高级检索

基于多源信息融合的浮选精煤灰分智能检测方法

Intelligent detection method for flotation clean coal ash based on multi-source information fusion

  • 摘要: 煤炭浮选是现代选煤工艺中的关键环节,其智能化建设水平对选煤厂的经济效益具有显著影响。浮选精煤(简称“浮精”)灰分的在线检测效果是制约浮选智能化进程的关键因素之一。浮精灰分直接反映精煤品质和杂质脱除效率,其在线检测数据对于指导药剂用量调整、优化工艺参数、稳定产品质量和提升精煤产率至关重要。针对煤炭浮选精煤灰分检测滞后性、多源信息融合数据利用难的问题,提出一种基于多源信息融合的浮选精煤灰分智能检测方法。在浮精XRF光谱数据的基础上,融合浮选过程数据和尾矿图像特征等多源数据,采用连续投影算法和多元线性回归进行光谱数据降维,以解决XRF光谱数据维度过大的问题。为了解决多源数据时序不匹配和非线性关系问题,基于希尔伯特−施密特独立性准则进行时间序列对齐,并采用动态节点调整正则化随机配置网络建立数据驱动模型,表征多源数据与精煤灰分间的非线性关系,通过优化网络节点结构,减少计算资源占用,提高模型的泛化能力和检测精度。基于工业数据试验分析,结果表明:该方法检测浮精灰分的均方根误差为0.113、决定系数为0.787、灰分绝对误差为0.3时的合格率为100%。最后开发了浮选X光灰分仪智能检测系统并在现场落地应用,浮精灰分检测结果达到了生产工艺对检测精度的要求,极大提高了浮精灰分检测的精确性和实时性,为浮选生产提供全面技术支持和决策依据。

     

    Abstract: Coal flotation is a critical stage in modern coal preparation, and its intelligentization plays a key role in the overall transformation of coal-washing plants. The ash content of the flotation concentrate directly reflects product quality and impurity removal efficiency. Precise control of concentrate ash not only guides reagent dosing and process optimization, but also supports maximal coal recovery and economic returns. To address the challenges of delayed ash-content measurements and the underutilization of heterogeneous data, we propose an intelligent detection method for flotation coal ash based on multi-source information fusion. The method integrates X-ray fluorescence (XRF) spectral data, real-time flotation process variables, and tailings imagery features. We use continuous projection and multiple linear regression for spectral dimensionality reduction and apply the Hilbert-Schmidt independence criterion (HSIC) for time-series alignment to handle asynchronous data streams. A regularized Random Vector Functional-Link network with dynamic node adjustment is then developed to model nonlinear relationships between multi-source data and ash content. Experimental results show that the root mean square error is 0.113, the coefficient of determination is 0.787, and the pass rate is 100% when the absolute error of ash content is 0.3. The developed intelligent ash-content detection system has been successfully deployed on-site, achieving real-time, high-precision measurements that meet the production process requirements. This system provides comprehensive technical support and decision-making data for the flotation process, enhancing detection accuracy and process control.

     

/

返回文章
返回