Distribution and controlled geological factors of oil-rich coal in shaanxi province
-
摘要:
煤的绿色清洁高效利用是煤炭工业可持续发展的重要途径。陕西省煤炭资源丰富,主要含煤区分布于陕西北部的五大煤田,富油煤资源更是位居全国首位。通过收集以往地质勘探资料和针对性采集陕北榆神矿区某煤矿煤心进行化验测试分析,探讨陕西省富油煤分布特征及影响煤焦油产率的地质因素。结果显示,陕西省富油煤以陕北侏罗系煤田为最优,焦油产率分布于7.6%~15.3%;物质组成、生油潜力、热演化程度及成煤环境控制着煤的焦油产率的大小和分布。基质镜质体、挥发分产率、H元素含量及H/C原子比等与煤的焦油产率呈正相关关系,相关系数较高,岩石热解参数中烃指数与焦油产率的相关性高,可作为快速判别煤焦油产率的指标;煤焦油产率随着热演化程度的增加呈现先增加后减少的趋势,且在Ro约0.9%时,达到最大值;沉积环境水体微流动、强还原、浅覆水−微流动的泥炭沼泽相的煤焦油产率值越高。研究结果为富油煤的地质预测提供借鉴。
Abstract:The green, clean and efficient utilization of coal is an important way for the sustainable development of coal industry. Shaanxi province is rich in coal resources, which are mainly distributed in the five coal fields in the north of Shaanxi province, and the oil-rich coal resources rank first in China. In this paper, the distribution characteristics of oil-rich coal in Shaanxi Province and the geological factors affecting the tar yield of coal are discussed by collecting the previous geological exploration data and the coal core of a coal mine in Yushen mining area of northern Shaanxi Province. The results show that the Jurassic coal field in northern Shaanxi is the best oil-rich coal in Shaanxi Province, and the tar yield is distributed in the range of 7.6%-15.3%. Material composition, oil generation potential, thermal evolution degree and coal-forming environment control the size and distribution of tar yield in coal. The desmocollinite content, volatile matter content, H element content and H/C atomic ratio were positively correlated with the tar yield of coal, and the correlation coefficient was high. There is a high correlation between the hydrocarbon index and tar yield in rock pyrolysis parameters, which can be used as an index to quickly identify tar yield in coal. The tar yield of coal increases first and then decreases with the increase of thermal evolution degree, and reaches the maximum value whenRo is about 0.9%. The higher the coal tar yield value is in the peat swamp facies with micro-flow, strong reduction and shallow overlying water-micro-flow in sedimentary environment. The research results provide reference for geological prediction of oil-rich coal.
-
-
-
[1] 汪寅人,刘品双,陈文敏. 我国若干褐煤及烟煤的化学组成与低温焦油产率的关系[J]. 燃料学报,1958,3(1):35−41. WANG Yinren,LIU Pinshuang,CHEN Wenmin. Relationship between chemical composition and low temperature tar yieldof some lignite and bituminous coals in China[J]. Acta Focalia Sinica,1958,3(1):35−41.
[2] 张 军,袁建伟,徐益谦. 矿物质对煤粉热解的影响[J]. 燃烧科学与技术,1998,4(1):66−71. ZHANG Jun,YUAN Jianwei,XU Yiqian. Effects of mineral matter on pyrolysis of pulverized coal[J]. Journal of Combustion Science and Technology,1998,4(1):66−71.
[3] 晁 伟,苏 展,李东涛,等. 一种预测煤焦油产率的新方法[J]. 煤炭转化,2011,34(2):64−68. doi: 10.3969/j.issn.1004-4248.2011.02.015 CHAO Wei,SU Zhan,LI Dongtao,et al. A new method to anticipate the coal tar yield[J]. Coal Conversion,2011,34(2):64−68. doi: 10.3969/j.issn.1004-4248.2011.02.015
[4] 孙晔伟,唐跃刚,李正越,等. 中国特高挥发分特高油产率煤的分布及其特征[J]. 煤田地质与勘探,2017,45(5):6−12. SUN Yewei,TANG Yuegang,LI Zhengyue,et al. Occurrence of super high volatile and tar yield coal in China[J]. Coal Geology & Exploration,2017,45(5):6−12.
[5] 谢 青,李 宁,姚 征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭,2020,46(11):83−90. doi: 10.3969/j.issn.1006-530X.2020.11.013 XIE Qing,LI Ning,YAO Zheng,et al. Research on the tar yield characteristics and main control factors of tar-rich coal in Huangling mining area[J]. China Coal,2020,46(11):83−90. doi: 10.3969/j.issn.1006-530X.2020.11.013
[6] 王 锐,夏玉成,马 丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术,2020,48(12):192−197. WANG Rui,XIA Yucheng,MA Li. Study on oil-rich coal occurrence characteristics and sedimentary environment inYushen Mining Area[J]. Coal Science and Technology,2020,48(12):192−197.
