Fracture evolution of coal under uniaxial compression based on X-ray microscopic imaging
-
摘要:
为研究煤岩细观结构特征随着轴向应力增加的演化规律,利用NanoVoxel-3502E X射线三维显微镜与Deben原位加载实验台进行煤岩单轴压缩试验,获取不同应变条件下的CT数据,并结合三维可视化软件AVIZO,研究煤样试件的孔隙裂隙分布特征,统计分析煤样试件孔隙裂隙细观参数-球形度、配位数、曲率和开度。揭示了煤样在单轴压缩情况下的细观结构空间分布特征及随时间的展布规律,细观结构随轴向应力的演化规律。研究表明:微小裂隙在20~732 N过程中大量出现,孔隙增多,在431~732 N过程中孔隙球形度集中分布范围变窄,部分孔裂隙逐渐融合进入裂隙网络,部分孔裂隙被压实压密,732 N时部分孔隙被压实压密,导致孔裂隙减少90000个,裂隙曲率逐渐增大、裂隙逐渐开度变大,配位数集中率更高,同时也说明煤样内部连通性更好,732 N是裂隙网络发育的巅峰。轴向力达到1100 N(峰值)时,形成复杂的裂隙网络。随着单轴压缩过程的推进,部分孔裂隙虽然在732 N被压实压密,但由于轴向力的增大以及残余荷载的作用,孔裂隙的增多是必然趋势,峰值和峰后仍然存在微小孔裂隙,但峰后裂隙较窄,球形度更多的是集中在1.5~2.0。贯通裂隙的曲率在裂隙网络的边缘普遍较高,即裂隙网络边缘为裂隙发育带。为研究煤样的时空演化规律提供了一种可行的技术手段,对于阐释煤岩细观结构时空演化过程具有实际意义。
Abstract:In order to study the evolution of the microstructure characteristics of coal with increasing axial stress, this paper used NanoVoxel-3502E X-ray three-dimensional microscope and Deben in-situ loading test rig to carry out uniaxial compression tests of coal to obtain CT data under different strain conditions, Combined with the three-dimensional visualization software AVIZO, extracted the pores and fractures of the coal sample, studyed the pore and fracture distribution characteristics of the coal sample, and statistically analyzed the microscopic parameters of the number of pores, sphericity, and coordination number, curvature, thickness and other meso-structure parameters. It revealed the spatial distribution characteristics of the mesostructure of the coal sample under uniaxial compression and its distribution law over time, and the evolution law of the mesostructure with the axial stress. Studies have shown that small fractures appear in large numbers from 20 N to 732 N, and the number of pores increases. During the process from 431 N to 732 N, the concentrated distribution range of pore sphericity became narrower. Some pores and fractures gradually merged into the fracture network, and some pores and fractures were compressed. Part of the pores were compacted at 732 N, resulted in a reduction of 90,000 pores. The curvature of the fractures gradually increased, the fractures gradually became thicker, and the coordination number concentration ratio was higher. It also showed that the coal sample was internally connected. 732 N was the pinnacle of fracture network development. When the axial force reached 1100 N (peak), a complex fracture network was formed. With the advancement of the uniaxial compression process, although some pores and fractures were compacted at 732 N, due to the increase in axial force and residual load, the increase of pores and fractures was an inevitable trend, and there were still small pores and fractures after the peak, but the post-peak fractures were thinner, and the sphericity was more concentrated in 1.5-2.0. The curvature of the interconnected fractures was generally higher at the edges of the fracture network, the edges of the fracture network were fracture development zones. This paper provided a feasible technical means for studying the temporal and spatial evolution of coal samples, and has practical significance for interpreting the temporal and spatial evolution of the meso-structure of coal.
