高级检索

面向煤矿巷道的方向性分组点云语义分割方法

Direction-guided grouping for point cloud semantic segmentation in coal mine roadways

  • 摘要: 煤矿巷道点云语义分割是矿井环境空间语义理解的一项关键技术,但煤矿巷道点云具有多尺度目标共存、类别样本不均衡等特点,导致矿井点云小尺度目标分割的效果较差。对此,提出一种面向煤矿巷道的方向性分组点云语义分割方法。首先,针对煤矿巷道内典型小尺度目标(如管道、线缆等)具有沿单一方向分布的特点,提出方向性分组策略(Direction-Guided Grouping, DIG),通过优化点云分割网络中分组包络面的形状,提升分组内小尺度目标点云的比例,增强模型对其特征的提取能力;基于该策略,提出2种方向性分组方法:一种是保留更强近邻性的基于椭球查询的方向性分组方法(Ellipsoid Query-based Directional Grouping, DIG-EQ),另一种是计算效率更高的基于空间填充曲线的方向性分组方法(Space-Filling Curve-based Directional Grouping, DIG-SFC),这2种方法可灵活适配不同网络架构,显著提升了小尺度目标识别性能。其次,针对数据类别样本不均衡的问题,构建联合损失函数,进一步提高模型对小尺度目标的感知能力。最后,构建来自不同煤矿巷道的煤矿巷道点云语义分割数据集,对所提方法进行验证。结果表明:所提方法在PointNet++、PointNeXt-L和Point Transformer V3骨干网络框架上针对所有类别的平均交并比分别为61.84%、69.49%、76.63%,较原始骨干网络提高了15.83%、6.25%、0.35%;针对小尺度类别的平均交并比分别为22.28%、28.61%、47.30%,较原始骨干网络提高了29.99%、42.34%和5.33%,验证了此方法在煤矿巷道场景中的有效性。

     

    Abstract: Point cloud semantic segmentation in coal mine roadways is a critical technology for scene understanding in underground coal mine environments. However, the coexistence of multi-scale objects and imbalanced class samples in mine point clouds lead to poor segmentation performance for small-scale targets. To address the issue, a direction-guided grouping method for semantic segmentation of point clouds in coal mine roadways is introduced. Leveraging the directional distribution of typical small-scale objects (e.g., pipes and cables), a Direction-Guided Grouping (DIG) strategy is proposed to optimize the shape of grouping envelopes in point cloud segmentation networks, thereby increasing the proportion of small-scale object points within groups and enhancing feature extraction. Based on this strategy, two directional guided grouping methods are proposed: one is Ellipsoid Query-based Direction-Guided Grouping (DIG-EQ), which preserves stronger local neighborhood relationships, and the other is Space-Filling Curve-based Direction-Guided Grouping (DIG-SFC), which offers higher computational efficiency. Both methods can be flexibly adapted to different network architectures and significantly improve the performance of small-scale object recognition.To mitigate class imbalance, a hybrid loss function is employed to improve sensitivity to underrepresented categories. A semantic segmentation dataset of coal mine roadway point clouds collected from different coal mine roadways is constructed for evaluation. The results show that the proposed method attains mean Intersection-over-Union (mIoU) of 61.84%, 69.49% and 76.63% on PointNet++, PointNeXt-L, and Point Transformer V3 backbones, respectively, representing improvements of 15.83%, 6.25% and 0.35% over baseline models. For small-scale categories, mIoU reach 22.28%, 28.61% and 47.30%, with relative gains of 29.99%, 42.34% and 5.33%. These results demonstrate the effectiveness of the proposed approach in coal mine roadway scenarios.

     

/

返回文章
返回