高级检索

碱激发钢渣−粉煤灰固废充填材料的制备及强度形成机理

Preparation of alkali-activated steel slag-fly ash based full solid waste filling material and strength formation mechanism research

  • 摘要: 为实现钢渣固体废弃物的资源化利用,采用碱激发钢渣−粉煤灰胶凝材料替代水泥作为胶结剂,煤矸石作为骨料制备全固废煤矿胶结充填材料。试验研究了碱激发反应中激发剂(Na2SiO3)模数与碱浓度对胶凝材料宏观性能与微观物相变化的影响,得出最优激发剂参数并用于不同钢渣掺量充填材料的制备,并使用XRD、SEM及FT-IR等表征手段探究碱激发钢渣−粉煤灰制备充填材料时的反应机理。试验结果表明:钢渣与粉煤灰质量比为6∶4时,胶凝材料7 d和28 d抗压强度分别达5.35 MPa和8.71 MPa,强度增幅62.8%。激发剂模数为1.75、碱当量为8%(Na2O质量分数)时,制备的胶凝材料28 d抗压强度达20.85 MPa。微观与成分表征显示,碱激发剂促进钢渣与粉煤灰中矿物相解离,释放Ca、Al、Si等离子,水化生成C−(A)−S−H凝胶,聚合以提升材料强度。将最优胶凝材料用于制备煤矸石充填材料时,各成分质量比为煤矸石∶钢渣∶粉煤灰∶水=5∶4∶1∶2时,充填体7 d和28 d抗压强度分别达1.80 MPa和2.94 MPa。SEM-EDS分析表明,激发剂促使煤矸石表面与胶凝材料基体反应,形成致密界面过渡区,减少孔隙并增强骨料黏结。研究表明:激发钢渣−粉煤灰胶凝材料可替代水泥作为胶结剂制备低碳高固废利用率的煤矸石充填材料,实现钢渣工业固废大规模利用。

     

    Abstract: To utilize steel slag solid waste resources, this study developed a fully solid-waste-based cemented coal backfill material using alkali-activated steel slag-fly ash cementitious material as a cement substitute and coal gangue as aggregate. The effects of activator (Na2SiO3) modulus and alkali concentration on both macroscopic properties and microstructural evolution of the cementitious system were systematically investigated. Optimal parameters were applied to prepare backfill materials with varying steel slag contents, with reaction mechanisms elucidated through XRD, SEM, and FT-IR analyses. Experimental results demonstrated that a steel slag∶ fly ash ratio of 6∶4 yielded compressive strengths of 5.35 MPa (7-day) and 8.71 MPa (28-day), showing 62.8% strength enhancement. With optimized activator parameters (modulus=1.75, concentration=8% Na2O equivalent), the 28-day compressive strength reached 20.85 MPa. Microstructural characterization revealed that alkali activation facilitated mineral phase dissociation in steel slag and fly ash, releasing Ca, Al, and Si ions to form polymerized C−(A)−S−H gels through hydration. The optimal mixture (coal gangue∶steel slag∶fly ash∶water=5∶4∶1∶2) exhibited 7-day and 28-day compressive strengths of 1.80 MPa and 2.94 MPa, respectively. SEM-EDS analysis confirmed the formation of dense interfacial transition zones through surface reactions between coal gangue and cementitious matrix, effectively reducing porosity and enhancing aggregate bonding strength. This work establishes an efficient pathway for preparing low-carbon coal gangue backfill materials with high solid-waste incorporation, demonstrating significant potential for large-scale steel slag utilization in sustainable mine engineering applications.

     

/

返回文章
返回