-
Keywords:
- CT /
- uniaxial compression /
- in-situ tests /
- mesoscopic structure /
- coal /
- fracture evolution of coal
-
0. 引 言
煤炭截割产尘、煤与瓦斯突出等矿山灾害问题时刻困扰着煤矿的安全高效生产[1-2]。煤矿开采会产生大量粉尘[3],由粉尘引起的尘肺病是中国最严重的职业病,约占职业病病例总数的80%[4-5]。此外,煤与瓦斯突出时,井下工作面和巷道内的气流会受到严重破坏,并可能引发瓦斯爆炸等次生灾害[6]。煤层注水作为一种抑制煤与瓦斯突出[7]、降低煤尘生产量的有效方法,它可以湿润煤体内的原生煤尘,降低煤尘的产生量,抑制煤层瓦斯的解析。但是,注水润湿、瓦斯渗流与煤岩内部孔裂隙的发育情况有直接关联[8],煤是一种多孔介质,孔径跨度范围大且孔隙形态多样、结构复杂[9],这些孔隙裂隙所构成的空间是煤层中唯一存储和输运流体的空间[10],因此,煤的孔隙裂隙结构一直是煤矿安全领域研究的重点。煤是一种应力敏感的有机岩石,在地应力作用下,煤内部裂隙、孔隙等细观结构将发生变化,而变化的孔隙通道对煤体注水、润湿有着至关重要的作用[11],煤矿中煤柱处于单轴压缩状态,当煤柱内裂隙发育后漏风,漏粉导致采空区自燃发火,因此,探明在单轴压缩作用下煤体裂隙孔隙细观结构演化过程,掌握煤体细观结构改变的空间展布形态,对认清煤体破坏过程中的裂纹扩展及其分布,具有理论研究价值和实际工程意义。
为了更好理解煤岩内部细观结构,以往的研究人员不仅分析了煤岩变形破坏过程中微观结构对破坏形式产生的影响以及渗透率的变化[12-13],而且在单轴压缩条件下研究了裂纹的微损伤和细观损伤的演化特征以及微裂隙初始密度与煤岩单轴抗压强度之间的联系[14-15]。人们对于煤体内部微结构的研究也越来越深入[16-19]。随着CT、核磁共振、扫描电镜等细观成像技术的发展,通过细观尺度的研究来揭示宏观结构特征演化的内在原因,尤其CT技术应用较为广泛。CT扫描技术利用X射线对岩石进行全方位快速且无损扫描并重构三维结构特征,能呈现样品中孔裂隙空间分布与连通性,精细定量表征煤岩孔裂隙形态、分布以及矿物分布,因此该方法被广泛应用于表征煤岩微米-毫米级连通微裂隙特征[20-21]。目前,诸多学者应用CT扫描技术对煤岩的精细结构进行系统评价。研究主要包括:评价特定煤岩的三维孔裂隙空间分布特征、动态监测煤岩的孔裂隙系统随外界条件的变化趋势、及探究不同图像处理技术在煤岩评价上的优缺点等[22-24]。现代运用CT对煤体结构的分析主要是通过CT扫描观测吸附瓦斯煤体细观结构的受载破坏过程,分析孔隙结构对煤体受载变形的影响,结合分型理论对煤岩细观结构进行分析[25-31]。研究人员运用CT可以定量表征煤岩孔隙度、孔喉特征、配位数、连通性、通道长度、喉道尺寸和孔隙体积的测量分布之间的相关性等参数[32-34]。以往的CT扫描都是状态的扫描,不能实时监测样品的变化情况,原位加载技术使样品可以在保持负载的情况下进行扫描,提高扫描样品时孔裂隙的精确度[35]。原位CT可以在加载样本时逐层捕获详细的损坏状态并扫描测量裂纹[36],其对于研究煤岩细观结构有着重要意义,通过它能够获得样品内部细观结构随着应力加载的动态演化规律,进而定量、定性揭示其内部裂隙孔隙时空展布特征及裂隙的萌生、扩展、贯通与承载能力的关联[37]。
尽管CT扫描技术对前人探究煤岩微观结构奠定了基础,但仅运用CT并不能全面动态地研究煤岩微观结构随着轴向压力变化的规律,而原位加载系统则为实时监测煤样随着轴向压力变化的规律特点提供了支持,但利用CT扫描技术结合原位加载系统对煤岩多尺度孔裂隙评价的研究相对较少。本文基于原位加载系统并结合NanoVoxel-3502EX射线三维显微镜对煤样进行单轴压缩,通过AVIZO进行煤样三维重构,探究煤岩细观结构的时空演化特征。
