高级检索

煤储层改造背景下深部煤层气藏物质平衡方程的建立与应用

石军太, 徐凤银, 曹运兴, 李相方, 黄红星, 王凯, 陈明, 张硕, 吉义天宇, 王伟, 孙政, 李靖

石军太,徐凤银,曹运兴,等. 煤储层改造背景下深部煤层气藏物质平衡方程的建立与应用[J]. 煤炭科学技术,2025,53(3):198−215. DOI: 10.12438/cst.2025-0125
引用本文: 石军太,徐凤银,曹运兴,等. 煤储层改造背景下深部煤层气藏物质平衡方程的建立与应用[J]. 煤炭科学技术,2025,53(3):198−215. DOI: 10.12438/cst.2025-0125
SHI Juntai,XU Fengyin,CAO Yunxing,et al. Establishment and application of material balance equation for deep coalbed methane reservoirs based on coal formation stimulation background[J]. Coal Science and Technology,2025,53(3):198−215. DOI: 10.12438/cst.2025-0125
Citation: SHI Juntai,XU Fengyin,CAO Yunxing,et al. Establishment and application of material balance equation for deep coalbed methane reservoirs based on coal formation stimulation background[J]. Coal Science and Technology,2025,53(3):198−215. DOI: 10.12438/cst.2025-0125

煤储层改造背景下深部煤层气藏物质平衡方程的建立与应用

基金项目: 国家自然科学基金重点资助项目(42230814);山西省科技重大专项资助项目(20201101002)
详细信息
    作者简介:

    石军太: (1984—),男,甘肃靖远人,副教授,博士。E-mail:shijuntai@cup.edu.cn

  • 中图分类号: TD713

Establishment and application of material balance equation for deep coalbed methane reservoirs based on coal formation stimulation background

  • 摘要:

    近些年深部煤层气发展迅速,在多个深部煤层气区块都取得单井日产万方的突破,为了更加科学高效地开发深部煤层气,大幅提高煤层气的采收率,建立合理、可靠且考虑因素全面的煤层气物质平衡方程,并研究深部煤层气藏或气井控制储量、平均煤储层压力、不同类型气体产量占比、产能评价指标和最终可采储量具有重要的理论与现实意义。目前考虑游离气、煤基质收缩、溶解气、吸附气富集的微孔与游离气和水占据的介孔之间的压差和煤储层改造影响的煤层气物质平衡方程鲜有报道。首先基于深部煤层气藏物质平衡原理,在常规物质平衡方程考虑应力敏感引起的孔隙压缩、基质收缩、水的膨胀和产水因素的基础上,进一步考虑吸附气富集的微孔与游离气和水占据的介孔之间的压差、煤储层改造引起的煤储层物性参数变化和溶解气的影响,建立了基于煤储层改造背景下的深部煤层气藏物质平衡方程;然后提出了深部煤层气线性拟合的吸附气−游离气−溶解气储量评价方法、平均地层压力显式计算方法、吸附气−游离气−溶解气产量占比评价方法、深部煤层气井产能评价方法和最终可采储量EUR预测方法;最后对提出的方法进行了实例应用,评价了实例井控制的吸附气−游离气−溶解气储量,揭示了深部煤层气井生产过程中吸附气−游离气−溶解气产量占比变化规律,剖析了产能指标变化特征并预测了不同废弃压力下的EUR和煤层气采收率。研究表明:提出的深部煤层气储量评价方法,仅需实测2次以上的平均煤储层压力和对应的累计产气量和产水量数据,即可采用线性拟合的方法,评价出深部煤层气井吸附气−游离气−溶解气的储量;提出的深部煤层气平均地层压力计算方法为显式表达式,避免了隐式求解方法中复杂的计算机编程计算;提出的深部煤层气井吸附气−游离气−溶解气产量占比评价方法,无需在井口安装碳同位素监测装置,可实时评价出不同气体产量占比;提出的综合流体、游离气、吸附气、溶解气和水井底采出指数可以用于识别深部煤层气井工作制度的合理性;提出的深部煤层气井EUR预测方法,可将生产数据整理成视压力p/Z*与累计产气量Gp的直线表达式,给定某一废弃压力,即可预测出深部煤层气井的EUR;实例井生产初期游离气日产气量占比和吸附气日产气量占比相当,在生产过程中,游离气日产气量占比先快速上升后缓慢降低最后逐渐稳定在29%,吸附气日产气量占比则先快速降低后缓慢上升最后逐渐稳定在70%,而溶解气日产气量占比一直较低;当废弃压力分别为4、3和2 MPa时,该深部煤层气井的煤层气采收率分别为37.8%、44.2%和52.4%,降低废弃压力是提高深部煤层气藏采收率较为有效的手段。