[7] 李华兵,李 宁,姚 征,等. 陕北三叠纪煤田子长矿区瓦窑堡组特高焦油产率煤富集规律分析[J]. 中国煤炭地质,2021,33(1):22−25,79. LI Huabing,LI Ning,YAO Zheng,et al. Study on wayaobu formation extra-high tar yield coal enrichment pattern in Zichang Mining Area, Northern Shaanxi Triassic Coalfield[J]. Coal Geology of China,2021,33(1):22−25,79.
[8] 李华兵, 姚 征, 李 宁, 等. 神府矿区5-2煤层富油煤赋存特征及资源潜力评价[J]. 煤田地质与勘探, 2021, 49(3): 26−32. LI Huabing, YAO Zheng, LI Ning, et al. Occurrence characteristics and resource potential evaluation of tar-rich coal for No.5 -2 coal seam in Shenfu Mining Area[J]. Coal Geology & Exploration, 2021, 49(3): 26−32.
[9] 张 宁, 许 云, 乔军伟,等. 陕北侏罗纪富油煤有机地球化学特征[J]. 煤田地质与勘探, 2021, 49(3): 4249. ZHANG Ning, XUYun, QIAO Junwei,et al. Organic geochemistry of the Jurassic tar-rich coal in Northern Shaanxi Province[J]. Coal Geology & Exploration, 2021, 49(3): 42-49.
[10] 陈 祥,张育民,程克明,等. 焉耆盆地侏罗纪煤系源岩显微组分组合与生油潜力[J]. 地球科学,2005,30(3):337−342. CHEN Xiang,ZHANG Yumin,CHENG Keming,et al. Maceral Composition and Oil Potential of the Jurassic Coal Bearing Series in the Yanqi Basin[J]. Earth Science—Journal of China Univer sity of Geosciences,2005,30(3):337−342.
[11] 钟宁宁,陈恭洋. 中国主要煤系倾气倾油性主控因素[J]. 石油勘探与开发,2009,36(3):331−338. doi: 10.1016/S1876-3804(09)60130-0 ZHONG Ningning,CHEN Gongyang. Key controls of the gas and oil preferences of China's major coal-bearing sequences[J]. Petroleum Exploration and Development,2009,36(3):331−338. doi: 10.1016/S1876-3804(09)60130-0
[12] 郭春清. 形成煤成油田的制约条件[J]. 石油勘探与开发,2005,32(5):69−73. doi: 10.3321/j.issn:1000-0747.2005.05.016 GUO Chunqing. Key format ion conditions of coal-derived oilfields[J]. Petroleum Exploration and Development,2005,32(5):69−73. doi: 10.3321/j.issn:1000-0747.2005.05.016
[13] 张双全, 吴国光. 煤化学[M]. 徐州: 中国矿业大学出版社, 2019. ZHANG Shuangquan, WU Guoguang. Coal Chemistry[M]. Xuzhou: China University of Mining and Technology Press, 2019.
[14] WILKINS R,GEORGE S C. Coal as a source rock for oil: a review[J]. International Journal of Coal Geology,2002,50(1-4):317−361. doi: 10.1016/S0166-5162(02)00134-9
[15] SAXBY J D. Atomic HC ratios and the gcncration of oil from coals and kerogens[J]. Fuel, 1980, 59(5): 305−307.
[16] LANGFORD F F,BLANC-VALLERON M M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon[J]. AAPG bulletin,1990,74(6):799−804.
[17] PETERS K E, CASSA M R. Applied source rock geochemistry[J]. American Association of Petroleum Geologists, 1994, 60: 93−120.
[18] HAKIMI M H,ABDULLAH W H,SIA S G,et al. Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: implications for palaeoenvironmental conditions and hydrocarbon generation potential[J]. Marine and Petroleum Geology,2013,48:31−46. doi: 10.1016/j.marpetgeo.2013.07.009
[19] 王飞宇,傅家谟,刘德汉,等. 煤和陆源有机质生油岩有机岩石学特点及评价[J]. 石油勘探与开发,1994,21(4):30−35. WANG Feiyu,FU Jiamo,LIU Dehan,et al. Organic petrological characteristics of coal and ter-restrical organic matter and their assessment as a oil source rock[J]. Petroleum Exploration and Development,1994,21(4):30−35.
[20] 汤达祯,王激流,林善园,等. 煤二次生烃作用程序热解模拟试验研究[J]. 石油实验地质,2000,22(1):9−15. TANG Dazhen,WANG Jiliu,LIN Shanyuan,et al. An expermental Study of Program Pyrolytic Modeling on Secondary Hydrocarbon Generation of Coals[J]. Experimental Petroleum Geology,2000,22(1):9−15.