1. 试验及煤样
1.1 试验装置
采用NanoVoxel-3502E X射线三维显微镜和原位加载系统进行试验,X射线三维扫描成像原理如图1所示。原位加载系统载荷力范围是0~5 kN。NanoVoxel-3502E X射线三维显微镜是具有超高分辨率的无损伤三维显微成像设备。X射线三维显微镜,采用独特的X光光学显微成像技术,利用不同角度的X射线透视图像,结合三维数字重构技术,提供样品内部复杂结构的高分辨率三维数字图像,对样品内部的微观结构进行微米尺度上的数字化三维表征,以及对构成样品的物质属性进行分析。
1.2 煤 样
本试验煤样取自中国山东省济宁市兴隆庄煤矿,属于烟煤,经工业分析表明,煤样的灰分9.4%,水分2.8%,挥发分28.4%,固定碳59.4%(图2)。为便于扫描将煤样试件磨制成长方体,试件尺寸为:6 mm×6 mm×12 mm,用岩石断面打磨机打磨煤样试件端面,使端面不平整度误差不大于0.02 mm。扫描前用热缩管包裹煤样试件,防止煤样试件破坏后崩落,影响后期试样的CT扫描。
1.3 试验过程
将煤样试件固定于样品台,通过NanoVoxel-3502E X射线三维显微镜和原位加载系统进行煤样试件的扫描。为使煤样与加载台接触,初期原位加载台以1.0 mm/min的速度进行移动,并设定预加轴向力为20 N。单轴压缩实验过程中采用轴向位移控制方式进行加载,位移加载速度变为0.1 mm/min,轴向位移每加载0.1 mm进行一次CT扫描,共计进行了5次扫描。试验过程参数见表1。
表 1 位移-轴向力关系与三维扫描参数Table 1. Displacement-axial force telationship and 3D scanning parameters加载速率/
(mm·min−1)轴向位移/
mm轴向力/
N扫描电流/
μA扫描电压/
kV1.0 0.146 20 100 130 0.1 0.246 431 0.346 732 0.446 1100 0.546 492 试验路径如图3所示。获得数据后结合AVIZO将煤样试件三维重构,其中图像尺寸为1200 pix×1300 pix×1300 pix、像素分辨率为8 μm。将煤样外层包裹的热缩管裁切后得到816个切片。
2. CT扫描数据处理情况
将五个状态下的孔裂隙进行骨架化,从图4中可以清楚地看出孔裂隙(包括贯通裂隙)随时间和应力增长而逐渐发育成熟的过程:20 N应力状态下微小孔裂隙出现;431 N下孤立孔裂隙逐渐密集,发育出贯通裂隙,并且垂直X-Y平面;732 N下的孔裂隙相互勾通,局部孔裂隙被压实,贯通煤样试件的裂隙逐渐发育,裂隙网络开始显现;峰值1100 N轴向应力的作用下使贯通煤样试件的裂隙发育地更加成熟;最终在峰后492 N下可以看出残余荷载使微小孔裂隙部分消失。基于孔裂隙骨架化可以获得孔裂隙配位数的情况。
3. 煤岩细观情况分析
煤样试件置于NanoVoxel-3502E X射线三维显微镜设备中在各状态下进行扫描,将所得数据运用Avizo处理后得到各状态下的球形度、配位数、曲率、开度一系列参数。
3.1 煤岩球形度情况分析
将处理所得球形度数据进行统计分析得到图5。球形度反映了煤岩内部孔裂隙的形状,形貌上越接近球的颗粒,其球形度越接近于1,球形度越偏离1,则其孔裂隙形状越不规则,越狭长。