    Abstract:

    In recent years, the deep coalbed methane was developed rapidly, with breakthroughs in daily production of tens of thousands of cubic meters per well in multiple deep coalbed methane blocks. In order to develop deep coalbed methane more scientifically and efficiently, significantly improve the recovery rate of coalbed methane, establishing a reasonable, reliable, and comprehensive coalbed methane material balance equation, and studying the controlled reserves, average coal reservoir pressure, proportion of different types of gas production, productivity evaluation indicators, and EUR of deep coalbed methane reservoirs or gas wells have important theoretical and practical significance. At present, there are few reports on the material balance equation of coalbed methane considering the presence of free gas, coal matrix shrinkage, the presence of dissolved gas, the pressure difference between micropores enriched with adsorption gas and mesopores occupied by free gas and water, and the impact of coal formation stimulation. Firstly, based on the principle of material balance in deep coalbed methane reservoirs, a material balance equation for deep coalbed methane reservoirs under formation stimulation background was established by further considering the pressure difference between micropores enriched with adsorption gas and mesopores occupied by free gas and water, changes in coal reservoir physical parameters caused by formation stimulation, and dissolved gas, except considering pore compression caused by stress sensitivity, matrix shrinkage, water expansion, and water production in conventional material balance equation of coalbed methane reservoir. Then, a linear fitting method for evaluating the reserves of adsorbed gas, free gas, and dissolved gas, an explicit calculation method for average formation pressure, an evaluation method for the production proportion of adsorbed gas, free gas, and dissolved gas, a productivity evaluation method for deep coalbed methane wells, and an EUR prediction method were proposed. Finally, the proposed methods were applied in an example to evaluate the reserves of adsorbed gas, free gas, and dissolved gas controlled by the well. The variation law of the production proportions of adsorbed gas, free gas, and dissolved gas in the production process of deep coalbed methane well were revealed, and the characteristics of changes in productivity indicators were analyzed. The EUR and coalbed methane recovery under different abandoned pressures were predicted. Results show that: The proposed method for evaluating coalbed methane reserves only requires two or more actual measurements of the average coal reservoir pressure and corresponding cumulative gas and water production data, and can use linear fitting to evaluate the reserves of adsorbed gas, free gas, and dissolved gas controlled by deep coalbed methane wells. The proposed method for calculating the average formation pressure of deep coalbed methane is an explicit expression, which avoids the complex computer programming calculation of implicit solving methods; The proposed evaluation method for the production proportion of adsorbed gas, free gas, and dissolved gas in deep coalbed methane wells does not require the installation of carbon isotope monitoring devices at the wellhead, and can real-time evaluate the proportion of different gas production. The proposed productivity indexes of comprehensive fluid, free gas, adsorbed gas, dissolved gas, and water at bottomhole condition for deep coalbed methane wells can be used to identify the rationality of working systems of the deep coalbed methane well; The proposed EUR prediction method for deep coalbed methane wells can organize production data into a linear expression of apparent pressure p/Z * and Gp. Given a certain abandoned pressure, the EUR of deep coalbed methane wells can be predicted. In the initial stage of production of the example well, the production proportion of free gas is almost equivalent to that of adsorbed gas. During the production process, the proportion of free gas first rapidly increases, then slowly decreases, and finally gradually stabilizes at 29%. The production proportion of adsorbed gas first rapidly decreases, then slowly increases, and finally gradually stabilizes at 70%, while the production proportion of dissolved gas remains low. When the abandoned pressure is 4, 3, and 2 MPa, the coalbed methane recovery rates of the deep coalbed methane well are 37.8%, 44.2%, and 52.4%, respectively. Reducing the abandoned pressure is an effective way to improve the coalbed methane recovery rate of the deep coalbed methane reservoirs.

