.

    [59] 孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13.

    SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.

    [60] 李日富,李保东,张军. 松藻矿区煤层气开发技术优选[J]. 煤矿安全,2011,42(4):31−34.

    LI Rifu,LI Baodong,ZHANG Jun. Optimization of coalbed methane development technology in Songzao mining area[J]. Safety in Coal Mines,2011,42(4):31−34.

    [61] 黄昌文,杨良智. 松藻矿区瓦斯抽采的现状和发展方向[J]. 矿业安全与环保,2009,36(4):69−72. doi: 10.3969/j.issn.1008-4495.2009.04.024

    HUANG Changwen,YANG Liangzhi. The current situation and development direction of gas extraction in Songzao mining area[J]. Mining Safety & Environmental Protection,2009,36(4):69−72. doi: 10.3969/j.issn.1008-4495.2009.04.024

    [62] 申宝宏,刘见中,雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4.

    SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4.

    [63] 刘见中,沈春明,雷毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229.

    LIU Jianzhong,SHEN Chunming,LEI Yi,et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229.

    [64] 任波,薛俊华,余国锋,等. 典型开采条件下煤与瓦斯共采实践与思考[J]. 能源与环保,2018,40(3):174−179.

    REN Bo,XUE Junhua,YU Guofeng,et al. Practice and thinking on simultaneous exploitation of coal and gas under typical mining conditions[J]. China Energy and Environmental Protection,2018,40(3):174−179.

    [65] 李瑞明,周梓欣,张伟,等. “十四五” 以来新疆煤炭地质工作进展及发展方向[J]. 新疆地质,2024,42(1):7−13. doi: 10.3969/j.issn.1000-8845.2024.01.002

    LI Ruiming,ZHOU Zixin,ZHANG Wei,et al. The progress and development direction of coal ggeological work in Xinjiang during the 14th five year plan period[J]. Xinjiang Geology,2024,42(1):7−13. doi: 10.3969/j.issn.1000-8845.2024.01.002

    [66] 赵元媛. 我国西北地区中低煤阶煤层气成藏规律及控气因素探讨[J]. 中国煤炭地质,2024,36(10):22−27,5. doi: 10.3969/j.issn.1674-1803.2024.10.04

    ZHAO Yuanyuan. Discussion on the law of coalbed methane accumulation and gas control factors of middle and low coal rank in northwest China[J]. Coal Geology of China,2024,36(10):22−27,5. doi: 10.3969/j.issn.1674-1803.2024.10.04

    [67] 杜世涛,杨曙光,李瑞明,等. 新疆地区煤层气勘探开发工艺技术难点与对策[J/OL]. 地质通报,1−13[2025-02-27]. http://kns.cnki.net/kcms/detail/11.4648.P.20240523.1545.004.html.

    DU Shitao,YANG Shuguang,LI Ruiming,et al. Difficulties and countermeasures in exploration and development of coalbed methane in Xinjiang region[J/OL]. Geological Bulletin of China, 1−13[2025-02-27]. http://kns.cnki.net/kcms/detail/11.4648.P.20240523.1545.004.html.

    [68] 桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388−403.

    SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388−403.

    [69] 王勃,梁兴,马斌,等. 川南筠连地区煤层气地质特征与富集规律[J]. 断块油气田,2021,28(3):311−317.

    WANG Bo,LIANG Xing,MA Bin,et al. Geological characteristics and enrichment rule of the CBM in Junlian area of southern Sichuan[J]. Fault-Block Oil & Gas Field,2021,28(3):311−317.

    [70] 明盈,孙豪飞,汤达祯,等. 四川盆地上二叠统龙潭组深-超深部煤层气资源开发潜力[J]. 煤田地质与勘探,2024,52(2):102−112. doi: 10.12363/issn.1001-1986.23.09.0528

    MING Ying,SUN Haofei,TANG Dazhen,et al. Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation,Sichuan Basin[J]. Coal Geology & Exploration,2024,52(2):102−112. doi: 10.12363/issn.1001-1986.23.09.0528

    [71] 金晓波. 渝东南地区深部煤层气成藏特征及有利区评价[J]. 非常规油气,2024,11(6):25−33.

    JIN Xiaobo. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in southeastern Chongqing[J]. Unconventional Oil & Gas,2024,11(6):25−33.

    [72] 乔博,刘海锋,贺刚,等. 纳林河地区本溪组深部煤层气地质特征及开发潜力[J]. 西安石油大学学报(自然科学版),2024,39(5):43−49. doi: 10.3969/j.issn.1673-064X.2024.05.006

    QIAO Bo,LIU Haifeng,HE Gang,et al. Geological features and development potential of deep coalbed methane resources in Benxi formation of Nalinhe area,Ordos basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2024,39(5):43−49. doi: 10.3969/j.issn.1673-064X.2024.05.006

    [73] 谢宾,曾凌翔,李彬,等. 鄂尔多斯盆地苏里格气田深层煤层气直井压裂实践与认识[J]. 天然气勘探与开发,2024,47(6):45−52. doi: 10.12055/gaskk.issn.1673-3177.2024.06.006

    XIE Bin,ZENG Lingxiang,LI Bin,et al. Practice and understanding of vertical well fracturing for deep CBM reservoirs in Sulige gas field,Ordos Basin[J]. Natural Gas Exploration and Development,2024,47(6):45−52. doi: 10.12055/gaskk.issn.1673-3177.2024.06.006

图(9)  /  表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  2
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-19
  • 网络出版日期:  2025-03-02
  • 刊出日期:  2025-03-24

目录

/

返回文章
返回