通过图5可知在时间和应力的作用下,孔隙由20~431 N先逐渐增多至18万个,431~732 N逐渐减少至7万个,732~492 N(峰后)再次逐渐增多至11.5万个。煤样孔隙在单轴压缩过程初期先发育增多,而孔裂隙在732 N时开始被压实压密,导致孔裂隙减少9万个,但随着单轴压缩过程的推进,孔隙逐渐增长,部分孔裂隙虽然在732 N被压实压密,但由于轴向力的增大以及残余荷载的作用,孔裂隙的增多是必然趋势。20 N孔隙球形度在0.5~2.5、2.9范围内,431N孔隙球形度在0.5~2.5、2.9范围内,集中分布在1.0~2.5和2.9,球形度分布范围没有明显变化,732~492 N(峰后)孔隙球形度集中在1.5~2.5、2.9范围内,球形度集中分布范围此时开始变窄,部分孔隙被融合并入裂隙网络中,使球形度开始明显发生变化。煤样在单轴压缩过程初期开始中出现微小孔裂隙,从431 N开始孔隙球形度集中分布范围变窄,部分孔裂隙逐渐融合进入裂隙网络,部分孔裂隙被压实压密,峰值和峰后仍然存在微小孔裂隙,但球形度更多的是集中在1.5~2.0。
3.2 煤岩配位数情况分析
对煤岩内部孔裂隙进行骨架化后得到配位数情况,配位数是反映煤岩内部孔裂隙连通程度的重要参数,配位数越大,储层性质越好。
随着轴向力增加,节点与配位数之间的变化情况如图6所示。在20 N轴向力下,节点有1933个,配位数最大值是20,配位数集中分布范围是0~5;施加至431 N的轴向力作用后,节点增加至4.5万个,配位数最高是98,配位数集中分布范围是0~10;当轴向力由431 N增至732 N,节点个数减少了2.6万个,配位数最高是204,配位数集中分布范围是0~10;当轴向力由732 N增至1100 N(峰值),节点增加了4.9万个,配位数最高是405,配位数集中分布范围是0~15;当轴向力由1100 N(峰值)降至492 N(峰后),此时节点数为8.3万个,配位数最高值为319,配位数集中分布范围为0~15。
配位数分布范围随着轴向力的增大而逐渐增大,在20~431 N时存在一部分节点配位数高于集中分布范围,而自732 N后配位数只有1或2个高于集中分布范围,即732 N后配位数集中率更高,同时也说明煤样内部连通性更好。
3.3 煤岩裂隙曲率和开度情况分析
为进一步分析煤样内部裂隙发生演化规律,运用AVIZO对产生贯通裂隙的四个状态(431 N、732 N、1100 N、492 N)进行网格划分,如图7所示,展示了431 N的贯通裂隙网格划分。网格划分完成后得到4个状态的贯通裂隙的曲率和开度的数据,如图8、图9所示。
曲率在一定程度上控制了裂缝发育的密度、方向、宽度和深度。曲率事故几何体不平坦程度的一种衡量,地层曲率用来表征地层受构造应力挤压后的弯曲程度,曲率越大说明岩石所受的应力越大,地层的弯曲程度越大,裂缝裂隙也就越发育。图8中看出4个状态下贯通裂隙的曲率在裂隙网络的边缘普遍较高,即裂隙网络边缘为裂隙发育带,其中732 N的曲率红色范围最多,1100 N(峰值)和492 N(峰后)的曲率绿色范围居多,说明732 N是裂隙网络发育的巅峰,1100 N(峰值)和492 N(峰后)裂隙网络的发育已接近饱和。四个状态下的开度展示如图9所示。在整个发育过程中,431 N和492 N(峰后)的裂隙开度较小,只有小区域的裂隙开度较大,732 N的裂隙逐渐发育,当1100 N(峰值)时,裂隙开度开始出现较大的区域。
4. 结 论
1)煤样在单轴压缩过程初期开始中出现微小孔裂隙,孔隙个数增多,从431 N开始孔隙球形度集中分布范围变窄,部分孔裂隙逐渐融合进入裂隙网络,部分孔裂隙被压实压密,732 N时部分孔隙被压实压密,此时孔隙个数减少9万个,但随着单轴压缩过程的推进,孔隙个数仍然逐渐增长,部分孔裂隙虽然在732 N被压实压密,但由于轴向力的增大以及残余荷载的作用,孔裂隙的增多是必然趋势,峰值和峰后仍然存在微小孔裂隙,但球形度更多的是集中在1.5~2.0。
2)配位数分布范围随着轴向力的增大而逐渐增大,在20~431 N时存在一部分节点配位数高于集中分布范围,而自732 N后配位数只有1或2个高于集中分布范围,即732 N后配位数集中率更高,同时也说明煤样内部连通性更好。
3)4个状态下贯通裂隙的曲率在裂隙网络的边缘普遍较高,即裂隙网络边缘为裂隙发育带,其中732 N的曲率红色范围最多,裂隙开度逐渐变大,732 N是裂隙网络发育的巅峰。1100 N(峰值)和492 N(峰后)的曲率绿色范围居多,1100 N(峰值)时,裂隙开度开始出现较大的区域,492 N(峰后)的裂隙较窄。