  • 图  1   深部煤层气藏原始状态−压裂返排后−生产过程中的物质平衡原理示意

    Figure  1.   Schematic diagram of material balance principle of deep coalbed methane reservoir in the initial state, after fracturing and flowback, and during production

    图  2   深部煤层气储量评价Y-X指示曲线

    Figure  2.   Y-X Indicator curve for deep coalbed methane reserve evaluation

    图  3   深部煤层气井EUR预测p/Z*-Gp指示曲线

    Figure  3.   p/Z*-Gp indicator curve of EUR prediction for deep coalbed methane wells

    图  4   深部煤层气井每天的累计产气量Gp和累计产水量Wp曲线

    Figure  4.   Daily cumulative gas production Gp and cumulative water production Wp curve of the deep coalbed methane well

    图  5   某深部煤层气井最终确定的Y-X关系

    Figure  5.   Final Y-X diagram of a deep coalbed methane well

    图  6   KING提出的物质平衡方程中p/Z*Gp指示曲线

    Figure  6.   p/Z* and Gp indicator curve using the material balance equation proposed by KING

    图  7   深部煤层气井每天的平均煤储层压力曲线

    Figure  7.   Daily average coal reservoir pressure curve of the deep coalbed methane well

    图  8   深部煤层气井日产气量、吸附气日产气量、游离气日产气量和溶解气日产气量曲线

    Figure  8.   Curves of daily gas production, adsorbed gas production, free gas production, and dissolved gas production of the deep coalbed methane well

    图  9   深部煤层气井吸附气日产气量占比、游离气日产气量占比和溶解气日产气量占比曲线

    Figure  9.   Curves of daily adsorbed gas production ratio, free gas production ratio, and dissolved gas production ratio of the deep coalbed methane well

    图  10   深部煤层气井每天的平均含水饱和度和日产水量曲线

    Figure  10.   Curves of average water saturation and daily water production of the deep coalbed methane well

    图  11   深部煤层气井每天的产能指标变化曲线

    Figure  11.   Variation curves of daily productivity indices of the deep coalbed methane well

    图  12   深部煤层气井EUR预测p/Z*-Gp指示曲线

    Figure  12.   p/Z*-Gp indicator curve of EUR prediction for deep coalbed methane wells

    图  13   深部煤层气井累计产水量与平均煤储层压力关系

    Figure  13.   Relationship between cumulative water production of the deep coalbed methane well and average coal reservoir pressure

    图  14   p/Z*与平均煤储层压力p关系

    Figure  14.   Relationship between p/Z* and average coal reservoir pressure p

    表  1   某深部煤储层物性参数、流体物性参数和气井压裂−返排数据统计

    Table  1   Statistical table of physical and fluid property parameters of a deep coal seem and fracturing backflow data of gas well

    参数数值
    煤岩密度ρc/(t·m−3)1.5
    煤储层原始孔隙率ϕi/%7
    原始煤储层压力pi/MPa21
    煤储层温度T/K343.15
    煤储层原始含水饱和度Swi/%60.433
    孔隙压缩系数Cp/MPa−10.005
    煤基质微孔的平均孔径d/nm2
    煤基质介孔的平均孔径D/nm10
    煤基质表面润湿角θ89
    煤基质收缩系数Ca0.1
    Langmuir体积VL/(m3·t−1)25
    Langmuir压力pL/MPa3.21
    气体相对密度γg0.6
    原始煤储层压力下气体的偏差系数Zi0.889 5
    水的体积系数Bw1
    水的等温压缩系数Cw/MPa−10.000 435
    煤层气在水中的溶解系数Cs/MPa−10.17
    气水界面张力σgw/(mN·m−1)60
    总的压裂液量Wfi/106 m30.03
    开始生产前压裂液累计返排量Wfp/106 m30.007 5
    下载: 导出CSV

    表  2   某深部煤层气井实测的平均煤储层压力和对应累计产气量和累计产水量

    Table  2   Average coal reservoir pressure and corresponding cumulative gas and water production measured in a deep coalbed methane well

    生产
    天数/d
    实测的平均
    煤储层压力
    p/MPa
    气体平均
    偏差系数Z
    累计
    产气量
    Gp/106 m3
    累计
    产水量
    Wp/106 m3
    48111.30.892 4220.404 3320.008 452 09
    8429.690.901 8225.099 2180.010 238 33
    9419.620.902 2925.099 5180.011 816 23
    1 0759.50.903 0925.204 7690.014 221 13
    下载: 导出CSV
  • [1] 徐凤银. 深部煤层气助力产业发展进入新阶段[J]. 石油知识,2023(4):4−6.