[21] SENGULER I,AYYILDIZ T,ONAL Y,et al. Organic geochemical characterization and mineralogic properties of Mengen oil shale (Lutetian), Bolu-Turkey[J]. Oil Shale,2008,25(3):359−376. doi: 10.3176/oil.2008.3.07
[22] 杨 智,邹才能. “进源找油”: 源岩油气内涵与前景[J]. 石油勘探与开发,2019,46(1):173−184. doi: 10.11698/PED.2019.01.18 YANG Zhi,ZOU Caineng. “Exploring petroleum inside source kitchen”: Connotation andprospects of source rock oil and gas[J]. Petroleum Exploration and Development,2019,46(1):173−184. doi: 10.11698/PED.2019.01.18
[23] 郝吉生,葛宝勋,谢洪波. “灰成分端元分析法”及其在聚煤环境分析中的应用们[J]. 沉积学报,2000,18(3):460−464. doi: 10.3969/j.issn.1000-0550.2000.03.023 HAO Jisheng,GE Baoxun,XIE Hongbo. The analysis method based on ash:composition and itsapplication in coal-accumulating environment reconstruction[J]. Acta Sedimentologica Sinica,2000,18(3):460−464. doi: 10.3969/j.issn.1000-0550.2000.03.023
[24] DAI S,JI D,WARD C R,et al. Mississippian anthracites in Guangxi Province, southern China: petrological, mineralogical, and rare earth element evidence for high-temperature solutions[J]. International Journal of Coal Geology,2018,197:84−114. doi: 10.1016/j.coal.2018.08.006
[25] SPIRO B F,LIU J,DAI S,et al. Marine derived 87Sr/ 86Sr in coal, a new key to geochronology and palaeoenvironment: elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China[J]. International Journal of Coal Geology,2019,215:103304. doi: 10.1016/j.coal.2019.103304
[26] DAI S,BECHTEL A,EBLE C F,et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology,2020,219:103383. doi: 10.1016/j.coal.2019.103383
[27] DIESSEL C F K. The correlation between coal facies and depositionalenvironments[C]//Proceedings of the 20th symposium of the ad-vances in the study of the Sydney Basin. Australia: University of Newcastle, 1986: 19-22.
[28] 邵龙义,王学天,鲁 静,等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报,2017,35(5):1016−1031. doi: 10.14027/j.cnki.cjxb.2017.05.013 SHAO Longyi,WANG Xuetian,LU Jing,et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica,2017,35(5):1016−1031. doi: 10.14027/j.cnki.cjxb.2017.05.013
[29] 黄第藩, 秦匡宗, 王铁冠, 等. 煤成油的形成和成烃机理[M]. 北京: 石油工业出版社, 1995. HUANG Difan, QIN Kuangzong, WANG Tieguan, et al. Oil from coal: formation and mechanism[M]. Beijing: Petroleum Industry Press, 1995.
[30] 李文华,白向飞,杨金和,等. 烟煤镜质组平均最大反射率与煤种之间的关系[J]. 煤炭学报,2006,31(3):342−345. doi: 10.3321/j.issn:0253-9993.2006.03.016 LI Wenhua,BAI Xiangfei,YANG Jinhe,et al. Correspondence between mean maximum reflectance of vitrinite and classification of bituminous coals[J]. Journal of China Coal Society,2006,31(3):342−345. doi: 10.3321/j.issn:0253-9993.2006.03.016
[31] 倪志强. 炼焦煤中镜质组的黏结性特征及其成焦行为[D]. 唐山: 河北联合大学, 2015. NI Zhiqiang. The Caking Properties of the Vitrinite in Coking Coals and its Coking Behavior[D]. Tangshan: Hebei United University, 2015.
-
期刊类型引用(9)
1. 王军. 基于采空区地面井抽采数据评估煤矿卸压开采性能研究. 山西化工. 2024(08): 223-225 . 百度学术
2. 赵军利. 地面L型井顶板分段压裂技术在突出煤层中的应用. 煤矿现代化. 2023(02): 30-33 . 百度学术
3. 张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 . 本站查看
4. 王媛彬,李媛媛,韩骞,李瑜杰,周冲. 基于PCA-BO-XGBoost的矿井回采工作面瓦斯涌出量预测. 西安科技大学学报. 2022(02): 371-379 . 百度学术
5. 程士宜,李文超. 改善松软煤层抽采孔砂岩孔壁力学行为研究. 煤矿安全. 2022(10): 243-247 . 百度学术
6. 文建东,苗在全,高璐,荆士杰. 地面钻孔抽采对采空区自燃“三带”的影响研究. 能源与环保. 2022(12): 301-306 . 百度学术
7. 龙红军. 屯兰煤矿地面井压裂抽采瓦斯效果及影响范围. 煤炭科技. 2022(06): 86-90+95 . 百度学术
8. 吴向. 王峰煤矿地面L型井压裂抽采瓦斯工程实践. 内蒙古煤炭经济. 2022(24): 25-27 . 百度学术
9. 张尧兵. 工作面地面井瓦斯治理技术的可行性论证. 河南科技. 2021(12): 81-83 . 百度学术
其他类型引用(2)