-
表 1 位移-轴向力关系与三维扫描参数
Table 1 Displacement-axial force telationship and 3D scanning parameters
加载速率/
(mm·min−1)轴向位移/
mm轴向力/
N扫描电流/
μA扫描电压/
kV1.0 0.146 20 100 130 0.1 0.246 431 0.346 732 0.446 1100 0.546 492 -
[1] 程远平,周红星. 煤与瓦斯突出预测敏感指标及其临界值研究进展[J]. 煤炭科学技术,2021,49(1):146−154. CHENG Yuanping,ZHOU Hongxing. Research progress of sensitive index and critical values for coal and gas outburst prediction[J]. Coal Science and Technology,2021,49(1):146−154.
[2] 李树刚,杨二豪,林海飞,等. 深部开采卸压瓦斯精准抽采体系构建及实践[J]. 煤炭科学技术,2021,49(5):1−10. LI Shugang,YANG Erhao,LIN Haifei,et al. Construction and practice of accurate gas drainage system for pressure relief gas in deep mining[J]. Coal Science and Technology,2021,49(5):1−10.
[3] 程卫民,周 刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展与展望[J]. 煤炭科学技术,2020,48(2):1−20. CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1−20.
[4] HUANG Xinru,CHEN Hong,LONG Ruyin,et al. Development and validation of the quality of life scale for Chinese coal miners with pneumoconiosis (QOL-CMP): Measurement method and empirical study[J]. Journal of Cleaner Production,2019,232:1062−1075. doi: 10.1016/j.jclepro.2019.05.398
[5] LIU Rulin,CHENG Weimin,YU Yanbin,et al. An impacting factors analysis of miners' unsafe acts based on HFACS-CM and SEM[J]. Process Safety & Environmental Protection,2019
[6] 王登科,李文睿,魏建平,等. 基于分形表征的粗糙微纳米孔隙瓦斯气体传输方程[J]. 煤炭学报,2019,44(11):3432−3440. WANG Dengke,LI Wenrui,WEI Jianping,et al. Gas transport equation in rough micro-nano pore based on fractal characterization[J]. Journal of China Coal Society,2019,44(11):3432−3440.