    XU Fengyin. Deep Coalbed Methane Development Propels Industry into a New Phase[J]. Petroleum Knowledge,2023(4):4−6.

    [2] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262.

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262.

    [3] 聂志宏,时小松,孙伟,等. 大宁−吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.

    [4] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

    XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

    [5] 巢海燕,李泽,甄怀宾,等. 大宁−吉县区块深部煤层气水平井压裂干扰行为及其机理[J]. 煤炭科学技术,2024:1−16.

    CHAO Haiyan,LI Ze,ZHEN Huaibin,et al. Fracture interference behavior and mechanism of deep coalbed methane horizontal wells in Daning-Jixian block[J]. Coal Science and Technology,2024:1−16.

    [6] 米立军,朱光辉. 鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探,2021,26(3):53−67.

    MI Lijun,ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing-Shenfu tight gas field,northeastern Ordos Basin[J]. China Petroleum Exploration,2021,26(3):53−67.

    [7] 刘建忠,朱光辉,刘彦成,等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴—神府区块为例[J]. 石油学报,2023,44(11):1827−1839.

    LIU Jianzhong,ZHU Guanghui,LIU Yancheng,et al. Breakthrough,future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica,2023,44(11):1827−1839.

    [8] 范立勇,周国晓,杨兆彪,等. 鄂尔多斯盆地深部煤层气差异富集的地质控制[J]. 煤炭科学技术,2024:1-13

    4-08-12]. FAN Liyong,ZHOU Guoxiao,YANG Zhaobiao,et al. Geological control of differential enrichment of deep coalbed methane in Ordos basin[J]. Coal Science and Technology,2024:1-13.

    [9] 姚红生,肖翠,陈贞龙,等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发,2022,12(4):545−555.

    YAO Hongsheng,XIAO Cui,CHEN Zhenlong,et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):545−555.

    [10] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49.

    GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49.

    [11] 郗兆栋,唐书恒,刘忠,等. 宁武盆地南部深部煤层气临界深度与成藏特征[J]. 天然气工业,2024,44(1):108−118.

    XI Zhaodong,TANG Shuheng,LIU Zhong,et al. Critical depth and accumulation characteristics of deep coalbed methane in the southern Ningwu Basin[J]. Natural Gas Industry,2024,44(1):108−118.

    [12] 何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285. doi: 10.11743/ogg20220203

    HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285. doi: 10.11743/ogg20220203

    [13] 郭旭升,赵培荣,申宝剑,等. 中国深层煤层气地质特征与勘探实践[J]. 石油与天然气地质,2024,45(6):1511−1523.

    GUO Xusheng,ZHAO Peirong,SHEN Baojian,et al. Geological features and exploration practices of deep coalbed methane in China[J]. Oil & Gas Geology,2024,45(6):1511−1523.

    [14] 何发岐,雷涛,齐荣,等. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质,2024,45(6):1567−1576. doi: 10.11743/ogg20240605

    HE Faqi,LEI Tao,QI Rong,et al. Breakthroughs and key technology in deep coalbed methane exploration in the Daniudi gas field in the Ordos Basin[J]. Oil & Gas Geology,2024,45(6):1567−1576. doi: 10.11743/ogg20240605

    [15] 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质,2024,45(6):1555−1566.

    LI Yahui. Exploration practices of and recent production breakthroughs in deep middle-rank coalbed methane in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2024,45(6):1555−1566.