[7] ZHANG Kaizhong,CHENG Yuanping,WANG Liang,et al. Pore morphology characterization and its effect on methane desorption in water-containing coal: An exploratory study on the mechanism of gas migration in water-injected coal seam[J]. Journal of Natural Gas Science and Engineering,2020,75:103152. doi: 10.1016/j.jngse.2020.103152
[8] CHENG Weimin,LIU Zhen,YANG He,et al. Non-linear seepage characteristics and influential factors of water injection in gassy seams[J]. Experimental Thermal and Fluid Science,2018,91:41−53. doi: 10.1016/j.expthermflusci.2017.10.002
[9] 葛修润,任建喜,蒲毅彬,等. 煤岩三轴细观损伤演化规律的CT动态试验[J]. 岩石力学与工程学报,1999(5):497−502. doi: 10.3321/j.issn:1000-6915.1999.05.001 GE Xiurun,REN Jianxi,PU Yibin,et al. CT dynamic test of triaxial meso-damage evolution of coal and rock[J]. Chinese Journal of Rock Mechanics and Engineering,1999(5):497−502. doi: 10.3321/j.issn:1000-6915.1999.05.001
[10] 陈辉辉,张小波,姚 池,等. 高温作用后岩石裂隙渗流试验及其模型分析[J]. 煤炭学报,2019,44(9):2760−2766. doi: 10.13225/j.cnki.jccs.2018.1217 CHEN Huihui,ZHANG Xiaobo,YAO Chi,et al. Experimental and model analysis of rock fracture seepage after high temperature action[J]. Journal of China Coal Society,2019,44(9):2760−2766. doi: 10.13225/j.cnki.jccs.2018.1217
[11] WANG Pengfei,TIAN Chang,LIU Ronghua,et al. Mathematical model for multivariate nonlinear prediction of SMD of X-type swirl pressure nozzles[J]. Process Safety and Environmental Protection,2019,125:228−237. doi: 10.1016/j.psep.2019.03.023
[12] 郭建春,陈付虎,苟 波,等. 酸压裂缝体形态与流动能力的控制因素:以鄂尔多斯盆地大牛地气田下奥陶统马家沟组马五_5亚段储层为例[J]. 天然气工业,2020,40(6):69−77. GUO Jianchun,CHEN Fuhu,GOU Bo,et al. Controlling factors of acid-compressed fracture body morphology and flow capacity: A case study of reservoir in Ma 5 sub-member of Lower Ordovician Majiagou Formation, Daniudi gas field, Ordos Basin[J]. Natural Gas Industry,2020,40(6):69−77.
[13] 李 静,孔祥超,宋明水,等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学,2019,40(11):4149−4156,4164. LI Jing,KONG Xiangchao,SONG Mingshui,et al. Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation[J]. Rock and Soil Mechanics,2019,40(11):4149−4156,4164.
[14] TANG Hudan. Multi-scale crack propagation and damage acceleration during uniaxial compression of marble[J]. International Journal of Rock Mechanics and Mining Sciences,2020,131:104330. doi: 10.1016/j.ijrmms.2020.104330
[15] 伍天华,周 喻,王 莉,等. 单轴压缩条件下岩石孔-隙相互作用机制细观研究[J]. 岩土力学,2018,39(S2):463−472. doi: 10.16285/j.rsm.2018.0957 WU Tianhua,ZHOU Yu,WANG Li,et al. Mesoscopic study on the mechanism of rock pore-gap interaction under uniaxial compression[J]. Rock and Soil Mechanics,2018,39(S2):463−472. doi: 10.16285/j.rsm.2018.0957
[16] JI Huaijun,MAO Yingnan,SU Hetao. Effects of organic micromolecules in bituminous coal on its microscopic pore characteristics[J]. Fuel,2020,262:116529. doi: 10.1016/j.fuel.2019.116529
[17] XIN Fudong,XU Hao,TANG Dazhen,et al. Pore structure evolution of low-rank coal in China[J]. International Journal of Coal Geology,2019,205:126−139. doi: 10.1016/j.coal.2019.02.013
[18] 尹光志,黄 滚,代高飞,等. 基于CT数的煤岩单轴压缩破坏的分叉与混沌分析[J]. 岩土力学,2006(9):1465−1470. doi: 10.3969/j.issn.1000-7598.2006.09.006 YIN Guangzhi,HUANG Gun,DAI Gaofei,et al. Bifurcation and chaos analysis of coal rock failure under uniaxial compression based on CT number[J]. Rock and Soil Mechanics,2006(9):1465−1470. doi: 10.3969/j.issn.1000-7598.2006.09.006
[19] 朱红光,谢和平,易 成,等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报,2011,30(6):1230−1238. ZHU Hongguang,XIE Heping,YI Cheng,et al. CT identification of microfracture evolution in rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1230−1238.