    [16] 范立红,韩晟,宋鑫,等. 大城游离气与吸附气AVO地震响应特征差异研究与应用[J]. 中国煤层气,2021,18(4):7−10. doi: 10.3969/j.issn.1672-3074.2021.04.002

    FAN Lihong,HAN Sheng,SONG Xin,et al. Study and application of AVO seismic response characteristics difference between free gas and adsorbed gas in Dacheng Rise[J]. China Coalbed Methane,2021,18(4):7−10. doi: 10.3969/j.issn.1672-3074.2021.04.002

    [17]

    KING G R. Material-balance techniques for coal-seam and Devonian shale gas reservoirs with limited water influx[J]. SPE Reservoir Engineering,1993,8(1):67−72.

    [18]

    JENSEN D,SMITH L K. A practical approach to coalbed methane reservoir prediction using a modified material balance technique[C]. In:Presented at the International Coalbed Methane Symposium,Tuscaloosa,Alabama,USA. 1997.

    [19]

    SEIDLE J P. A modified p/Z method for coal wells[C]//SPE Rocky Mountain Regional Meeting. SPE,1999:SPE-55605-MS.

    [20]

    CLARKSON C,MCGOVERN J,Study of the potential impact of matrix free gas storage upon coalbed gas reserves and production using a new material balance equation[C]. In:Presented at the International Coalbed Methane Symposium,Tuscaloosa,USA. 2001

    [21]

    AHMED T,CENTILMEN A,ROUX B. A generalized material balance equation for coalbed methane reservoirs[C]//SPE Annual Technical Conference and Exhibition. SPE,2006.

    [22]

    CHEN Y,HU J. Derivation of methods for estimating OGIP and recoverable reserves and recovery ratio of saturated coal-seam gas reservoirs[J]. Oil Gas Geology,2008,29(1):151−156.

    [23]

    MOGHADAM S,JEJE O,MATTAR L. Advanced gas material balance,in simplified format[C]//Canadian International Petroleum Conference. Petroleum Society of Canada,2009:SPE-55605-MS.

    [24]

    MOGHADAM S,JEJE O,MATTAR L. Advanced gas material balance in simplified format[J]. Bulletin of Canadian Petroleum Geology,2011,50(1):90−98.

    [25]

    IBRAHIM A F,NASR-EL-DIN H A. A comprehensive model to history match and predict gas/water production from coal seams[J]. International Journal of Coal Geology,2015,146:79−90.

    [26]

    SHI J T,CHANG Y C,WU S G,et al. Development of material balance equations for coalbed methane reservoirs considering dewatering process,gas solubility,pore compressibility and matrix shrinkage[J]. International Journal of Coal Geology,2018,195:200−216.

    [27]

    SHI J T,JIA Y R,ZHANG L L,et al. The generalized method for estimating reserves of shale gas and coalbed methane reservoirs based on material balance equation[J]. Petroleum Science,2022,19(6):2867−2878.

    [28] 江同文,熊先钺,金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报,2023,44(11):1918−1930.

    JIANG Tongwen,XIONG Xianyue,JIN Yiqiu. Geological characteristics and development countermeasures of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1918−1930.

    [29] 邓泽,王红岩,姜振学,等. 深部煤储层孔裂隙结构对煤层气赋存的影响−以鄂尔多斯盆地东缘大宁−吉县区块为例[J]. 煤炭科学技术,2024,52(8):106−123.

    DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane:a case study of Daning-nixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123.

    [30] 石军太,曹敬添,徐凤银,等. 深部煤层气游离气饱和度计算模型及其应用[J]. 煤田地质与勘探,2024,52(2):134−146. doi: 10.12363/issn.1001-1986.23.11.0741

    SHI Juntai,CAO Jingtian,XU Fengyin,et al. A calculation model of free gas saturation in deep coalbed methane reservoirs and its application[J]. Coal Geology & Exploration,2024,52(2):134−146. doi: 10.12363/issn.1001-1986.23.11.0741

    [31]

    DRANCHUK P M,ABOU-KASSEM H. Calculation of Z factors for natural gases using equations of state[J]. Journal of Canadian Petroleum Technology,1975,14(3):PETSOC−75-03-03.

    [32] 李相方,任美鹏,胥珍珍,等. 高精度全压力全温度范围天然气偏差系数解析计算模型[J]. 石油钻采工艺,2010,32(6):57−62.

    LI Xiangfang,REN Meipeng,XU Zhenzhen,et al. A high-precision and whole pressure temperature range analytical calculation model of natural gas Z-factor[J]. Oil Drilling & Production Technology,2010,32(6):57−62.