[20] 孟巧荣,赵阳升,胡耀青. 微焦点显微CT在煤岩热解中的应用[J]. 煤炭学报,2013,38(3):430−434. MENG Qiaorong,ZHAO Yangsheng,HU Yaoqing. Application of microfocus micro CT in coal pyrolysis[J]. Journal of China Coal Society,2013,38(3):430−434.
[21] 陆太进,戴 慧,田庚凡,等. 基于气体吸附法和X射线Micro-CT三维成像技术定量解析天然和电化学处理绿松石孔隙特征[J]. 地学前缘,2020,27(5):247−253. LU Taijin,DAI Hui,TIAN Gengfan,et al. Pore characteristics of natural and electrochemically treated turquoise were quantitatively analyzed by gas adsorption method and X-ray micro-CT three-dimensional imaging technology[J]. Earth Science Frontiers,2020,27(5):247−253.
[22] 刘京红,姜耀东,赵毅鑫,等. 煤岩破裂过程CT图像的分形描述[J]. 北京理工大学学报,2012,32(12):1219−1222. doi: 10.3969/j.issn.1001-0645.2012.12.003 LIU Jinghong,JIANG Yaodong,ZHAO Yixin,et al. Fractal description of CT images of coal rock fracture process[J]. Transaction of Beijing Institute of Technology,2012,32(12):1219−1222. doi: 10.3969/j.issn.1001-0645.2012.12.003
[23] 朱 琳,党发宁,丁卫华,等. 基于CT技术和灰度共生矩阵理论研究不同荷载作用下混凝土的细观损伤演化过程[J]. 土木工程学报,2020,53(8):97−107. doi: 10.15951/j.tmgcxb.2020.08.010 ZHU Lin,DANG Faning,DING Weihua,et al. Coupled X-ray computed tomography and grey level co-occurrence matrices theory as a method for detecting microscopic damage of concrete under different loads[J]. China Civil Engineering Journal,2020,53(8):97−107. doi: 10.15951/j.tmgcxb.2020.08.010
[24] 钟江城,王子辉,王路军,等. 基于CT三维重构的深部煤体损伤演化规律[J]. 煤炭学报,2019,44(5):1482−1494. doi: 10.13225/j.cnki.jccs.2019.6007 ZHONG Jiangcheng,WANG Zihui,WANG Lujun,et al. Characteristics of damage evolution of deep coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,2019,44(5):1482−1494. doi: 10.13225/j.cnki.jccs.2019.6007
[25] LIU Shiqi,SANG Shuxun,HU Qiujia,et al. Characteristics of high-rank coal structure parallel and perpendicular to the bedding plane via NMR and X-ray CT[J]. Petroleum Science,2020,17(4):925−938. doi: 10.1007/s12182-020-00462-w
[26] 杜向琴,张 臻,娄宗科,等. 基于CT图像的细观混凝土孔隙缺陷研究[J]. 建筑材料学报,2020,23(3):603−610. DU Xiangqin,ZHANG Zhen,LOU Zongke,et al. Study on pore defects of mesoscopic concrete based on CT images[J]. Journal of Building Matlabs,2020,23(3):603−610.
[27] 韩燕华,谢作为,刘 方,等. 基于CT图像的再生混凝土内部微变形演化分析[J]. 华南理工大学学报(自然科学版),2019,47(5):73−80. HAN Yanhua,XIE Zuowei,LIU Fang,et al. Internal micro-deformation analysis of recycled aggregate concrete based on CT images[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(5):73−80.