    [33] 何发岐,董昭雄,赵兰,等. 深部煤层游离气形成机理及资源意义[J]. 断块油气田,2021,28(5):604−608,613.

    HE Faqi,DONG Zhaoxiong,ZHAO Lan,et al. Formation mechanism and resource significance of free gas in deep coalbed[J]. Fault-Block Oil & Gas Field,2021,28(5):604−608,613.

    [34] 李勇,高爽,吴鹏,等. 深部煤层气游离气含量预测模型评价与校正——以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报,2023,44(11):1892−1902.

    LI Yong,GAO Shuang,WU Peng,et al. Evaluation and correction of prediction model for free gas content in deep coalbed methane:a case study of deep coal seams in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1892−1902.

    [35] 蔡瑞豪,张兵,晁薇薇,等. 深部煤储层游离气含量计算方法研究——以鄂尔多斯盆地L区为例[J]. 中国煤层气,2024,21(4):19−22.

    CAI Ruihao,ZHANG Bing,Chao Weiwei,et al. Study on calculation method of free gas content in deep coal reservoirs:a case study of L area,ordos basin[J]. China Coalbed Methane,2024,21(4):19−22.

    [36] 史锐,边利恒,张伟,等. 基于有效孔隙度的深部煤层游离气含量预测模型[J]. 中国矿业大学学报,2025,54(1):161−171.

    SHI Rui,BIAN Liheng,ZHANG Wei,et al. Prediction model for free gas content in deep coal seams based on effective porosity[J]. Journal of China University of Mining & Technology,2025,54(1):161−171.

    [37]

    LIU Y,ZHANG J C,TANG X. Predicting the proportion of free and adsorbed gas by isotopic geochemical data:A case study from Lower Permian shale in the southern North China basin (SNCB)[J]. International Journal of Coal Geology,2016,156:25−35. doi: 10.1016/j.coal.2016.01.011

    [38]

    LIU Z Y,CHEN D X,ZHANG J C,et al. Combining isotopic geochemical data and logging data to predict the range of the total gas content in shale:A case study from the Wufeng and Longmaxi shales in the middle Yangtze area,South China[J]. Energy & Fuels,2019,33(11):10487−10498.

    [39]

    MA Y,ZHONG N N,YAO L P,et al. Shale gas desorption behavior and carbon isotopic variations of gases from canister desorption of two sets of gas shales in South China[J]. Marine and Petroleum Geology,2020,113:104127. doi: 10.1016/j.marpetgeo.2019.104127

    [40] 张金川,刘树根,魏晓亮,等. 页岩含气量评价方法[J]. 石油与天然气地质,2021,42(1):28−40.

    ZHANG Jinchuan,LIU Shugen,WEI Xiaoliang,et al. Evaluation of gas content in shale[J]. Oil & Gas Geology,2021,42(1):28−40.

    [41]

    LI W B,LU S F,LI J Q,et al. Geochemical modeling of carbon isotope fractionation during methane transport in tight sedimentary rocks[J]. Chemical Geology,2021,566:120033. doi: 10.1016/j.chemgeo.2020.120033

    [42] 李文镖,卢双舫,李俊乾,等. 页岩气/煤层气运移过程中的同位素分馏研究进展[J]. 石油勘探与开发,2022,49(5):929−942. doi: 10.11698/PED.20220225

    LI Wenbiao,LU Shuangfang,LI Junqian,et al. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration[J]. Petroleum Exploration and Development,2022,49(5):929−942. doi: 10.11698/PED.20220225

    [43] 胡渤,刘小波,周涌沂,等. 深部煤层气井开采中游离气与吸附气产量占比的确定方法[P]. 河南,CN202311456257.3,2024-08-06.

    HU Bo,LIU Xiaobo,ZHOU Yongxi,et al. Method for determining the proportion of free gas and adsorbed gas production in deep coalbed methane well exploitation[P]. Henan,CN202311456257.3,2024-08-06.

图(14)  /  表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  1
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-21
  • 网络出版日期:  2025-03-23
  • 刊出日期:  2025-03-24

目录

    /

    返回文章
    返回