[28] 侯志强,王 宇,刘冬桥,等. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学,2020,41(5):1510−1520. HOU Zhiqiang,WANG Yu,LIU Dongqiao,et al. Experimental study on mechanical properties of marble under triaxial fatigue and unloading confining pressure[J]. Rock and Soil Mechanics,2020,41(5):1510−1520.
[29] 郎颖娴,梁正召,董 卓. 玄武岩三维细观孔隙模型重构与直接拉伸数值试验[J]. 工程科学学报,2019,41(8):997−1006. LANG Yingxian,LIANG Zhengzhao,DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering,2019,41(8):997−1006.
[30] 廉培庆,高文彬,汤 翔,等. 基于CT扫描图像的碳酸盐岩油藏孔隙分类方法[J]. 石油与天然气地质,2020,41(4):852−861. LIAN Peiqing,GAO Wenbin,TANG Xiang,et al. A method for pore classification of carbonate reservoir based on CT scan images[J]. Oil & Gas Geology,2020,41(4):852−861.
[31] 莫云龙,李宏艳,邓志刚,等. 不同冲击倾向性煤能量响应初始损伤效应分析[J]. 采矿与安全工程学报,2020,37(6):1205−1212. MO Yunlong,LI Hongyan,DENG Zhigang,et al. Initial damage effect analysis of coal energy response with different bursting liability[J]. Journal of Mining and Safety Engineering,2020,37(6):1205−1212.
[32] W. BRENT Lindquist. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research,2000:1052139.
[33] LI Zhentao,LIU Dameng,CAI Yidong,et al. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT[J]. Fuel,2017,209:43−53. doi: 10.1016/j.fuel.2017.07.088
[34] ZHANG Yifei,NIU Suyun,DU Zhongming,et al. Dynamic fracture evolution of tight sandstone under uniaxial compression in high resolution 3D X-ray microscopy[J]. Journal of Petroleum Science and Engineering,2020,195:107585. doi: 10.1016/j.petrol.2020.107585
[35] ZHANG Guanglei,P G RANJITH,LIANG Weiguo,et al. Stress-dependent fracture porosity and permeability of fractured coal: An in-situ X-ray tomography study[J]. International Journal of Coal Geology,2019,213:103279. doi: 10.1016/j.coal.2019.103279
[36] SUN Xiaoyang,TAKEDA Shi-ichi,WISNOM Michael R,et al. In situ characterization of trans-laminar fracture toughness using X-ray Computed Tomography[J]. Composites Communications,2020:100408.
[37] WANG Y,HOU Z Q,HU Y Z. In situ X-ray micro-CT for investigation of damage evolution in black shale under uniaxial compression[J]. Environmental Earth Sciences,2018,77(20):278−288.
-
期刊类型引用(5)
1. 詹召伟,葛俊岭,徐振,刘涛. 基于高分子增透剂的煤层注水增渗作用分析. 能源与环保. 2024(05): 84-90 . 百度学术
2. 赵琛,赵炯博. 高压环境下油页岩物理性质及演化规律研究. 能源与环保. 2024(11): 269-274 . 百度学术
3. 张村,贾胜,王永乐,赵毅鑫,陈彦宏,王方田. 煤样CT扫描重构研究进展:原理、方法及应用. 煤炭学报. 2024(S2): 800-820 . 百度学术
4. 李刚,张亚兵,杨庆贺,邹军鹏,才天,刘航,赵艺鸣. 基于Real-ESRGAN的岩石CT图像超分辨率重建. 工矿自动化. 2023(11): 84-91 . 百度学术
5. 李小超,李东涛,尚学锋,刘涛. 基于高分子改性的煤层注水增透剂研发及性能研究. 中国矿业. 2023(12): 177-183 . 百度学术
其他类型引用(3)